Roles Played by Biomarkers of Kidney Injury in Patients with Upper Urinary Tract Obstruction
Abstract
:1. Introduction
2. Upper Urinary Tract Obstruction
2.1. UPJO
2.2. Ureteral Calculi
2.3. Ureteral Strictures
2.4. Malignant Ureteral Obstruction
3. The Pathophysiology of Kidney Injury Caused by UUTO (Figure 1)
4. Imaging Studies and Their Limitations
5. Biomarkers of UUTO
5.1. Biomarkers of Glomerular Function
5.1.1. SCr
5.1.2. Cystatin C
5.2. Biomarkers of Renal Tubular Damage
5.2.1. NGAL
5.2.2. MCP-1
5.2.3. KIM-1
5.2.4. NAG
5.2.5. L-FABP
5.3. Novel Biomarkers of UUTO
5.3.1. Vanin-1
5.3.2. α-Glutathione S-Transferase (GST)
5.3.3. Tissue inhibitor of metalloproteinases-2 (TIMP-2)/ insulin-like growth factor-binding protein 7 (IGFBP7)
5.4. Comparison of Biomarkers
5.5. Panel Assessment of Biomarkers
6. Current Limitations and Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AKI | Acute kidney injury |
AUC | Area under curve |
GST | Glutathione S-transferases |
IGFBP7 | Insulin-like growth factor-binding protein 7 |
KIM-1 | Kidney injury molecule 1 |
L-FABP | Liver type fatty acid-binding protein |
MCP-1 | Monocyte chemotactic protein-1 |
NAG | N-acetyl-b-D-glucosaminidase |
NGAL | Neutrophil gelatinase-associated lipocalin |
ROC | Receiver operating characteristic |
ROS | Reactive oxygen species |
SCr | Serum creatinine |
TNF-α | Tumor necrosis factor-α |
TIMP-2 | Tissue inhibitor of metalloproteinases-2 |
TGF-β1 | Transforming growth factor-β1 |
UPJ | Ureteropelvic junction |
UPJO | Ureteropelvic junction obstruction |
UUTO | Upper urinary tract obstruction |
References
- Mesrobian, H.-G.O.; Mitchell, M.E.; See, W.A.; Halligan, B.D.; Carlson, B.E.; Greene, A.S.; Wakim, B.T. Candidate Urinary Biomarker Discovery in Ureteropelvic Junction Obstruction: A Proteomic Approach. J. Urol. 2010, 184, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, R.L.; Thornhill, B.A.; Forbes, M.S.; Kiley, S.C. Mechanisms of renal injury and progression of renal disease in congenital obstructive nephropathy. Pediatr. Nephrol. 2009, 25, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Grasso, M.; Caruso, R.P.; Phillips, C.K. UPJ Obstruction in the Adult Population: Are Crossing Vessels Significant? Rev. Urol. 2001, 3, 42–51. [Google Scholar] [PubMed]
- Liu, Y.; Chen, Y.; Liao, B.; Luo, D.; Wang, K.-J.; Li, H.; Zeng, G. Epidemiology of urolithiasis in Asia. Asian J. Urol. 2018, 5, 205–214. [Google Scholar] [CrossRef]
- Sorokin, I.; Mamoulakis, C.; Miyazawa, K.; Rodgers, A.; Talati, J.; Lotan, Y. Epidemiology of stone disease across the world. World J. Urol. 2017, 35, 1301–1320. [Google Scholar] [CrossRef]
- Türk, C.; Neisius, A.; Petrik, A.; Seitz, C.; Skolarikos, A.; Thomas, K. EAU Guideline for Urolithiasis 2020. Available online: https://uroweb.org/guideline/urolithiasis/ (accessed on 15 June 2020).
- Tran, H.; Arsovska, O.; Paterson, R.F.; Chew, B.H. Evaluation of risk factors and treatment options in patients with ureteral stricture disease at a single institution. Can. Urol. Assoc. J. 2015, 9, 921–924. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.-Y.; Zhang, Z.-H.; Xu, P.-C.; Chen, D.-G.; Fan, X.-H.; Ma, J.-C.; Xu, Y.-P. Malignant ureteral obstruction: Experience and comparative analysis of metallic versus ordinary polymer ureteral stents. World J. Surg. Oncol. 2019, 17, 74. [Google Scholar] [CrossRef]
- Chevalier, R.L. Chronic Partial Ureteral Obstruction in the Neonatal Guinea Pig. II. Pressure Gradients Affecting Glomerular Filtration Rate. Pediatr. Res. 1984, 18, 1271–1277. [Google Scholar] [CrossRef] [Green Version]
- Klein, J.; Gonzalez, J.; Miravete, M.; Caubet, C.; Chaaya, R.; Decramer, S.; Bandin, F.; Bascands, J.L.; Buffin-Meyer, B.; Schanstra, J.P. Congenital ureteropelvic junction obstruction: Human disease and animal models. Int. J. Exp. Pathol. 2010, 92, 168–192. [Google Scholar] [CrossRef]
- Cachat, F.; Lange-Sperandio, B.; Chang, A.Y.; Kiley, S.C.; Thornhill, B.A.; Forbes, M.S.; Chevalier, R.L. Ureteral obstruction in neonatal mice elicits segment-specific tubular cell responses leading to nephron loss11See Editorial by Woolf, p. 761. Kidney Int. 2003, 63, 564–575. [Google Scholar] [CrossRef] [Green Version]
- Klimova, E.M.; Aparicio-Trejo, O.E.; Tapia, E.; Pedraza-Chaverri, J. Unilateral Ureteral Obstruction as a Model to Investigate Fibrosis-Attenuating Treatments. Biomolecules 2019, 9, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratliff, R.B.; Abdulmahdi, W.; Pawar, R.; Wolin, M.S. Oxidant Mechanisms in Renal Injury and Disease. Antioxid Redox Signal. 2016, 25, 119–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, L.; Woodward, M.; Coward, R.J. The molecular biology of pelvi-ureteric junction obstruction. Pediatr. Nephrol. 2017, 33, 553–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.-C.; Jao, H.-Y.; Hsu, J.-D.; Lee, Y.-R.; Wu, M.-J.; Kao, Y.-L.; Lee, H.-J. Apple polyphenols reduce inflammation response of the kidneys in unilateral ureteral obstruction rats. J. Funct. Foods 2014, 11, 1–11. [Google Scholar] [CrossRef]
