Mapping the Transglycosylation Relevant Sites of Cold-Adapted β-d-Galactosidase from Arthrobacter sp. 32cB
Abstract
:1. Introduction
2. Results and Discussion
2.1. Activity of ArthβDG Mutants
2.2. Thermofluor Shift Assay
2.3. ArthβDG Mutants
2.4. Influence of Mutations within Active Site on Binding of Galactosyl Residue
2.5. Galactose Binds on the Enzyme’s Surface
2.6. ArthβDG Mutants in Complexes with Lactulose
2.7. Mapping the Binding Potential of the Distal Region of Active Site
3. Summary
4. Materials and Methods
4.1. Site-Directed Mutagenesis of Gene Encoding ArthβDG
4.2. Production of ArthβDG, ArthβDG_D207A and ArthβDG_E517Q Proteins
4.3. Determination of ArthβDG, ArthβDG_D207A and ArthβDG_E517Q Activity
4.4. Thermofluor Shift Assay
4.5. Crystallization of ArthβDG Mutants and Obtaining Their Complexes’
4.6. Data Collection, Structure Solving, and Refinement
4.7. Databases
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ArthβDG | β-d-galactosidase from Arthrobacter sp. 32cB |
ArthβDG_D207A | β-d-galactosidase from Arthrobacter sp. 32cB mutant D207A |
ArthβDG_E441Q | β-d-galactosidase from Arthrobacter sp. 32cB mutant E441Q |
ArthβDG_E517Q | β-d-galactosidase from Arthrobacter sp. 32cB mutant E517Q |
Gal | galactose |
GOS | galactooligosaccharides |
GH2 | glycosyl hydrolase 2 family |
HOS | heterooligosaccharides |
Lacd | lactose bound in deep mode |
Lact | lactulose |
ONPG | o-nitrophenyl-β-d-galactopyranoside |
Sucr | sucrose |
TSA | thermofluor shift assay |
References
- Talens-Perales, D.; Górska, A.; Huson, D.H.; Polaina, J.; Marín-Navarro, J. Analysis of Domain Architecture and Phylogenetics of Family 2 Glycoside Hydrolases (GH2). PLoS ONE 2016, 11, e0168035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Białkowska, A.M.; Cieśliński, H.; Nowakowska, K.M.; Kur, J.; Turkiewicz, M. A new β-galactosidase with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: Gene cloning, purification and characterization. Arch. Microbiol. 2009, 191, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Juers, D.H.; Matthews, B.W.; Huber, R.E. LacZ β-galactosidase: Structure and function of an enzyme of historical and molecular biological importance. Protein Sci. 2012, 21, 1792–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, A.P.; Fernandez-Leiro, R.; González-Siso, M.-I.; Cerdán, M.E.; Becerra, M.; Sanz-Aparicio, J. Structural basis of specificity in tetrameric Kluyveromyces lactis β-galactosidase. J. Struct. Biol. 2012, 177, 392–401. [Google Scholar] [CrossRef]
- Skalova, T.; Dohnálek, J.; Spiwok, V.; Lipovová, P.; Vondráčková, E.; Petroková, H.; Dušková, J.; Strnad, H.; Králová, B.; Hašek, J. Cold-active β-Galactosidase from Arthrobacter sp. C2-2 Forms Compact 660kDa Hexamers: Crystal Structure at 1.9Å Resolution. J. Mol. Biol. 2005, 353, 282–294. [Google Scholar] [CrossRef]
- Rutkiewicz-Krotewicz, M.; Pietrzyk-Brzezinska, A.J.; Sekula, B.; Cieśliński, H.; Wierzbicka-Woś, A.; Kur, J.; Bujacz, A. Structural studies of a cold-adapted dimeric β-D-galactosidase from Paracoccus sp. 32d. Acta Crystallogr. Sect. D Struct. Biol. 2016, 72, 1049–1061. [Google Scholar] [CrossRef]
