The Literature of Chemoinformatics: 1978–2018
Abstract
:1. Introduction
2. Results and Discussion
2.1. Outputs
2.2. Citations
3. Materials and Methods
4. Appendix
Funding
Conflicts of Interest
Abbreviations
WoS | Web of Science Core Collection |
QSAR | Quantitative structure–activity relationship |
References
- Bar-Ilan, J. Informetrics at the start of the 21st century–a review. J. Informetr. 2008, 2, 1–52. [Google Scholar] [CrossRef]
- Bornmann, L.; Daniel, H.-D. What do citation counts measure? A review of studies on citing behaviour. J. Doc. 2008, 64, 45–80. [Google Scholar] [CrossRef]
- Cronin, B.; Sugimoto, C.R. Beyond Bibliometrics: Harnessing Multidimensional Indicators of Scholarly Impact; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Sugimoto, C.R.; Larivière, V. Research: What Everyone Needs to Know; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Aksnes, D.W.; Langfeldt, L.; Wouters, P. Citations, citation indicators, and research quality: An overview of basic concepts and theories. SAGE Open 2019, 9, 1. Available online: https://journals.sagepub.com/doi/10.1177/2158244019829575 (accessed on 7 May 2020). [CrossRef] [Green Version]
- Wilsdon, J. The Metric Tide. Independent Review of the Role of Metrics in Research Assessment and Management. Available online: https://re.ukri.org/sector-guidance/publications/metric-tide/ (accessed on 7 May 2020).
- Lotka, A.J. The frequency distribution of scientific productivity. J. Wash. Acad. Sci. 1926, 16, 317–323. [Google Scholar]
- Al Jishi, R.; Willett, P. The Journal of Chemical Documentation and the Journal of Chemical Information and Computer Sciences: Publication and citation statistics. J. Chem. Inf. Model. 2010, 50, 1915–1923. [Google Scholar] [CrossRef] [PubMed]
- Willett, P. A bibliometric study of Quantitative Structure-Activity Relationships and QSAR & Combinatorial Science. QSAR Comb. Sci. 2009, 28, 1231–1236. [Google Scholar] [CrossRef]
- Restrepo, G.; Willett, P. The Journal of Mathematical Chemistry: A bibliometric profile. J. Math. Chem. 2017, 55, 1589–1596. [Google Scholar] [CrossRef] [Green Version]
- Willett, P. A bibliometric analysis of chemoinformatics. Aslib Proc. 2008, 60, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Hu, J.; Ho, Y.-S. Global performance and trend of QSAR/QSPR research: A bibliometric analysis. Mol. Inform. 2014, 33, 655–668. [Google Scholar] [CrossRef]
- Hippe, Z. Chemical informatics in organic coating industry. 1. Research. Prog. Org. Coat. 1978, 5, 219–227. [Google Scholar] [CrossRef]
- Lim, H.A. Bioinformatics and cheminformatics in the drug discovery cycle. Lect. Notes Comp. Sci. 1997, 1278, 30–43. [Google Scholar] [CrossRef]
- Hann, M.; Green, R. Chemoinformatics—A new name for an old problem? Curr. Opin. Chem. Biol. 1999, 3, 379–383. [Google Scholar] [CrossRef]
- Baysinger, G. Introducing the Journal of Chemical Education’s “Special Issue: Chemical Information”. J. Chem. Educ. 2016, 93, 401–405. [Google Scholar] [CrossRef] [Green Version]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006, 34, D668–D672. [Google Scholar] [CrossRef] [PubMed]
- Scherf, U.; Ross, D.T.; Waltham, M.; Smith, L.H.; Lee, J.K.; Tanabe, L.; Kohn, K.W.; Reinhold, W.C.; Myers, T.G.; Andrews, D.T.; et al. A gene expression database for the molecular pharmacology of cancer. Nat. Genet. 2000, 24, 236–244. [Google Scholar] [CrossRef]
- Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [Google Scholar] [CrossRef]
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, W652–W660. [Google Scholar] [CrossRef] [Green Version]
- Allen, F.H.; Motherwell, W.D.S. Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2002, 58, 407–422. [Google Scholar] [CrossRef] [Green Version]
- Dix, D.J.; Houck, K.A.; Martin, M.T.; Richard, A.R.; Setzer, R.W.; Kavlock, R.J. The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol. Sci. 2007, 95, 5–12. [Google Scholar] [CrossRef]
- Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S. Drug design by machine learning: Support vector machines for pharmaceutical data analysis. Comput. Chem. 2001, 26, 5–14. [Google Scholar] [CrossRef]
- Koch, M.A.; Schuffenhauer, A.; Scheck, M.; Wetzel, S.; Casaulta, M.; Odermatt, A.; Ertl, P.; Waldmann, H. Charting biologically relevant chemical space: A structural classification of natural products (SCONP). Proc. Natl. Acad. Sci. USA 2005, 102, 17272–17277. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, A.L.; Mason, J.S.; Overington, J.P. Can we rationally design promiscuous drugs? Curr. Opin. Struct. Biol. 2006, 16, 127–136. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. Available online: https://www.nature.com/articles/srep42717 (accessed on 7 May 2020). [CrossRef] [Green Version]