- Madsen, M.G. Urinary biomarkers in hydronephrosis. Dan. Med. J. 2013, 60, B4582. [Google Scholar] [PubMed]
- Xia, Z.-E.; Xi, J.-L.; Shi, L. 3,3′-Diindolylmethane ameliorates renal fibrosis through the inhibition of renal fibroblast activation in vivo and in vitro. Ren. Fail. 2018, 40, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, L.; Madsen, K.; Krag, S.; Frøkiær, J.; Jensen, B.L.; Nørregaard, R. Disruption of cyclooxygenase type 2 exacerbates apoptosis and renal damage during obstructive nephropathy. Am. J. Physiol. Physiol. 2015, 309, F1035–F1048. [Google Scholar] [CrossRef] [Green Version]
- Mei, W.; Peng, Z.; Tang, D.; Yang, H.; Tao, L.; Lu, M.; Liu, C.; Deng, Z.; Xiao, Y.; Liu, J.; et al. Peroxiredoxin 1 inhibits the oxidative stress induced apoptosis in renal tubulointerstitial fibrosis. Nephrology 2015, 20, 832–842. [Google Scholar] [CrossRef]
- Xu, Y.; Ruan, S.; Wu, X.; Chen, H.; Zheng, K.; Fu, B. Autophagy and apoptosis in tubular cells following unilateral ureteral obstruction are associated with mitochondrial oxidative stress. Int. J. Mol. Med. 2013, 31, 628–636. [Google Scholar] [CrossRef]
- Taylor, A.T. Radionuclides in nephrourology, Part 2: Pitfalls and diagnostic applications. J. Nucl. Med. 2014, 55, 786–798. [Google Scholar] [CrossRef] [Green Version]
- Akbal, C.; Şahan, A.; Garayev, A.; Şekerci, Ç.A.; Sulukaya, M.; Alpay, H.; Tarcan, T.; Şimşek, F. Assessment of Differential Renal Function in Children with Hydronephrosis: Comparison of DMSA and MAG-3. J. Urol. Surg. 2015, 2, 129–134. [Google Scholar] [CrossRef]
- Washino, S.; Hosohata, K.; Oshima, M.; Okochi, T.; Konishi, T.; Nakamura, Y.; Saito, K.; Miyagawa, T. A Novel Biomarker for Acute Kidney Injury, Vanin-1, for Obstructive Nephropathy: A Prospective Cohort Pilot Study. Int. J. Mol. Sci. 2019, 20, 899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madsen, M.G.; Nørregaard, R.; Palmfeldt, J.; Olsen, L.H.; Frøkiær, J.; Jørgensen, T.M. Epidermal growth factor and monocyte chemotactic peptide-1: Potential biomarkers of urinary tract obstruction in children with hydronephrosis. J. Pediatr. Urol. 2013, 9, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Giacoman, S.; Madero, M. Biomarkers in chronic kidney disease, from kidney function to kidney damage. World J. Nephrol. 2015, 4, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Pavlaki, A.; Printza, N.; Farmaki, E.; Stabouli, S.; Taparkou, A.; Sterpi, M.; Dotis, J.; Papachristou, F. The role of urinary NGAL and serum cystatin C in assessing the severity of ureteropelvic junction obstruction in infants. Pediatr. Nephrol. 2019, 35, 163–170. [Google Scholar] [CrossRef]
- Inker, L.A.; Okparavero, A. Cystatin C as a marker of glomerular filtration rate. Curr. Opin. Nephrol. Hypertens. 2011, 20, 631–639. [Google Scholar] [CrossRef]
- Slort, P.R.; Ozden, N.; Pape, L.; Offner, G.; Tromp, W.F.; Wilhelm, A.J.; Bokenkamp, A. Comparing cystatin C and creatinine in the diagnosis of pediatric acute renal allograft dysfunction. Pediatr. Nephrol. 2011, 27, 843–849. [Google Scholar] [CrossRef] [Green Version]
- Yong, Z.; Pei, X.; Zhu, B.; Yuan, H.; Zhao, W. Predictive value of serum cystatin C for acute kidney injury in adults: A meta-analysis of prospective cohort trials. Sci. Rep. 2017, 7, 41012. [Google Scholar] [CrossRef]
- Koyner, J.L.; Vaidya, V.S.; Bennett, M.R.; Ma, Q.; Worcester, E.; Akhter, S.A.; Raman, J.; Jeevanandam, V.; O’Connor, M.F.; Devarajan, P.; et al. Urinary Biomarkers in the Clinical Prognosis and Early Detection of Acute Kidney Injury. Clin. J. Am. Soc. Nephrol. 2010, 5, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Shi, J.-S.; Yibulayin, X.; Wu, T.-S.; Yang, X.-W.; Zhang, J.; Baiheti, P. Cystatin C is a moderate predictor of acute kidney injury in the early stage of traumatic hemorrhagic shock. Exp. Ther. Med. 2015, 10, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Haase-Fielitz, A.; Bellomo, R.; Devarajan, P.; Story, D.F.; Matalanis, G.; Dragun, D.; Haase, M. Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery—A prospective cohort study. Crit. Care Med. 2009, 37, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.N.; Juneja, M.; Patel, H.; Shah, K.H.; Konat, A.; Thakkar, B.M.; Madan, T.; Prajapati, J. Diagnostic accuracy of serum cystatin C for early recognition of contrast induced nephropathy in Western Indians undergoing cardiac catheterization. Indian Hear. J. 2016, 69, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Kostic, D.; Beozzo, G.; Couto, S.B.D.; Kato, A.; Lima, L.; Palmeira, P.; Krebs, V.; Bunduki, V.; Francisco, R.P.; Zugaib, M.; et al. The role of renal biomarkers to predict the need of surgery in congenital urinary tract obstruction in infants. J. Pediatr. Urol. 2019, 15, 242.e1–242.e9. [Google Scholar] [CrossRef]