- Rutkiewicz, M.; Pietrzyk, A.J.; Wanarska, M.; Cieśliński, H.; Bujacz, A. In Situ Random Microseeding and Streak Seeding Used for Growth of Crystals of Cold-Adapted β-d-Galactosidases: Crystal Structure of βDG from Arthrobacter sp. 32cB. Crystals 2018, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Brás, N.F.; Fernandes, P.A.; Ramos, M.J. QM/MM Studies on the β-Galactosidase Catalytic Mechanism: Hydrolysis and Transglycosylation Reactions. J. Chem. Theory Comput. 2010, 6, 421–433. [Google Scholar] [CrossRef]
- Juers, D.H.; Rob, B.; Dugdale, M.L.; Rahimzadeh, N.; Giang, C.; Lee, M.; Matthews, B.W.; Huber, R.E. Direct and indirect roles of His-418 in metal binding and in the activity of β-galactosidase (E. coli). Protein Sci. 2009, 18, 1281–1292. [Google Scholar] [CrossRef] [Green Version]
- Juers, D.H.; Heightman, T.D.; Vasella, A.; McCarter, J.D.; MacKenzie, L.; Withers, S.G.; Matthews, B.W. A structural view of the action of Escherichia coli (lacZ) beta-galactosidase. Biochemistry 2001, 40, 14781–14794. [Google Scholar] [CrossRef]
- Roberfroid, M.B. Prebiotics and probiotics: Are they functional foods? Am. J. Clin. Nutr. 2000, 71, 1682S–1687S. [Google Scholar] [CrossRef] [PubMed]
- Swennen, K.; Courtin, C.; Delcour, J. Non-digestible Oligosaccharides with Prebiotic Properties. Crit. Rev. Food Sci. Nutr. 2006, 46, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Torres, D.; Gonçalves, M.; Teixeira, J.; Rodrigues, L.R. Galacto-Oligosaccharides: Production, Properties, Applications, and Significance as Prebiotics. Compr. Rev. Food Sci. Food Saf. 2010, 9, 438–454. [Google Scholar] [CrossRef] [Green Version]
- Gänzle, M.G. Enzymatic synthesis of galacto-oligosaccharides and other lactose derivatives (hetero-oligosaccharides) from lactose. Int. Dairy J. 2012, 22, 116–122. [Google Scholar] [CrossRef]
- Roberfroid, M.; Gibson, G.R.; Hoyles, L.; McCartney, A.L.; Rastall, R.; Rowland, I.; Wolvers, D.; Watzl, B.; Szajewska, H.; Stahl, B.; et al. Prebiotic effects: Metabolic and health benefits. Br. J. Nutr. 2010, 104 (Suppl. S2), S1–S63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macfarlane, G.; Steed, H.; Macfarlane, S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microbiol. 2007, 104, 305–344. [Google Scholar] [CrossRef]
- Bujacz, A.; Jędrzejczak-Krzepkowska, M.; Bielecki, S.; Redzynia, I.; Bujacz, G.D. Crystal structures of the apo form of β-fructofuranosidase from Bifidobacterium longum and its complex with fructose. FEBS J. 2011, 278, 1728–1744. [Google Scholar] [CrossRef]
- Oliveira, L.D.; Wilbey, R.A.; Grandison, A.S.; Roseiro, L.B.; Roseiro, M.L.D.B.W. Milk oligosaccharides: A review. Int. J. Dairy Technol. 2015, 68, 305–321. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.Y.; Bharani, R.; Biswas, A.; Lee, J.; Tran, L.-A.; Pecquet, S.; Steenhout, P. Normal growth of infants receiving an infant formula containing Lactobacillus reuteri, galacto-oligosaccharides, and fructo-oligosaccharide: A randomized controlled trial. Matern. Health Neonatol. Perinatol. 2015, 1, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Bhandari, B.; Cichero, J.; Prakash, S. A comprehensive review on in vitro digestion of infant formula. Food Res. Int. 2015, 76, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Musilova, S.; Rada, V.; Vlkova, E.; Bunešová, V. Beneficial effects of human milk oligosaccharides on gut microbiota. Benef. Microbes 2014, 5, 273–283. [Google Scholar] [CrossRef]
