Glioblastoma: Is There Any Blood Biomarker with True Clinical Relevance?
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Biomarkers Related to Vascular Proliferation and Cell Growth
3.2. Biomarkers Related to Immune System
3.3. Biomarkers Related to Inflammation
3.4. Biomarkers Related to Nutritional Status
3.5. Biomarkers Related to Coagulation
3.6. Circulating Tumor DNA
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007, 114, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Riemenschneider, M.J.; Jeuken, J.W.; Wesseling, P.; Reifenberger, G. Molecular diagnostics of gliomas: State of the art. Acta Neuropathol. 2010, 120, 567–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansen, J.S.; Jensen, B.V.; Roslind, A.; Nielsen, D.; Price, P.A. Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol Biomark. Prev. 2006, 15, 194–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, K.L.; Aw, G.; Kleihues, P. Role of Biomarkers in the Clinical Management of Glioblastomas: What are the Barriers and How Can We Overcome Them? Front. Neurol. 2012, 3, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, N.A.; Johansen, J.S. YKL-40-A Protein in the Field of Translational Medicine: A Role as a Biomarker in Cancer Patients? Cancers 2010, 2, 1453–1491. [Google Scholar] [CrossRef] [Green Version]
- Tanwar, M.K.; Gilbert, M.R.; Holland, E.C. Gene expression microarray analysis reveals YKL-40 to be a potential serum marker for malignant character in human glioma. Cancer Res. 2002, 62, 4364–4368. [Google Scholar]
- Elstner, A.; Stockhammer, F.; Nguyen-Dobinsky, T.N.; Nguyen, Q.L.; Pilgermann, I.; Gill, A.; Guhr, A.; Zhang, T.; von Eckardstein, K.; Picht, T.; et al. Identification of diagnostic serum protein profiles of glioblastoma patients. J. Neurooncol. 2011, 102, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Sampath, P.; Weaver, C.E.; Sungarian, A.; Cortez, S.; Alderson, L.; Stopa, E.G. Cerebrospinal fluid (vascular endothelial growth factor) and serologic (recoverin) tumor markers for malignant glioma. Cancer Control 2004, 11, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Franco-Hernandez, C.; Martinez-Glez, V.; Rey, J.A. Biology molecular of glioblastomas. Neurocir. (Astur) 2007, 18, 373–382. Available online: https://pubmed.ncbi.nlm.nih.gov/18008011/ (accessed on 8 August 2020). [CrossRef] [Green Version]
- Reynes, G.; Vila, V.; Martin, M.; Parada, A.; Fleitas, T.; Reganon, E.; Martinez-Sales, V. Circulating markers of angiogenesis, inflammation, and coagulation in patients with glioblastoma. J. Neurooncol. 2011, 102, 35–41. [Google Scholar] [CrossRef]
- Salven, P.; Manpaa, H.; Orpana, A.; Alitalo, K.; Joensuu, H. Serum vascular endothelial growth factor is often elevated in disseminated cancer. Clin. Cancer Res. 1997, 3, 647–651. [Google Scholar] [PubMed]
- Stockhammer, G.; Obwegeser, A.; Kostron, H.; Schumacher, P.; Muigg, A.; Felber, S.; Maier, H.; Slavc, I.; Gunsilius, E.; Gastl, G. Vascular endothelial growth factor (VEGF) is elevated in brain tumor cysts and correlates with tumor progression. Acta Neuropathol. 2000, 100, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Fine, H.A.; Figg, W.D.; Jaeckle, K.; Wen, P.Y.; Kyritsis, A.P.; Loeffler, J.S.; Levin, V.A.; Black, P.M.; Kaplan, R.; Pluda, J.M.; et al. Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J. Clin. Oncol. 2000, 18, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Rafat, N.; Beck, G.; Schulte, J.; Tuettenberg, J.; Vajkoczy, P. Circulating endothelial progenitor cells in malignant gliomas. J. Neurosurg. 2010, 112, 43–49. [Google Scholar] [CrossRef]
- Bojesen, S.E.; Johansen, J.S.; Nordestgaard, B.G. Plasma YKL-40 levels in healthy subjects from the general population. Clin. Chim. Acta 2011, 412, 709–712. [Google Scholar] [CrossRef]