- Mao, W.; Liu, S.; Wang, K.; Wang, M.; Shi, H.; Liu, Q.; Bao, M.; Peng, B.; Geng, J. Cystatin C in Evaluating Renal Function in Ureteral Calculi Hydronephrosis in Adults. Kidney Blood Press. Res. 2019, 45, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Karakus, S.; Oktar, T.; Kucukgergin, C.; Kalelioğlu, I.; Seckin, S.; Atar, A.; Ander, H.; Ziylan, O. Urinary IP-10, MCP-1, NGAL, Cystatin-C, and KIM-1 Levels in Prenatally Diagnosed Unilateral Hydronephrosis: The Search for an Ideal Biomarker. Urology 2016, 87, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhu, B.; Yuan, H.; Zhao, W. Evaluation of serum neutrophil gelatinase-associated lipocalin in older patients with chronic kidney disease. Aging Med. 2020, 3, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwiers, A.J.M.; De Wildt, S.N.; Van Rosmalen, J.; De Rijke, Y.B.; Buijs, E.A.B.; Tibboel, D.; Cransberg, K. Urinary neutrophil gelatinase-associated lipocalin identifies critically ill young children with acute kidney injury following intensive care admission: A prospective cohort study. Crit. Care 2015, 19, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Guan, Y.; Xu, S.; Li, Q.; Sun, Y.; Han, R.; Jiang, C. Early Predictors of Acute Kidney Injury: A Narrative Review. Kidney Blood Press. Res. 2016, 41, 680–700. [Google Scholar] [CrossRef]
- Schmidt-Ott, K.M.; Mori, K.; Li, J.Y.; Kalandadze, A.; Cohen, D.J.; Devarajan, P.; Barasch, J. Dual Action of Neutrophil Gelatinase–Associated Lipocalin. J. Am. Soc. Nephrol. 2007, 18, 407–413. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, Q.; Wen, J.; Chen, T.; He, L.; Wang, Y.; Yin, J.; Wu, R.; Xue, R.; Li, S.; et al. Ischemic Duration and Frequency Determines AKI-to-CKD Progression Monitored by Dynamic Changes of Tubular Biomarkers in IRI Mice. Front. Physiol. 2019, 10, 153. [Google Scholar] [CrossRef]
- Cappuccilli, M.; Capelli, I.; Comai, G.; Cianciolo, G.; La Manna, G. Neutrophil Gelatinase-Associated Lipocalin as a Biomarker of Allograft Function After Renal Transplantation: Evaluation of the Current Status and Future Insights. Artif. Organs 2017, 42, 8–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nusca, A.; Miglionico, M.; Proscia, C.; Ragni, L.; Carassiti, M.; Pepe, F.L.; Di Sciascio, G. Early prediction of contrast-induced acute kidney injury by a "bedside" assessment of Neutrophil Gelatinase-Associated Lipocalin during elective percutaneous coronary interventions. PLoS ONE 2018, 13, e0197833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asada, T.; Isshiki, R.; Hayase, N.; Sumida, M.; Inokuchi, R.; Noiri, E.; Nangaku, M.; Yahagi, N.; Doi, K. Impact of clinical context on acute kidney injury biomarker performances: Differences between neutrophil gelatinase-associated lipocalin and L-type fatty acid-binding protein. Sci. Rep. 2016, 6, 33077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bieniaś, B.; Sikora, P. Potential Novel Biomarkers of Obstructive Nephropathy in Children with Hydronephrosis. Dis. Markers 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Yu, L.; Zhou, L.; Li, Q.; Li, S.; Luo, X.; Zhang, C.; Wu, B.; Brooks, J.D.; Sun, H. Elevated urinary lipocalin-2, interleukin-6 and monocyte chemoattractant protein-1 levels in children with congenital ureteropelvic junction obstruction. J. Pediatr. Urol. 2019, 15, 44.e1–44.e7. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Jackson, A.R.; DaJusta, D.; McLeod, D.; Alpert, S.; Jayanthi, V.R.; McHugh, K.; Schwaderer, A.; Becknell, B.; Ching, C. Urinary antimicrobial peptides: Potential novel biomarkers of obstructive uropathy. J. Pediatr. Urol. 2018, 14, 238.e1–238.e6. [Google Scholar] [CrossRef]
- Noyan, A.; Parmaksiz, G.; Dursun, H.; Ezer, S.S.; Anarat, R.; Cengiz, N.; Parmaksız, G. Urinary NGAL, KIM-1 and L-FABP concentrations in antenatal hydronephrosis. J. Pediatr. Urol. 2015, 11, 249.e1–249.e6. [Google Scholar] [CrossRef]
- Wasilewska, A.; Taranta-Janusz, K.; Debek, W.; Zoch-Zwierz, W.; Kuroczycka-Saniutycz, E. KIM-1 and NGAL: New markers of obstructive nephropathy. Pediatr. Nephrol. 2011, 26, 579–586. [Google Scholar] [CrossRef] [Green Version]
- Urbschat, A.; Gauer, S.; Paulus, P.; Reissig, M.; Weipert, C.; Ramos-Lopez, E.; Hofmann, R.; Hadji, P.; Geiger, H.; Obermüller, N. Serum and urinary NGAL but not KIM-1 raises in human postrenal AKI. Eur. J. Clin. Investig. 2014, 44, 652–659. [Google Scholar] [CrossRef]
- Olvera-Posada, D.; Dayarathna, T.; Dion, M.; Alenezi, H.; Sener, A.; Denstedt, J.D.; Pautler, S.E.; Razvi, H. KIM-1 Is a Potential Urinary Biomarker of Obstruction: Results from a Prospective Cohort Study. J. Endourol. 2017, 31, 111–118. [Google Scholar] [CrossRef]
- Devarajan, P. Neutrophil gelatinase-associated lipocalin: A promising biomarker for human acute kidney injury. Biomark. Med. 2010, 4, 265–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devarajan, P. Neutrophil gelatinase-associated lipocalin: New paths for an old shuttle. Cancer Ther. 2007, 5, 463–470. [Google Scholar] [PubMed]