- Chierici, R.; Fanaro, S.; Saccomandi, D.; Vigi, V. Advances in the modulation of the microbial ecology of the gut in early infancy. Acta Paediatr. 2003, 92, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Orrhage, C.N.K.; Orrhage, K.; Nord, C. Factors controlling the bacterial colonization of the intestine in breastfed infants. Acta Paediatr. 1999, 88, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Kunz, C.; Rudloff, S. Biological functions of oligosaccharides in human milk. Acta Paediatr. 1993, 82, 903–912. [Google Scholar] [CrossRef]
- Li, M.; Monaco, M.H.; Wang, M.; Comstock, S.S.; Kuhlenschmidt, T.B.; Fahey, G.C., Jr.; Miller, M.J.; Kuhlenschmidt, M.S.; Donovan, S.M. Human milk oligosaccharides shorten rotavirus-induced diarrhea and modulate piglet mucosal immunity and colonic microbiota. ISME J. 2014, 8, 1609–1620. [Google Scholar] [CrossRef] [Green Version]
- McVeagh, P.; Brand-Miller, J. Human milk oligosaccharides: Only the breast. J. Paediatr. Child Heal. 1997, 33, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Bruggencate, S.J.T.; Bovee-Oudenhoven, I.M.; Feitsma, A.L.; Van Hoffen, E.; Schoterman, M.H. Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutr. Rev. 2014, 72, 377–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, T.C.; Marzorati, M.; Spence, L.; Weaver, C.M.; Williamson, P.S. New Frontiers in Fibers: Innovative and Emerging Research on the Gut Microbiome and Bone Health. J. Am. Coll. Nutr. 2017, 36, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whisner, C.M.; Martin, B.R.; Schoterman, M.H.C.; Nakatsu, C.H.; McCabe, L.D.; McCabe, G.P.; Wastney, M.E.; Heuvel, E.V.D.; Weaver, C.M. Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: A double-blind cross-over trial. Br. J. Nutr. 2013, 110, 1292–1303. [Google Scholar] [CrossRef]
- Weaver, C.M.; Martin, B.R.; Nakatsu, C.H.; Armstrong, A.P.; Clavijo, A.; McCabe, L.D.; McCabe, G.P.; Duignan, S.; Schoterman, M.H.C.; Heuvel, E.V.D. Galactooligosaccharides Improve Mineral Absorption and Bone Properties in Growing Rats through Gut Fermentation. J. Agric. Food Chem. 2011, 59, 6501–6510. [Google Scholar] [CrossRef]
- Hughes, C.; Davoodi-Semiromi, Y.; Colee, J.C.; Culpepper, T.; Dahl, W.J.; Mai, V.; Christman, M.; Langkamp-Henken, B. Galactooligosaccharide supplementation reduces stress-induced gastrointestinal dysfunction and days of cold or flu: A randomized, double-blind, controlled trial in healthy university students. Am. J. Clin. Nutr. 2011, 93, 1305–1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mussatto, S.I.; Mancilha, I.M. Non-digestible oligosaccharides: A review. Carbohydr. Polym. 2007, 68, 587–597. [Google Scholar] [CrossRef]