- Spezi, V.; Wakeling, S.; Pinfield, S.; Creaser, C.; Fry, J.; Willett, P. Open-access mega-journals: The future of scholarly communication or academic dumping ground? A review. J. Doc. 2017, 73, 263–283. [Google Scholar] [CrossRef] [Green Version]
- Björk, B.-C. Evolution of the scholarly mega-journal, 2006–2017. PeerJ 2018, 6, e4357. Available online: https://peerj.com/articles/4357 (accessed on 7 May 2020). [CrossRef] [Green Version]
- Cronin, B.; Pearson, S. The export of ideas from information science. J. Inf. Sci. 1990, 16, 381–391. [Google Scholar] [CrossRef]
- Yan, E.; Ding, Y.; Cronin, B.; Leydesdorff, L. A bird’s-eye view of scientific trading: Dependency relations among fields of science. J. Informetr. 2013, 7, 249–264. [Google Scholar] [CrossRef] [Green Version]
- Sethi, S.A.; Dalton, M.; Hilborn, R. Quantitative risk measures applied to Alaskan commercial fisheries. Can. J. Fish. Aquat. Sci. 2012, 69, 487–498. [Google Scholar] [CrossRef]
- Eerola, T. Are the emotions expressed in music genre-specific? An audio-based evaluation of datasets spanning classical, film, pop and mixed genres. J. New Music Res. 2011, 40, 349–366. [Google Scholar] [CrossRef]
- Hadley, G.P.; Mars, M. Postgraduate medical education in pediatric surgery: Videoconferencing—A possible solution for Africa? Pediatr. Surg. Int. 2008, 24, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Wild, D.J.; Wiggins, G.D. Videoconferencing and other distance education techniques in chemoinformatics teaching and research at Indiana University. J. Chem. Inf. Model. 2006, 46, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Tsai, K.J.; Harvey, C.J.; Li, J.J.; Ary, B.E.; Berlew, E.E.; Boehman, B.L.; Findley, D.M.; Friant, A.G.; Gardner, C.A.; et al. Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products. Fungal Genet. Biol. 2016, 89, 18–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heller, S.; McNaught, A.; Stein, S.; Tchekhovskoi, D.; Pletnev, I. InChI—The worldwide chemical structure identifier standard. J. Cheminform. 2013, 5, 7. Available online: http://www.jcheminf.com/content/5/1/7 (accessed on 7 May 2020). [CrossRef] [Green Version]
- Pirlich, M.; Tittmann, M.; Franz, D.; Dietz, A.; Hofer, M. An observational, prospective study to evaluate the preoperative planning tool “CI-Wizard” for cochlear implant surgery. Eur. Arch. Otorhinolaryngol. 2017, 274, 685–694. [Google Scholar] [CrossRef]
- Todeschini, R.; Consonni, V.; Xiang, H.; Holliday, J.; Buscema, M.; Willett, P. Similarity coefficients for binary chemoinformatics data: Overview and extended comparison using simulated and real data sets. J. Chem. Inf. Model. 2012, 52, 2884–2901. [Google Scholar] [CrossRef]
- Leach, A.R.; Gillet, V.J. An Introduction to Chemoinformatics; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Engel, T.; Gasteiger, J. Chemoinformatics: Basic Concepts and Methods; Wiley-VCH: Weinheim, Germany, 2018. [Google Scholar]
- Engel, T.; Gasteiger, J. Applied Chemoinformatics: Achievements and Future Opportunities; Wiley-VCH: Weinheim, Germany, 2018. [Google Scholar]
- Chen, W.L. Chemoinformatics: Past, present and future. J. Chem. Inf. Model. 2006, 46, 2230–2255. [Google Scholar] [CrossRef]
- Willett, P. From chemical documentation to chemoinformatics: Fifity years of chemical information science. J. Inf. Sci. 2008, 34, 477–499. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, P.C.D. Conformation generation: The state of the art. J. Chem. Inf. Model. 2017, 57, 1747–1756. [Google Scholar] [CrossRef]
- Gardiner, E.J.; Gillet, V.J. Perspectives on knowledge discovery algorithms recently introduced in chemoinformatics: Rough set theory, association rule mining, emerging patterns, and formal concept analysis. J. Chem. Inf. Model. 2015, 55, 1781–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, W.P. Virtual chemical libraries. J. Med. Chem. 2019, 62, 1116–1124. [Google Scholar] [CrossRef]
- Lo, Y.C.; Rensi, S.E.; Torng, W.; Altman, R.B. Machine learning in chemoinformatics and drug discovery. Drug Discov. Today 2018, 23, 1538–1546. [Google Scholar] [CrossRef] [PubMed]
- Maggiora, G.; Vogt, M.; Stumpfe, D.; Bajorath, J. Molecular similarity in medicinal chemistry: Miniperspective. J. Med. Chem. 2014, 57, 3186–3204. [Google Scholar] [CrossRef] [PubMed]