- Choi, J.W.; Fujii, T.; Fujii, N. Elevated Plasma Neutrophil Gelatinase-Associated Lipocalin Level as a Risk Factor for Anemia in Patients with Systemic Inflammation. BioMed Res. Int. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ning, M.; Mao, X.; Niu, Y.; Tang, B.; Shen, H. Usefulness and limitations of neutrophil gelatinase-associated lipocalin in the assessment of kidney diseases. J. Lab. Precis. Med. 2018, 3, 1. [Google Scholar] [CrossRef]
- Gu, L.; Tseng, S.C.; Rollins, B.J. Monocyte chemoattractant protein-1. Chem. Immunol. 1999, 72, 7–29. [Google Scholar]
- Gschwandtner, M.; Derler, R.; Midwood, K.S. More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior Beyond Chemotaxis. Front. Immunol. 2019, 10, 2759. [Google Scholar] [CrossRef] [Green Version]
- Grandaliano, G.; Gesualdo, L.; Ranieri, E.; Monno, R.; Montinaro, V.; Marra, F.; Schena, F.P. Monocyte chemotactic peptide-1 expression in acute and chronic human nephritides: A pathogenetic role in interstitial monocytes recruitment. J. Am. Soc. Nephrol. 1996, 7, 906–913. [Google Scholar]
- Grandaliano, G.; Gesualdo, L.; Bartoli, F.; Ranieri, E.; Monno, R.; Leggio, A.; Paradies, G.; Caldarulo, E.; Infante, B.; Schena, F.P. MCP-1 and EGF renal expression and urine excretion in human congenital obstructive nephropathy. Kidney Int. 2000, 58, 182–192. [Google Scholar] [CrossRef] [Green Version]
- Stroo, I.; Claessen, N.; Teske, G.J.D.; Butter, L.M.; Florquin, S.; Leemans, J.C. Deficiency for the Chemokine Monocyte Chemoattractant Protein-1 Aggravates Tubular Damage after Renal Ischemia/Reperfusion Injury. PLoS ONE 2015, 10, e0123203. [Google Scholar] [CrossRef] [Green Version]
- Moledina, D.G.; Isguven, S.; McArthur, E.; Thiessen-Philbrook, H.; Garg, A.X.; Shlipak, M.; Whitlock, R.; Kavsak, P.A.; Coca, S.G.; Parikh, C.R.; et al. Plasma Monocyte Chemotactic Protein-1 Is Associated With Acute Kidney Injury and Death After Cardiac Operations. Ann. Thorac. Surg. 2017, 104, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Tam, F.W.K.; Ong, A.C. Renal monocyte chemoattractant protein-1: An emerging universal biomarker and therapeutic target for kidney diseases? Nephrol. Dial. Transplant. 2019, 35, 198–203. [Google Scholar] [CrossRef]
- Kronbichler, A.; Kerschbaum, J.; Gründlinger, G.; Leierer, J.; Mayer, G.; Rudnicki, M.A. Evaluation and validation of biomarkers in granulomatosis with polyangiitis and microscopic polyangiitis. Nephrol. Dial. Transplant. 2015, 31, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Nowak, N.; Skupien, J.; Smiles, A.M.; Yamanouchi, M.; Niewczas, M.; Galecki, A.T.; Duffin, K.L.; Breyer, M.D.; Pullen, N.; Bonventre, J.V.; et al. Markers of early progressive renal decline in type 2 diabetes suggest different implications for etiological studies and prognostic tests development. Kidney Int. 2018, 93, 1198–1206. [Google Scholar] [CrossRef] [PubMed]
- Grantham, J.J.; Chapman, A.B.; Blais, J.; Czerwiec, F.S.; Devuyst, O.; Gansevoort, R.T.; Higashihara, E.; Krasa, H.; Zhou, W.; Ouyang, J.; et al. Tolvaptan suppresses monocyte chemotactic protein-1 excretion in autosomal-dominant polycystic kidney disease. Nephrol. Dial. Transplant. 2017, 32, 969–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munshi, R.; Johnson, A.; Siew, E.D.; Ikizler, T.A.; Ware, L.B.; Wurfel, M.M.; Himmelfarb, J.; Zager, R.A. MCP-1 Gene Activation Marks Acute Kidney Injury. J. Am. Soc. Nephrol. 2010, 22, 165–175. [Google Scholar] [CrossRef]
- Stephan, M.; Conrad, S.; Eggert, T.; Heuer, R.; Fernandez, S.; Huland, H. Urinary concentration and tissue messenger RNA expression of monocyte chemoattractant protein-1 as an indicator of the degree of hydronephrotic atrophy in partial ureteral obstruction. J. Urol. 2002, 167, 1497–1502. [Google Scholar] [CrossRef]
- Mohammadjafari, H.; Rafiei, A.; Mousavi, S.A.; Alaee, A.; Yeganeh, Y. Role of Urinary Levels of Endothelin-1, Monocyte Chemotactic Peptide-1, andN-Acetyl Glucosaminidase in Predicting the Severity of Obstruction in Hydronephrotic Neonates. Korean J. Urol. 2014, 55, 670–676. [Google Scholar] [CrossRef] [Green Version]
- Taranta-Janusz, K.; Wasilewska, A.; Debek, W.; Waszkiewicz-Stojda, M. Urinary cytokine profiles in unilateral congenital hydronephrosis. Pediatr. Nephrol. 2012, 27, 2107–2113. [Google Scholar] [CrossRef] [Green Version]
- Bartoli, F.; Penza, R.; Aceto, G.; Niglio, F.; D’Addato, O.; Pastore, V.; Campanella, V.; Magaldi, S.; Lasalandra, C.; Di Bitonto, G.; et al. Urinary epidermal growth factor, monocyte chemotactic protein-1, and beta2-microglobulin in children with ureteropelvic junction obstruction. J. Pediatr. Surg. 2011, 46, 530–536. [Google Scholar] [CrossRef]