- Kim, C.S.; Ji, E.-S.; Oh, D.-K. Expression and characterization of Kluyveromyces lactis β-galactosidase in Escherichia coli. Biotechnol. Lett. 2003, 25, 1769–1774. [Google Scholar] [CrossRef] [PubMed]
- Colinas, B.R.; De Abreu, M.A.; Fernandez-Arrojo, L.; De Beer, R.; Poveda, A.; Jiménez-Barbero, J.; Haltrich, D.; Olmo, A.O.B.; Lobato, M.F.; Plou, F.J. Production of Galacto-oligosaccharides by the β-Galactosidase from Kluyveromyces lactis: Comparative Analysis of Permeabilized Cells versus Soluble Enzyme. J. Agric. Food Chem. 2011, 59, 10477–10484. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowska, A.; Klewicki, R.; Sójka, M.; Klewicka, E. Synthesis of the Galactosyl Derivative of Gluconic Acid with the Transglycosylation Activity of β-Galactosidase. Food Technol. Biotechnol. 2017, 55, 258–265. [Google Scholar] [CrossRef]
- Yin, H.; Bultema, J.B.; Dijkhuizen, L.; Van Van Leeuwen, S. Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Food Chem. 2017, 225, 230–238. [Google Scholar] [CrossRef]
- Cavicchioli, R.; Siddiqui, K.S.; Andrews, D.; Sowers, K.R. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 2002, 13, 253–261. [Google Scholar] [CrossRef]
- Cavicchioli, R.; Charlton, T.; Ertan, H.; Omar, S.M.; Siddiqui, K.S.; Williams, T.J. Biotechnological uses of enzymes from psychrophiles. Microb. Biotechnol. 2011, 4, 449–460. [Google Scholar] [CrossRef] [Green Version]
- Gerday, C. Psychrophily and Catalysis. Biology 2013, 2, 719–741. [Google Scholar] [CrossRef] [Green Version]
- Turkiewicz, M. Drobnoustroje psychrofilne i ich biotechnologiczny potencjał. Kosm. Probl. Nauk Biotechnol. 2006, 55, 307–320. [Google Scholar]
- Aghajari, N.; Haser, R.; Feller, G.; Gerday, C. Crystallization and preliminary X-ray diffraction studies of α-amylase from the antarctic psychrophile Alteromonas haloplanctis A23. Protein Sci. 1996, 5, 2128–2129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arimori, T.; Ito, A.; Nakazawa, M.; Ueda, M.; Tamada, T. Crystal structure of endo-1,4-β-glucanase fromEisenia fetida. J. Synchrotron Radiat. 2013, 20, 884–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Li, Y.; Liu, W.; Chen, C.-C.; Ko, T.-P.; He, M.; Xu, Z.; Liu, M.; Luo, H.; Guo, R.-T.; et al. Structural insight into potential cold adaptation mechanism through a psychrophilic glycoside hydrolase family 10 endo-β-1,4-xylanase. J. Struct. Biol. 2016, 193, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-K.; An, Y.J.; Song, J.M.; Jeong, C.-S.; Kang, M.H.; Kwon, K.K.; Lee, Y.-H.; Cha, S.-S. Structure-based investigation into the functional roles of the extended loop and substrate-recognition sites in an endo-β-1,4-d-mannanase from the Antarctic springtail, Cryptopygus antarcticus. Proteins: Struct. Funct. Bioinform. 2014, 82, 3217–3223. [Google Scholar] [CrossRef]
- Malecki, P.; Raczynska, J.E.; Vorgias, C.E.; Rypniewski, W.R. Structure of a complete four-domain chitinase from Moritella marina, a marine psychrophilic bacterium. Acta Crystallogr. Sect. D Biol. Crystallogr 2013, 69, 821–829. [Google Scholar] [CrossRef]