- Zhang, W.; Kawanishi, M.; Miyake, K.; Kagawa, M.; Kawai, N.; Murao, K.; Nishiyama, A.; Fei, Z.; Zhang, X.; Tamiya, T. Association between YKL-40 and adult primary astrocytoma. Cancer 2010, 116, 2688–2697. [Google Scholar] [CrossRef]
- Nigro, J.M.; Misra, A.; Zhang, L.; Smirnov, I.; Colman, H.; Griffin, C.; Ozburn, N.; Chen, M.; Pan, E.; Koul, D.; et al. Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. Cancer Res. 2005, 65, 1678–1686. [Google Scholar] [CrossRef] [Green Version]
- Hormigo, A.; Gu, B.; Karimi, S.; Riedel, E.; Panageas, K.S.; Edgar, M.A.; Tanwar, M.K.; Rao, J.S.; Fleisher, M.; DeAngelis, L.M.; et al. YKL-40 and matrix metalloproteinase-9 as potential serum biomarkers for patients with high-grade gliomas. Clin. Cancer Res. 2006, 12, 5698–5704. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, D.; Padoan, A.; Ballin, A.; Sartori, M.; Manara, R.; Scienza, R.; Plebani, M.; Della Puppa, A. Serum YKL-40 following resection for cerebral glioblastoma. J. Neurooncol. 2012, 107, 299–305. [Google Scholar] [CrossRef]
- van Linde, M.E.; van der Mijn, J.C.; Pham, T.V.; Knol, J.C.; Wedekind, L.E.; Hovinga, K.E.; Aliaga, E.S.; Buter, J.; Jimenez, C.R.; Reijneveld, J.C.; et al. Evaluation of potential circulating biomarkers for prediction of response to chemoradiation in patients with glioblastoma. J. Neurooncol. 2016, 129, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Johansen, J.S.; Schultz, N.A.; Jensen, B.V. Plasma YKL-40: A potential new cancer biomarker? Future Oncol. 2009, 5, 1065–1082. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Hu, J.; Bian, X.; Chen, K.; Gong, W.; Dunlop, N.M.; Howard, O.M.; Wang, J.M. Transactivation of the epidermal growth factor receptor by formylpeptide receptor exacerbates the malignant behavior of human glioblastoma cells. Cancer Res. 2007, 67, 5906–5913. [Google Scholar] [CrossRef] [Green Version]
- Costa, B.M.; Viana-Pereira, M.; Fernandes, R.; Costa, S.; Linhares, P.; Vaz, R.; Pinheiro, C.; Lima, J.; Soares, P.; Silva, A.; et al. Impact of EGFR genetic variants on glioma risk and patient outcome. Cancer Epidemiol. Biomark. Prev. 2011, 20, 2610–2617. [Google Scholar] [CrossRef] [Green Version]
- Zawrocki, A.; Biernat, W. Epidermal growth factor receptor in glioblastoma. Folia. Neuropathol. 2005, 43, 123–132. [Google Scholar] [PubMed]
- Choi, Y.; Song, Y.J.; Lee, H.S.; Hur, W.J.; Sung, K.H.; Kim, K.U.; Choi, S.S.; Kim, S.J.; Kim, D.C. Epidermal growth factor receptor is related to poor survival in glioblastomas: Single-institution experience. Yonsei Med. J. 2013, 54, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, M.; Divella, R.; Daniele, A.; Di Tardo, S.; Venneri, M.T.; Lolli, I.; Troccoli, G. Epidermal growth factor receptor serum levels and prognostic value in malignant gliomas. Tumori 2007, 93, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Wachsberger, P.R.; Lawrence, R.Y.; Liu, Y.; Rice, B.; Daskalakis, C.; Dicker, A.P. Epidermal growth factor receptor mutation status and rad51 determine the response of glioblastoma to multimodality therapy with cetuximab, temozolomide, and radiation. Front. Oncol. 2013, 3, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, F.G., 2nd; Simmons, M.L.; Chang, S.M.; Prados, M.D.; Larson, D.A.; Sneed, P.K.; Wara, W.M.; Berger, M.S.; Chen, P.; Israel, M.A.; et al. EGFR overexpression and radiation response in glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys. 2001, 51, 410–418. [Google Scholar] [CrossRef]
- Husain, H.; Savage, W.; Grossman, S.A.; Ye, X.; Burger, P.C.; Everett, A.; Bettegowda, C.; Diaz, L.A., Jr.; Blair, C.; Romans, K.E.; et al. Pre- and post-operative plasma glial fibrillary acidic protein levels in patients with newly diagnosed gliomas. J. Neurooncol. 2012, 109, 123–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brommeland, T.; Rosengren, L.; Fridlund, S.; Hennig, R.; Isaksen, V. Serum levels of glial fibrillary acidic protein correlate to tumour volume of high-grade gliomas. Acta Neurol. Scand 2007, 116, 380–384. [Google Scholar] [CrossRef]