- Musiał, K.; Bargenda, A.; Drożdż, D.; Zwolińska, D. New Markers of Inflammation and Tubular Damage in Children with Chronic Kidney Disease. Dis. Markers 2017, 2017, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Gregg, L.P.; Tio, M.C.; Li, X.; Adams-Huet, B.; De Lemos, J.A.; Hedayati, S.S. Association of Monocyte Chemoattractant Protein-1 with Death and Atherosclerotic Events in Chronic Kidney Disease. Am. J. Nephrol. 2018, 47, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Ichimura, T.; Bonventre, J.V.; Bailly, V.; Wei, H.; Hession, C.A.; Cate, R.L.; Sanicola, M. Kidney Injury Molecule-1 (KIM-1), a Putative Epithelial Cell Adhesion Molecule Containing a Novel Immunoglobulin Domain, Is Up-regulated in Renal Cells after Injury. J. Biol. Chem. 1998, 273, 4135–4142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.; Yu, J.; Prayogo, G.W.; Cao, W.; Wu, Y.; Jia, Z.; Zhang, A. Understanding kidney injury molecule 1: A novel immune factor in kidney pathophysiology. Am. J. Transl. Res. 2019, 11, 1219–1229. [Google Scholar]
- Han, W.K.; Bailly, V.; Abichandani, R.; Thadhani, R.; Bonventre, J.V. Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int. 2002, 62, 237–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichimura, T.; Asseldonk, E.J.; Humphreys, B.D.; Gunaratnam, L.; Duffield, J.S.; Bonventre, J.V. Kidney injury molecule–1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J. Clin. Investig. 2008, 118, 1657–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, O.Z.; Zhang, X.; Bonventre, J.V.; Gunaratnam, L. G protein α12 (Gα12) is a negative regulator of kidney injury molecule-1-mediated efferocytosis. Am. J. Physiol. Physiol. 2016, 310, F607–F620. [Google Scholar] [CrossRef] [Green Version]
- Satirapoj, B.; Pooluea, P.; Nata, N.; Supasyndh, O. Urinary biomarkers of tubular injury to predict renal progression and end stage renal disease in type 2 diabetes mellitus with advanced nephropathy: A prospective cohort study. J. Diabetes Complicat. 2019, 33, 675–681. [Google Scholar] [CrossRef]
- Peters, H.P.; Waanders, F.; Meijer, E.; Brand, J.V.D.; Steenbergen, E.J.; Van Goor, H.; Wetzels, J.F. High urinary excretion of kidney injury molecule-1 is an independent predictor of end-stage renal disease in patients with IgA nephropathy. Nephrol. Dial. Transplant. 2011, 26, 3581–3588. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Rothblum, L.; Han, W.; Blasick, T.; Potdar, S.; Bonventre, J.V. Kidney injury molecule-1 expression in transplant biopsies is a sensitive measure of cell injury. Kidney Int. 2008, 73, 608–614. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Shao, X.; Sun, B.; Miao, C.; Li, Z.; Shi, Y. Urinary kidney injury molecule-1 as an early diagnostic biomarker of obstructive acute kidney injury and development of a rapid detection method. Mol. Med. Rep. 2017, 15, 1229–1235. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Shao, X.; Xie, Y.; Wang, Q.; Che, X.; Zhang, M.; Xu, W.; Xu, Y.; Mou, S.; Ni, Z. Kidney Injury Molecule-1 is Elevated in Nephropathy and Mediates Macrophage Activation via the Mapk Signalling Pathway. Cell. Physiol. Biochem. 2017, 41, 769–783. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xue, W.; Shao, X.; Che, X.; Xu, W.; Ni, Z.; Mou, S. Analysis of a Urinary Biomarker Panel for Obstructive Nephropathy and Clinical Outcomes. PLoS ONE 2014, 9, e112865. [Google Scholar] [CrossRef] [PubMed]
- Skálová, S. The diagnostic role of urinary N-acetyl-beta-D-glucosaminidase (NAG) activity in the detection of renal tubular impairment. Acta Medica 2005, 48, 75–80. [Google Scholar] [PubMed]
- Bosomworth, M.P.; Aparicio, S.R.; Hay, A.W. Urine N-acetyl- -D-glucosaminidase—A marker of tubular damage? Nephrol. Dial. Transplant. 1999, 14, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Hong, N.; Lee, M.; Park, S.; Lee, Y.H.; Jin, S.M.; Kim, J.H.; Lee, B.W. Elevated urinary N-acetyl-beta-D-glucosaminidase is associated with high glycoalbumin-to-hemoglobin A1c ratio in type 1 diabetes patients with early diabetic kidney disease. Sci. Rep. 2018, 8, 6710. [Google Scholar] [CrossRef]
- Demir, A.D.; Goknar, N.; Oktem, F.; Ozkaya, E.; Yazici, M.; Torun, E.; Vehapoglu, A.; Kucukkoc, M. Renal tubular function and urinary N-acetyl-beta-d-glucosaminidase and kidney injury molecule-1 levels in asthmatic children. Int. J. Immunopathol. Pharmacol. 2016, 29, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.J.; Al-Obaidi, F.H.; Arif, H.S. The Role of Urinary N-acetyl Beta-D-glucosaminidase in Children with Urological Problems. Oman Med. J. 2014, 29, 285–288. [Google Scholar] [CrossRef]
- Carr, M.C.; Peters, C.A.; Retik, A.B.; Mandell, J. Urinary levels of the renal tubular enzyme N-acetyl-beta-D-glucosaminidase in unilateral obstructive uropathy. J. Urol. 1994, 151, 442–445. [Google Scholar] [CrossRef]
- Skálová, S.; Rejtar, P.; Kutilek, S. Increased urinary N-acetyl-beta-D-glucosaminidase activity in children with hydronephrosis. Int. Braz. Urol. 2007, 33, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Kamijo-Ikemori, A.; Sugaya, T.; Matsui, K.; Yokoyama, T.; Kimura, K. Roles of human liver type fatty acid binding protein in kidney disease clarified using hL-FABP chromosomal transgenic mice. Nephrology 2011, 16, 539–544. [Google Scholar] [CrossRef]