- Zanphorlin, L.M.; De Giuseppe, P.O.; Honorato, R.; Tonoli, C.C.C.; Fattori, J.; Crespim, E.; De Oliveira, P.S.L.; Ruller, R.; Murakami, M. Oligomerization as a strategy for cold adaptation: Structure and dynamics of the GH1 β-glucosidase from Exiguobacterium antarcticum B7. Sci. Rep. 2016, 6, 23776. [Google Scholar] [CrossRef]
- Van Petegem, F.; Collins, T.; Meuwis, M.-A.; Gerday, C.; Feller, G.; Van Beeumen, J. The Structure of a Cold-adapted Family 8 Xylanase at 1.3 Å Resolution. J. Biol. Chem. 2002, 278, 7531–7539. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Yi, J.; Hua, X.; Feng, Y.; Yang, R.; Zhang, Y. Structure analysis of a glycosides hydrolase family 42 cold-adapted β-galactosidase from Rahnella sp. R3. RSC Adv. 2016, 6, 37362–37369. [Google Scholar] [CrossRef]
- Manas, N.H.A.; Illias, R.M.; Mahadi, N.M. Strategy in manipulating transglycosylation activity of glycosyl hydrolase for oligosaccharide production. Crit. Rev. Biotechnol. 2017, 38, 1–22. [Google Scholar]
- Pawlak-Szukalska, A.; Wanarska, M.; Popinigis, A.T.; Kur, J. A novel cold-active β-d-galactosidase with transglycosylation activity from the Antarctic Arthrobacter sp. 32cB—Gene cloning, purification and characterization. Process. Biochem. 2014, 49, 2122–2133. [Google Scholar] [CrossRef] [Green Version]
- Rutkiewicz, M.; Bujacz, A.; Wanarska, M.; Wierzbicka-Wos, A.; Cieśliński, H. Active Site Architecture and Reaction Mechanism Determination of Cold Adapted β-d-galactosidase from Arthrobacter sp. 32cB. Int. J. Mol. Sci. 2019, 20, 4301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutkiewicz, M.; Bujacz, A.; Bujacz, G. Structural features of cold-adapted dimeric GH2 β-D-galactosidase from Arthrobacter sp. 32cB. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2019, 1867, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.E.; Brookes, D.H.; Wilson, L.; Chen, J.; Liles, K.; et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2017, 27, 112–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinhard, L.; Mayerhofer, H.; Geerlof, A.; Mueller-Dieckmann, J.; Weiss, M.S. Optimization of protein buffer cocktails using Thermofluor. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2013, 69, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Mueller, U.; Forster, R.; Hellmig, M.; Huschmann, F.U.; Kastner, A.; Malecki, P.; Pühringer, S.; Röwer, M.; Sparta, K.; Steffien, M.; et al. The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: Current status and perspectives. Eur. Phys. J. Plus 2015, 130, 141. [Google Scholar] [CrossRef]
- Sparta, K.; Krug, M.; Heinemann, U.; Mueller, U.; Weiss, M.S. XDSAPP2.0. J. Appl. Crystallogr. 2016, 49, 1085–1092. [Google Scholar] [CrossRef]
- Adams, P.D.; Afonine, P.V.; Bunkóczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.-W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 213–2211. [Google Scholar] [CrossRef] [Green Version]