- Jung, C.S.; Foerch, C.; Schanzer, A.; Heck, A.; Plate, K.H.; Seifert, V.; Steinmetz, H.; Raabe, A.; Sitzer, M. Serum GFAP is a diagnostic marker for glioblastoma multiforme. Brain 2007, 130, 3336–3341. [Google Scholar] [CrossRef] [PubMed]
- Ilhan-Mutlu, A.; Wagner, L.; Widhalm, G.; Wohrer, A.; Bartsch, S.; Czech, T.; Heinzl, H.; Leutmezer, F.; Prayer, D.; Marosi, C.; et al. Exploratory investigation of eight circulating plasma markers in brain tumor patients. Neurosurg. Rev. 2013, 36, 45–55, discussion 55-46. [Google Scholar] [CrossRef]
- Vietheer, J.M.; Rieger, J.; Wagner, M.; Senft, C.; Tichy, J.; Foerch, C. Serum concentrations of glial fibrillary acidic protein (GFAP) do not indicate tumor recurrence in patients with glioblastoma. J. Neurooncol. 2017, 135, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Atai, N.A.; Bansal, M.; Lo, C.; Bosman, J.; Tigchelaar, W.; Bosch, K.S.; Jonker, A.; De Witt Hamer, P.C.; Troost, D.; McCulloch, C.A.; et al. Osteopontin is up-regulated and associated with neutrophil and macrophage infiltration in glioblastoma. Immunology 2011, 132, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Jang, T.; Savarese, T.; Low, H.P.; Kim, S.; Vogel, H.; Lapointe, D.; Duong, T.; Litofsky, N.S.; Weimann, J.M.; Ross, A.H.; et al. Osteopontin expression in intratumoral astrocytes marks tumor progression in gliomas induced by prenatal exposure to N-ethyl-N-nitrosourea. Am. J. Pathol. 2006, 168, 1676–1685. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Qian, C.; Zhao, P.; Zhang, J.; Shi, L.; Qian, J.; Liu, N.; Fu, Z.; Kang, C.; Pu, P.; et al. Expression pattern of osteopontin splice variants and its functions on cell apoptosis and invasion in glioma cells. Neuro. Oncol. 2010, 12, 765–775. [Google Scholar] [CrossRef] [Green Version]
- Matusan-Ilijas, K.; Behrem, S.; Jonjic, N.; Zarkovic, K.; Lucin, K. Osteopontin expression correlates with angiogenesis and survival in malignant astrocytoma. Pathol. Oncol. Res. 2008, 14, 293–298. [Google Scholar] [CrossRef]
- Sreekanthreddy, P.; Srinivasan, H.; Kumar, D.M.; Nijaguna, M.B.; Sridevi, S.; Vrinda, M.; Arivazhagan, A.; Balasubramaniam, A.; Hegde, A.S.; Chandramouli, B.A.; et al. Identification of potential serum biomarkers of glioblastoma: Serum osteopontin levels correlate with poor prognosis. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1409–1422. [Google Scholar] [CrossRef] [Green Version]
- Thirkill, C.E.; Roth, A.M.; Keltner, J.L. Cancer-associated retinopathy. Arch. Ophthalmol. 1987, 105, 372–375. [Google Scholar] [CrossRef]
- Manley, P.; Li, X.; Turner, C.; Chi, S.; Zimmerman, M.A.; Chordas, C.; Gordon, A.; Baker, A.; Ullrich, N.J.; Goumnerova, L.; et al. A prospective, blinded analysis of A-PROTEIN (recoverin or CAR protein) levels in pediatric patients with central nervous system tumors. Pediatr. Blood Cancer 2009, 53, 343–347. [Google Scholar] [CrossRef]
- Fukuda, M.E.; Iwadate, Y.; Machida, T.; Hiwasa, T.; Nimura, Y.; Nagai, Y.; Takiguchi, M.; Tanzawa, H.; Yamaura, A.; Seki, N. Cathepsin D is a potential serum marker for poor prognosis in glioma patients. Cancer Res. 2005, 65, 5190–5194. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, J.N.; Terry, L.C.; Whetsell, W.O., Jr. Immunocytochemical localization of cathepsin D in rat neural tissue. Brain Res. 1981, 216, 109–124. [Google Scholar] [CrossRef]