- Yamamoto, T.; Noiri, E.; Ono, Y.; Doi, K.; Negishi, K.; Kamijo, A.; Kimura, K.; Fujita, T.; Kinukawa, T.; Taniguchi, H.; et al. Renal L-Type Fatty Acid–Binding Protein in Acute Ischemic Injury. J. Am. Soc. Nephrol. 2007, 18, 2894–2902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuhashi, M. Fatty Acid-Binding Protein 4 in Cardiovascular and Metabolic Diseases. J. Atheroscler. Thromb. 2019, 26, 216–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graupera, I.; Coll, M.; Pose, E.; Elia, C.; Piano, S.; Sola, E.; Blaya, D.; Huelin, P.; Solé, C.; Moreira, R.; et al. Adipocyte Fatty-Acid Binding Protein is Overexpressed in Cirrhosis and Correlates with Clinical Outcomes. Sci. Rep. 2017, 7, 1829. [Google Scholar] [CrossRef] [PubMed]
- Kawai, A.; Kusaka, M.; Kitagawa, F.; Ishii, J.; Fukami, N.; Maruyama, T.; Sasaki, H.; Shiroki, R.; Kurahashi, H.; Hoshinaga, K. Serum liver-type fatty acid-binding protein predicts recovery of graft function after kidney transplantation from donors after cardiac death. Clin. Transplant. 2014, 28, 749–754. [Google Scholar] [CrossRef]
- Parr, S.K.; Clark, A.J.; Bian, A.; Shintani, A.K.; Wickersham, N.E.; Ware, L.B.; Ikizler, T.A.; Siew, E.D. Urinary L-FABP predicts poor outcomes in critically ill patients with early acute kidney injury. Kidney Int. 2014, 87, 640–648. [Google Scholar] [CrossRef] [Green Version]
- Connolly, M.; Kinnin, M.; Mc Eneaney, D.; Menown, I.; Kurth, M.J.; Lamont, J.; Morgan, N.; Harbinson, M. Prediction of contrast induced acute kidney injury using novel biomarkers following contrast coronary angiography. QJM Int. J. Med. 2017, 111, 103–110. [Google Scholar] [CrossRef]
- Panduru, N.M.; Forsblom, C.; Saraheimo, M.; Thorn, L.; Bierhaus, A.; Humpert, P.M.; Groop, P.-H. Urinary Liver-Type Fatty Acid–Binding Protein and Progression of Diabetic Nephropathy in Type 1 Diabetes. Diabetes Care 2013, 36, 2077–2083. [Google Scholar] [CrossRef] [Green Version]
- Parmaksız, G.; Noyan, A.; Dursun, H.; Ince, E.; Anarat, R.; Cengiz, N. Role of new biomarkers for predicting renal scarring in vesicoureteral reflux: NGAL, KIM-1, and L-FABP. Pediatr. Nephrol. 2015, 31, 97–103. [Google Scholar] [CrossRef]
- Bartucci, R.; Salvati, A.; Olinga, P.; Boersma, Y.L. Vanin 1: Its Physiological Function and Role in Diseases. Int. J. Mol. Sci. 2019, 20, 3891. [Google Scholar] [CrossRef] [Green Version]
- Wessely, O.; Cerqueira, D.M.; Tran, U.; Kumar, V.; Hassey, J.M.; Romaker, D. The bigger the better: Determining nephron size in kidney. Pediatr. Nephrol. 2013, 29, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Hosohata, K.; Jin, D.; Takai, S.; Iwanaga, K. Vanin-1 in Renal Pelvic Urine Reflects Kidney Injury in a Rat Model of Hydronephrosis. Int. J. Mol. Sci. 2018, 19, 3186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosohata, K.; Washino, S.; Kubo, T.; Natsui, S.; Fujisaki, A.; Kurokawa, S.; Ando, H.; Fujimura, A.; Morita, T. Early prediction of cisplatin-induced nephrotoxicity by urinary vanin-1 in patients with urothelial carcinoma. Toxicology 2016, 360, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Hosohata, K.; Jin, D.; Takai, S.; Iwanaga, K. Involvement of Vanin-1 in Ameliorating Effect of Oxidative Renal Tubular Injury in Dahl-Salt Sensitive Rats. Int. J. Mol. Sci. 2019, 20, 4481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fugmann, T.; Borgia, B.; Révész, C.; Godó, M.; Forsblom, C.; Hamar, P.; Holthofer, H.; Neri, D.; Roesli, C. Proteomic identification of vanin-1 as a marker of kidney damage in a rat model of type 1 diabetic nephropathy. Kidney Int. 2011, 80, 272–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundberg, A.; Appelkvist, E.L.; Dallner, G.; Nilsson, R. Glutathione Transferases in the Urine: Sensitive Methods for Detection of Kidney Damage Induced by Nephrotoxic Agents in Humans. Environ. Health Perspect. 1994, 102, 293. [Google Scholar] [CrossRef]
- Andreucci, M.; Faga, T.; Pisani, A.; Perticone, M.; Michael, A. The ischemic/nephrotoxic acute kidney injury and the use of renal biomarkers in clinical practice. Eur. J. Intern. Med. 2017, 39, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Walshe, C.M.; Odejayi, F.; Ng, S.; Marsh, B. Urinary glutathione S-transferase as an early marker for renal dysfunction in patients admitted to intensive care with sepsis. Crit. Care Resusc. J. Australas. Acad. Crit. Care Med. 2009, 11, 204–209. [Google Scholar]
- Vijayan, A.; Faubel, S.; Askenazi, D.J.; Cerda, J.; Fissell, W.H.; Heung, M.; Humphreys, B.D.; Koyner, J.L.; Liu, K.D.; Mour, G.; et al. Clinical use of the urine biomarker [TIMP-2] × [IGFBP7] for acute kidney injury risk assessment. Am. J. Kidney Dis. 2016, 68, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Emlet, D.R.; Pastor-Soler, N.; Marciszyn, A.; Wen, X.; Gomez, H.; Humphries, W.H.; Morrisroe, S.; Volpe, J.K.; Kellum, J.A. Insulin-like growth factor binding protein 7 and tissue inhibitor of metalloproteinases-2: Differential expression and secretion in human kidney tubule cells. Am. J. Physiol. Physiol. 2016, 312, F284–F296. [Google Scholar] [CrossRef] [Green Version]