- Moriarty, N.W.; Tronrud, D.E.; Adams, P.D.; Karplus, P.A. A new default restraint library for the protein backbone inPhenix: A conformation-dependent geometry goes mainstream. Acta Crystallogr. Sect. D Struct. Biol. 2016, 72, 176–179. [Google Scholar] [CrossRef] [Green Version]
Protein | Specific Activity (U/mg) |
---|---|
ArthβDG | 212.01 ± 3.90 |
ArthβDG_D207A | 0.70 ± 0.01 |
ArthβDG_E517Q | 0 |
Crystal Structure | ArthβDG_E517Q PDB ID: 6ZJP | ArthβDG_E517Q/gal PDB ID: 6ZJQ | ArthβDG_E517Q/lact PDB ID: 6ZJR |
---|---|---|---|
Diffraction source | BL 14.2 BESSY, Berlin, Germany | BL 14.2 BESSY, Berlin, Germany | BL 14.1 BESSY, Berlin, Germany |
Wavelength (Å) | 0.918400 | 0.918400 | 0.918400 |
Temperature (K) | 100 K | 100 K | 100 K |
Detector | PILATUS 3S 2M | PILATUS 3S 2M | PILATUS 3S 2M |
Rotation range per image (°) | 0.1 | 0.1 | 0.1 |
Total rotation range (°) | 100 | 180 | 180 |
Exposure time per image (s) | 0.2 | 0.2 | 0.2 |
Space group | P 31 2 1 | P 31 2 1 | P 31 2 1 |
a, b, c (Å) | 138.0 138.0 127.2 | 138.6 138.6 127.7 | 137.4 137.4 127.3 |
α, β, γ (°) | 90 90 120 | 90 90 120 | 90 90 120 |
Mosaicity (°) | 0.13 | 0.09 | 0.09 |
Resolution range (Å) | 43.6–1.8 (1.9–1.8) | 42.8–1.7 (1.8–1.7) | 46.7–2.0 (2.1–2.0) |
Number of unique reflections | 118,415 (11695) | 155,098 (15193) | 93,953 (9191) |
Completeness (%) | 99.08 (98.40) | 99.85 (98.78) | 99.76 (99.06) |
Redundancy | 5.1 | 10.2 | 10.1 |
I/σ(I) | 12.39 (1.52) | 13.5 (0.6) | 12.54 (0.78) |
Rmeas (%) | 7.5 (81.7) | 13.6 (380.9) | 15.6 (257.7) |
Overall B factor: Wilson plot/refinement (Å2) | 31.06 | 28.08 | 38.62 |
No. of reflections: working/test set | 118,262/2096 | 155,074/2099 | 93,830/2097 |
R/Rfree | 0.1691/0.1946 | 0.1729/0.2008 | 0.1881/0.2131 |
No. of non-H atoms: Protein/Ligand/Water | 7613/7/1050 | 7624/151/621 | 7702/79/528 |
R.m.s. deviations: Bonds (Å)/Angles (°) | 0.005/0.74 | 0.010/1.00 | 0.006/0.79 |
Ramachandran plot: Most favored/allowed (%) | 97.06/2.94 | 97.06/2.94 | 96.96/3.04 |
Crystal Structure | ArthβDG_E441Q/gal PDB ID: 6ZJS | ArthβDG_E441Q/lact PDB ID: 6ZJT | ArthβDG_E441Q/sucr PDB ID: 6ZJU |
---|---|---|---|
Diffraction source | BL 14.2 BESSY, Berlin, Germany | BL 14.2 BESSY, Berlin, Germany | BL 14.2 BESSY, Berlin, Germany |
Wavelength (Å) | 0.918400 | 0.918400 | 0.918400 |
Temperature (K) | 100 K | 100 K | 100 K |
Detector | PILATUS 3S 2M | PILATUS 3S 2M | PILATUS 3S 2M |
Rotation range per image (°) | 0.1 | 0.1 | 0.1 |
Total rotation range (°) | 180 | 100 | 180 |
Exposure time per image (s) | 0.2 | 0.2 | 0.3 |
Space group | P 31 2 1 | P 31 2 1 | P 31 2 1 |
a, b, c (Å) | 138.4 138.4 127.8 | 139.0 139.0 127.7 | 138.2 138.2 127.6 |
α, β, γ (°) | 90 90 120 | 90 90 120 | 90 90 120 |
Mosaicity (°) | 0.03 | 0.11 | 0.18 |
Resolution range (Å) | 45.3–1.7 (1.8–1.7) | 43.8–2.0 (2.1–2.0) | 43.7–1.7 (1.8–1.7) |
Number of unique reflections | 224,735 (22177) | 100,340 (9948) | 141,152 (13911) |
Completeness (%) | 99.91 (99.29) | 99.49 (99.26) | 99.87 (99.42) |
Redundancy | 10,1 | 5.6 | 10.1 |
I/σ(I) | 10,1 (0,6) | 12.14 (0.80) | 14.42 (0.56) |
Rmeas (%) | 13,0 (350,5) | 7.9 (175.3) | 13.6 (425.6) |
Overall B factor: Wilson plot/refinement (Å2) | 25.29 | 45.01 | 30.65 |