- Downs, G.M.; Barnard, J.M. Chemical patent information systems. WIRES Comput. Mol. Sci. 2011, 1, 727–741. [Google Scholar] [CrossRef]
- Leach, A.R.; Gillet, V.J.; Lewis, R.A.; Taylor, R. Three-dimensional pharmacophore methods in drug discovery. J. Med. Chem. 2010, 53, 539–558. [Google Scholar] [CrossRef]
- Warr, W.A. A short review of chemical reaction database systems, computer-aided synthesis design, reaction prediction and synthetic feasibility. Mol. Inform. 2014, 33, 469–476. [Google Scholar] [CrossRef]
- Brown, N.; Jacoby, E. On scaffolds and hopping in medicinal chemistry. Min. Rev. Med. Chem. 2006, 6, 1217–1229. [Google Scholar] [CrossRef]
- Warr, W.A. Representation of chemical structures. WIRES Comput. Mol. Sci. 2011, 1, 557–579. [Google Scholar] [CrossRef]
- Krallinger, M.; Rabal, O.; Lourenço, A.; Oyarzabal, J.; Valencia, A. Information retrieval and text mining technologies for chemistry. Chem. Rev. 2017, 117, 7673–7761. [Google Scholar] [CrossRef]
- Tanrikulu, Y.; Krüger, B.; Proschak, E. The holistic integration of virtual screening in drug discovery. Drug Discov. Today 2013, 18, 358–364. [Google Scholar] [CrossRef]
Source | Outputs | IF |
---|---|---|
Abstracts of Papers of the American Chemical Society | 220 | |
Journal of Chemical Information and Modeling | 185 | 3.996 |
Journal of Cheminformatics | 111 | 4.154 |
Molecular Informatics | 109 | 2.375 |
Journal of Chemical Education | 69 | 1.763 |
Current Topics in Medicinal Chemistry | 41 | 3.442 |
Journal of Computer-Aided Molecular Design | 41 | 3.250 |
Combinatorial Chemistry & High Throughput Screening | 39 | 1.503 |
Chemical Biology & Drug Design | 32 | 2.256 |
Methods in Molecular Biology | 31 |
Nation | Outputs |
---|---|
United States of America | 822 |
United Kingdom | 312 |
Germany | 230 |
People’s Republic of China | 128 |
France | 112 |
India | 109 |
Switzerland | 95 |
Canada | 89 |
Japan | 83 |
Italy | 68 |
Organization | Outputs |
---|---|
University of Cambridge | 58 |
University of North Carolina | 51 |
University of Sheffield | 41 |
Universidade do Porto | 38 |
Indiana University | 35 |
Collaborations in Chemistry | 34 |
Universidad Nacional Autónoma de México | 34 |
Novartis Institutes for Biomedical Research | 31 |
University of Strasbourg | 26 |
University of Bonn | 25 |
Output | Citations |
---|---|
O’Boyle N.M. et al. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33, doi:10.1186/1758-2946-3-33. [17] | 1526 |
Wishart D.S. et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006, 34, D668-D672, doi:10.1093/nar/gkj067. [18] | 1344 |
Scherf, U. et al. A gene expression database for the molecular pharmacology of cancer. Nat. Genet. 2000, 24, 236-244, doi:10.1038/73439. [19] | 1065 |
Svetnik, V. et al. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947-1958, doi:10.1021/ci034160g. [20] | 834 |
Xia, J. et al. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, W652-W660, doi:10.1093/nar/gkp356. [21] | 689 |
Allen, F.H.; Motherwell, W.D.S. Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2002, 58, 407-422, doi:10.1107/S0108768102004895. [22] | 502 |
Dix, D.J. et al. The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol. Sci. 2007, 95, 5-12, doi:10.1093/toxsci/kfl103. [23] | 420 |
Burbidge, R. et al. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput. Chem. 2001, 26, 5-14, doi:10.1016/S0097-8485(01)00094-8. [24] | 403 |
Koch, M.A. et al. Charting biologically relevant chemical space: A structural classification of natural products (SCONP). Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 17272-17277, doi:10.1073/pnas.0503647102. [25] | 387 |
Hopkins, A.L. et al. Can we rationally design promiscuous drugs? Curr. Opin. Struct. Biol. 2006, 16, 127-136, doi:10.1016/j.sbi.2006.01.013. [26] | 332 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Willett, P. The Literature of Chemoinformatics: 1978–2018. Int. J. Mol. Sci. 2020, 21, 5576. https://doi.org/10.3390/ijms21155576
Willett P. The Literature of Chemoinformatics: 1978–2018. International Journal of Molecular Sciences. 2020; 21(15):5576. https://doi.org/10.3390/ijms21155576
Chicago/Turabian StyleWillett, Peter. 2020. "The Literature of Chemoinformatics: 1978–2018" International Journal of Molecular Sciences 21, no. 15: 5576. https://doi.org/10.3390/ijms21155576
APA StyleWillett, P. (2020). The Literature of Chemoinformatics: 1978–2018. International Journal of Molecular Sciences, 21(15), 5576. https://doi.org/10.3390/ijms21155576