- Ortega, L.M.; Heung, M. The use of cell cycle arrest biomarkers in the early detection of acute kidney injury. Is this the new renal troponin? Nefrologia 2018, 38, 361–367. [Google Scholar] [CrossRef]
- Heung, M.; Ortega, L.M.; Chawla, L.S.; Wunderink, R.G.; Self, W.H.; Koyner, J.L.; Shi, J.; Kellum, J.A. Sapphire and Topaz Investigators Common chronic conditions do not affect performance of cell cycle arrest biomarkers for risk stratification of acute kidney injury. Nephrol. Dial. Transplant. 2016, 31, 1633–1640. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Ankawi, G.; Zhang, J.; Digvijay, K.; Giavarina, D.; Yin, Y.; Ronco, C. Current understanding and future directions in the application of TIMP-2 and IGFBP7 in AKI clinical practice. Clin. Chem. Lab. Med. 2019, 57, 567–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tasdemir, M.; Fucucuoglu, D.; Kucuk, S.H.; Erol, M.; Yigit, O.; Bilge, I. Urinary biomarkers in the early detection and follow-up of tubular injury in childhood urolithiasis. Clin. Exp. Nephrol. 2018, 22, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Graupera, I.; Sola, E.; Fabrellas, N.; Moreira, R.; Sole, C.; Huelin, P.; De La Prada, G.; Pose, E.; Ariza, X.; Risso, A.; et al. Urine Monocyte Chemoattractant Protein-1 Is an Independent Predictive Factor of Hospital Readmission and Survival in Cirrhosis. PLoS ONE 2016, 11, e0157371. [Google Scholar] [CrossRef] [Green Version]
- Fanfulla, F.; Rotondi, M.; Morrone, E.; Coperchini, F.; Lodigiani, S.; Trentin, R.; Maccabruni, V.; Chiovato, L. Sleep hypoxia and not obesity is the main determinant of the increasing monocyte chemoattractant protein-1 (MCP-1) in patients with obstructive sleep apnoea. ERJ Open Res. 2017, 3, P70. [Google Scholar] [CrossRef]
- Buonafine, M.; Martinez-Martinez, E.; Jaisser, F. More than a simple biomarker: The role of NGAL in cardiovascular and renal diseases. Clin. Sci. 2018, 132, 909–923. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Hong, D.Y.; Lee, K.R.; Kim, S.Y.; Baek, K.J.; Park, S.O. Usefulness of plasma neutrophil gelatinase-associated lipocalin concentration for predicting the severity and mortality of patients with community-acquired pneumonia. Clin. Chim. Acta 2016, 462, 140–145. [Google Scholar] [CrossRef]
- Tanoğlu, A.; Beyazit, Y. Liver fatty acid-binding protein may be a useful marker for non-alcoholic fatty liver disease but obesity is a major concern. Wien. Klin. Wochenschr. 2016, 128, 304. [Google Scholar] [CrossRef] [Green Version]
- Eguchi, A.; Hasegawa, H.; Iwasa, M.; Tamai, Y.; Ohata, K.; Oikawa, T.; Sugaya, T.; Takei, Y. Serum Liver-Type Fatty Acid-Binding Protein Is a Possible Prognostic Factor in Human Chronic Liver Diseases From Chronic Hepatitis to Liver Cirrhosis and Hepatocellular Carcinoma. Hepatol. Commun. 2019, 3, 825–837. [Google Scholar] [CrossRef]
Biomarkers | Author, Ref. | Publish Year | Disease | Pts Number | Mean or Median Age of Pts | Laterality of Affected Kidneys | Source of Samples | Comparison of Values, p-Value | AUC- ROC | Comparison of Group | |
---|---|---|---|---|---|---|---|---|---|---|---|
Urinary NGAL | Ped | Pavlaki A, 26 | 2020 | UPJO | 22 Obst, 19 Non-obst, 17Cts | 3.0 months | Uni | Bl | 0.01, Obst vs. Cts | 0.61 | Obst + Non-obst vs. Cts |
Kostic D, 34 | 2019 | HN | 37 Obst, 45 Cts | 5.0 months | Uni + Bi | Bl | NA | 0.80 | Obst vs. Cts | ||
Yu L, 46 | 2019 | UPJO | 17 Pts, 17 Cts | NA | Uni + Bi | Bl | 0.0004, Pts vs. Cts | 0.90 | Pts vs. Cts | ||
Bienias B, 45 | 2018 | UPJO | 28 Obst, 17 Non-obst, 21 Cts | 11 years | Uni | Bl | <0.05, Obst vs. Cts | 0.66 | Obst vs. Cts | ||
Gupta S, 47 | 2018 | UPJO | 30 Pts, 15 Cts | 4.7 years | Uni | Bl | 0.0009, Pts vs. Cts | 0.80 | Pts vs. Cts | ||
Karakus S, 36 | 2016 | UPJO | 13 Obst, 14 Non-obst, 9 Cts | 3.9 years | Uni | Bl | 0.032, Obst vs. Cts | 0.85 | Obst vs. Cts | ||
Noyan A, 48 | 2015 | UPJO | 26 Pts, 36 Non-obst, 20 Cts | 21 months | NA | Bl | <0.05, Obst vs. Cts | 0.68 | Obst vs. Cts | ||
Madsen MG, 24 | 2013 | UPJO | 24 Pts, 13 Cts | 6.5 years | Uni | Bl | NS, Pts vs. Cts | NA | NA | ||
Rp | <0.05, Pts vs. Cts | NA | NA | ||||||||
Wasilewska A, 49 | 2011 | UPJO | 20 Obst, 20 Non-obst, 25 Cts | 2.2 years | Uni | Bl | <0.01, Obst vs. Cts | 0.81 | Obst vs. Cts | ||
Rp | <0.01, Obst vs. Cts | NA | NA | ||||||||
Adul | Washino S, 23 | 2019 | UUTO | 28 Pts, 21 Cts | 54 years | Uni | Bl | <0.05, Pts vs. Cts | 0.70 | Pts vs. Cts | |
Rp | <0.01, Pts vs. Cts | 0.76 | Pts vs. Cts | ||||||||
Olvera-Posada D, 51 | 2017 | HN | 24 Obst 20 Non-obst, 11Cts | 58.5 years | Uni | Bl | 0.009, Obst vs. Cts | NA | NA | ||
Urbschat A, 50 | 2014 | Ureteral calculi | 53 Pts, 52 Cts | 44 years | Uni | Bl | <0.05, Pts vs. Cts | NA | NA | ||
Urinary MCP-1 | Ped | Yu L, 46 | 2019 | UPJO | 17 Pts, 17 Cts | NA | Uni + Bi | Bl | 0.0005, Pts vs. Cts | 0.89 | Pts vs. Cts |