Number of reflections: working/test set | 224,710/2358 | 100,137/2096 | 141,107/2099 |
R/Rfree | 0.1550/0.1706 | 0.2100/0.2362 | 0.1786/0.1941 |
Number of non-H atoms: Protein/Ligand/Water | 7662/205/721 | 7615/80/337 | 7627/99/751 |
R.m.s. deviations: Bonds (Å)/Angles (°) | 0.008/0.99 | 0.009/0.92 | 0.011/1.17 |
Ramachandran plot: Most favored/allowed (%) | 97.87/2.12 | 96.96/2.94 | 97.16/2.84 |
Crystal Structure | ArthβDG_D207A PDB ID: 6ZJV | ArthβDG_D207A/gal PDB ID: 6ZJW | ArthβDG_D207A/sucr PDB ID: 6ZJX |
---|---|---|---|
Diffraction source | BL 14.2 BESSY, Berlin, Germany | BL 14.2 BESSY, Berlin, Germany | BL 14.2 BESSY, Berlin, Germany |
Wavelength (Å) | 0.918400 | 0.918400 | 0.918400 |
Temperature (K) | 100 K | 100 K | 100 K |
Detector | PILATUS 3S 2M | PILATUS 3S 2M | PILATUS 3S 2M |
Rotation range per image (°) | 0.1 | 0.1 | 0.1 |
Total rotation range (°) | 360 | 100 | 180 |
Exposure time per image (s) | 0.2 | 0.2 | 0.2 |
Space group | P 31 2 1 | P 31 2 1 | P 31 2 1 |
a, b, c (Å) | 139.5 139.5 127.9 | 139.3 139.3 127.8 | 137.6 137.6 126.8 |
α, β, γ (°) | 90 90 120 | 90 90 120 | 90 90 120 |
Mosaicity (°) | 0.17 | 0.30 | 0.14 |
Resolution range (Å) | 47.1–2.2 (2.3–2.2) | 40.2–2.1 (2.2–2.1) | 46.6–2.2 (2.3–2.2) |
Number of unique reflections | 68,432 (6677) | 81,059 (7962) | 69,828 (6808) |
Completeness (%) | 99.25 (97.39) | 99.35 (98.55) | 99.72 (98.12) |
Redundancy | 20.0 | 5.4 | 10.0 |
I/σ(I) | 21.38 (1.52) | 5.18 (0.54) | 12.58 (1.28) |
Rmeas (%) | 11.4 (184.8) | 19.9 (200.6) | 14.8 (168.7) |
Overall B factor: Wilson plot/refinement (Å2) | 50.40 | 46.09 | 42.43 |
Number of reflections: working/test set | 68,233/1094 | 80,908/2083 | 69,783/1116 |
R/Rfree | 0.2361/0.2623 | 0.2258/0.2608 | 0.1971/0.2238 |
Number of non-H atoms: Protein/Ligand/Water | 7690/7/142 | 7620/24/303 | 7622/58/530 |
R.m.s. deviations: Bonds (Å)/Angles (°) | 0.005/0.84 | 0.003/0.66 | 0.004/0.66 |
Ramachandran plot: Most favored/allowed (%) | 97.26/2.74 | 96.56/3.44 | 96.96/3.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rutkiewicz, M.; Wanarska, M.; Bujacz, A. Mapping the Transglycosylation Relevant Sites of Cold-Adapted β-d-Galactosidase from Arthrobacter sp. 32cB. Int. J. Mol. Sci. 2020, 21, 5354. https://doi.org/10.3390/ijms21155354
Rutkiewicz M, Wanarska M, Bujacz A. Mapping the Transglycosylation Relevant Sites of Cold-Adapted β-d-Galactosidase from Arthrobacter sp. 32cB. International Journal of Molecular Sciences. 2020; 21(15):5354. https://doi.org/10.3390/ijms21155354
Chicago/Turabian StyleRutkiewicz, Maria, Marta Wanarska, and Anna Bujacz. 2020. "Mapping the Transglycosylation Relevant Sites of Cold-Adapted β-d-Galactosidase from Arthrobacter sp. 32cB" International Journal of Molecular Sciences 21, no. 15: 5354. https://doi.org/10.3390/ijms21155354
APA StyleRutkiewicz, M., Wanarska, M., & Bujacz, A. (2020). Mapping the Transglycosylation Relevant Sites of Cold-Adapted β-d-Galactosidase from Arthrobacter sp. 32cB. International Journal of Molecular Sciences, 21(15), 5354. https://doi.org/10.3390/ijms21155354