Karakus S, 36 | 2016 | UPJO | 13 Obst, 14 Non-obst, 9 Cts | 3.9 years | Uni | Bl | 0.002, Obst vs. Cts | 0.93 | Obst + Non-obst vs. Ct | ||
Mohanmmadjafari H, 68 | 2014 | HN | 24 Obst, 18 Non-obst | 6.5 years | Uni + Bi | Bl | 0.012, Obst vs. Cts | 0.73 | Obst vs. Non obst | ||
Madsen MG, 24 | 2013 | UPJO | 28 Pts, 13 Cts | 6.5 Years | Uni | Bl | <0.05, Pts vs. Cts | 0.78 | Pts vs. Cts | ||
Rp | <0.05, Pts vs. Cts | 0.89 | Pts vs. Cts | ||||||||
Taranta-Janusz K, 69 | 2012 | HN | 15 Obst, 21 Non-obst, 19 Cts | 0.25 years | Uni | Bl | <0.05, Obst vs. Cts | 0.70 | Pts vs. Cts | ||
Rp | <0.01, Obst vs. Cts | NA | NA | ||||||||
Bartoli F, 70 | 2011 | UPJO | 12 Obst, 36 Non-obst, 30 Cts | NA | NA | Bl | <0.001, Obst vs. Cts | NA | NA | ||
Grandaliano G, 59 | 2000 | UPJO | 24 Pts, 15 Cts | NA | NA | Bl | <0.01, Pts vs. Cts | NA | NA | ||
Urinary KIM-1 | Ped | Kostic D, 34 | 2019 | HN | 37 Obst vs. 45 Cts | 5.0 months | Uni + Bi | Bl | NA | 0.70 | Obst vs. Cts |
Bienias B, 45 | 2018 | UPJO | 28 Obst, 17 Non-obst, 21 Cts | 11 years | Uni | Bl | <0.05, Obst vs. Cts | 0.65 | Obst vs. Cts | ||
Karakus S, 36 | 2016 | UPJO | 13 Obstr, 14 Non-obst, 9 Cts | 3.9 years | Uni | Bl | 0.001, Obst vs. Cts | 0.89 | Obst + Non-obst vs. Ct | ||
Noyan A, 48 | 2015 | UPJO | 26 Pts, 36 Non-obst, 20 Cts | 21 months | NA | Bl | NS, Obst vs. Cts | NA | Obst vs. Cts | ||
Wasilewska A, 49 | 2011 | UPJO | 20 Obst, 20 Non-obst, 25 Cts | 2.2 years | Uni | Bl | <0.01, Obst vs. Cts | 0.80 | Obst + Non-obst vs. Ct | ||
Rp | <0.01, Obst vs. Cts | NA | NA | ||||||||
Adul | Washino S, 23 | 2019 | HN | 28 Pts, 21 Cts | 54 years | Uni | Bl | NS, Pts vs. Cts | 0.57 | NA | |
Rp | <0.01, Pts vs. Cts | 0.88 | NA | ||||||||
Olvera-Posada D, 51 | 2017 | HN | 24 Obst 20 Non-obst, 11Cts | 58.5 years | Uni | Bl | 0.02, Obst vs. Cts | 0.73 | Obst vs. Cts | ||
Urbschat A, 50 | 2014 | Ureteral calculi | 53 Pts, 52 Cts | 44 years | Uni | Bl | NS, Pts vs. Cts | NA | NA | ||
Urinary NAG | Ped | Skalova S, 84 | 2007 | HN | 31 Pts, 262 reference Cts | 2.3 years | Uni + Bi | Bl | 0.002, Pts vs. Cts | NA | NA |
Mohanmmadjafari H, 68 | 2014 | HN | 24 Obst, 18 Non-obst | 6.5 years | Uni + Bi | Bl | NS, Obst vs. Non-obst | 0.67 | Obst vs. Non-obst | ||
Adul | Washino S, 23 | 2019 | HN | 28 Pts, 21 Cts | 54 years | Uni | Bl | <0.01, Pts vs. Cts | 0.74 | Pts vs. Cts | |
Rp | <0.001 Pts vs. Cts | 0.91 | Pts vs. Cts | ||||||||
Urinary L-FABP | Ped | Noyan A, 48 | 2015 | UPJO | 26 Pts, 36 Non-obst, 20 Cts | 21 months | NA | Bl | NS, Obst vs. Cts | NA | NA |
Urinary Vanin-1 | Adul | Washino S, 23 | 2019 | HN | 28 Pts, 21 Cts | 54 years | Uni | Bl | <0.05, Pts vs. Cts | 0.63 | Pts vs. Cts |
Rp | <0.0001, Pts vs. Cts | 0.98 | Pts vs. Cts | ||||||||
Urinary α-GST | Ped | Bienias B, 45 | 2018 | UPJO | 28 Obst, 17 Non-obst, 21 Cts | 11 years | Uni | Bl | <0.05, Obst vs. Cts | 0.90 | Obst vs. Cts |
Urinary CyC | Ped | Kostic D, 34 | 2019 | HN | 37 Obst vs. 45 Cts | 5.0 months | Uni + Bi | Bl | NA | 0.71 | Obst vs. Cts |
Karakus S, 36 | 2016 | UPJO | 13 Obst, 14 Non-obst, 9 Cts | 3.9 years | Uni | Bl | NS, Obst vs. Cts | NA | NA | ||
Madsen MG, 24 | 2012 | UPJO | 24 Pts, 13 Cts | 8.0 years | Uni | Bl | NS, Pts vs. Cts | NA | NA | ||
Rp | NS, Pts vs. Cts | NA | NA | ||||||||
Serum NGAL | Ped | Bienias B, 45 | 2018 | UPJO | 28 Obst, 17 Non-obst, 21 Cts | 11 years | Uni | S | <0.05, Obst vs. Cts | 1.00 | Obst vs. Cts |
Adul | Urbschat A, 50 | 2014 | Ureteral calculi | 53 Pts, 52 Cts | 44 years | Uni | S | <0.01, Pts vs. Cts | NA | NA | |
Serum CyC | Ped | Pavlaki A, 26 | 2020 | UPJO | 22 Obst, 19 Non-obst, 17Cts | 3 months | Uni | S | 0.01, Obst vs. Cts | 0.72 | Obst + Non-obst vs. Cts |
Kostic D, 34 | 2019 | HN | 37 Obst vs. 45 Cts | 5.0 months | Uni + Bi | S | NA | 0.72 | Obst vs. Cts | ||
Adul | Mao W, 35 | 2020 | Ureteral calculi | 160 HN, 40 Non-HN | 52 years | Uni | S | <0.001, HN vs. Non-HN | 0.66 | HN vs. Non-HN |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Washino, S.; Hosohata, K.; Miyagawa, T. Roles Played by Biomarkers of Kidney Injury in Patients with Upper Urinary Tract Obstruction. Int. J. Mol. Sci. 2020, 21, 5490. https://doi.org/10.3390/ijms21155490
Washino S, Hosohata K, Miyagawa T. Roles Played by Biomarkers of Kidney Injury in Patients with Upper Urinary Tract Obstruction. International Journal of Molecular Sciences. 2020; 21(15):5490. https://doi.org/10.3390/ijms21155490
Chicago/Turabian StyleWashino, Satoshi, Keiko Hosohata, and Tomoaki Miyagawa. 2020. "Roles Played by Biomarkers of Kidney Injury in Patients with Upper Urinary Tract Obstruction" International Journal of Molecular Sciences 21, no. 15: 5490. https://doi.org/10.3390/ijms21155490
APA StyleWashino, S., Hosohata, K., & Miyagawa, T. (2020). Roles Played by Biomarkers of Kidney Injury in Patients with Upper Urinary Tract Obstruction. International Journal of Molecular Sciences, 21(15), 5490. https://doi.org/10.3390/ijms21155490