- Sun, S.; Wong, T.S.; Zhang, X.Q.; Pu, J.K.; Lee, N.P.; Day, P.J.; Ng, G.K.; Lui, W.M.; Leung, G.K. Protein alterations associated with temozolomide resistance in subclones of human glioblastoma cell lines. J. Neurooncol. 2012, 107, 89–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartzbaum, J.; Ding, B.; Johannesen, T.B.; Osnes, L.T.; Karavodin, L.; Ahlbom, A.; Feychting, M.; Grimsrud, T.K. Association between prediagnostic IgE levels and risk of glioma. J. Natl. Cancer Inst. 2012, 104, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Loh, J.K.; Lieu, A.S.; Su, Y.F.; Cheng, C.Y.; Tsai, T.H.; Lin, C.L.; Lee, K.S.; Hwang, S.L.; Kwan, A.L.; Wang, C.J.; et al. The alteration of plasma TGF-beta1 levels in patients with brain tumors after tumor removal. Kaohsiung J. Med. Sci. 2012, 28, 316–321. [Google Scholar] [CrossRef]
- Chattopadhyay, N.; Jacob, T.; Hansen, F.; Godbole, M.M.; Brown, E.M. Transforming growth factor beta receptor family ligands inhibit hepatocyte growth factor synthesis and secretion from astrocytoma cells. Brain Res. Mol. Brain Res. 2004, 121, 146–150. [Google Scholar] [CrossRef]
- Liu, C.; Tian, G.; Tu, Y.; Fu, J.; Lan, C.; Wu, N. Expression pattern and clinical prognostic relevance of bone morphogenetic protein-2 in human gliomas. Jpn. J. Clin. Oncol. 2009, 39, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Nijaguna, M.B.; Patil, V.; Hegde, A.S.; Chandramouli, B.A.; Arivazhagan, A.; Santosh, V.; Somasundaram, K. An Eighteen Serum Cytokine Signature for Discriminating Glioma from Normal Healthy Individuals. Plos ONE 2015, 10, e0137524. [Google Scholar] [CrossRef] [Green Version]
- Samaras, V.; Piperi, C.; Levidou, G.; Zisakis, A.; Kavantzas, N.; Themistocleous, M.S.; Boviatsis, E.I.; Barbatis, C.; Lea, R.W.; Kalofoutis, A.; et al. Analysis of interleukin (IL)-8 expression in human astrocytomas: Associations with IL-6, cyclooxygenase-2, vascular endothelial growth factor, and microvessel morphometry. Hum. Immunol. 2009, 70, 391–397. [Google Scholar] [CrossRef]
- Popescu, I.D.; Codrici, E.; Albulescu, L.; Mihai, S.; Enciu, A.M.; Albulescu, R.; Tanase, C.P. Potential serum biomarkers for glioblastoma diagnostic assessed by proteomic approaches. Proteome Sci. 2014, 12, 47. [Google Scholar] [CrossRef] [Green Version]
- Djonov, V.; Cresto, N.; Aebersold, D.M.; Burri, P.H.; Altermatt, H.J.; Hristic, M.; Berclaz, G.; Ziemiecki, A.; Andres, A.C. Tumor cell specific expression of MMP-2 correlates with tumor vascularisation in breast cancer. Int. J. Oncol. 2002, 21, 25–30. [Google Scholar] [CrossRef]
- Lucio-Eterovic, A.K.; Piao, Y.; de Groot, J.F. Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy. Clin. Cancer Res. 2009, 15, 4589–4599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raithatha, S.A.; Muzik, H.; Muzik, H.; Rewcastle, N.B.; Johnston, R.N.; Edwards, D.R.; Forsyth, P.A. Localization of gelatinase-A and gelatinase-B mRNA and protein in human gliomas. Neuro. Oncol. 2000, 2, 145–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwamoto, F.M.; Hottinger, A.F.; Karimi, S.; Riedel, E.; Dantis, J.; Jahdi, M.; Panageas, K.S.; Lassman, A.B.; Abrey, L.E.; Fleisher, M.; et al. Longitudinal prospective study of matrix metalloproteinase-9 as a serum marker in gliomas. J. Neurooncol. 2011, 105, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Ricci, S.; Guadagno, E.; Bruzzese, D.; Del Basso De Caro, M.; Peca, C.; Sgulo, F.G.; Maiuri, F.; Di Carlo, A. Evaluation of matrix metalloproteinase type IV-collagenases in serum of patients with tumors of the central nervous system. J. Neurooncol. 2017, 131, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Egea, V.; Zahler, S.; Rieth, N.; Neth, P.; Popp, T.; Kehe, K.; Jochum, M.; Ries, C. Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/beta-catenin signaling. Proc. Natl. Acad. Sci. USA 2012, 109, E309–E316. [Google Scholar] [CrossRef] [Green Version]
- Crocker, M.; Ashley, S.; Giddings, I.; Petrik, V.; Hardcastle, A.; Aherne, W.; Pearson, A.; Bell, B.A.; Zacharoulis, S.; Papadopoulos, M.C. Serum angiogenic profile of patients with glioblastoma identifies distinct tumor subtypes and shows that TIMP-1 is a prognostic factor. Neuro. Oncol. 2011, 13, 99–108. [Google Scholar] [CrossRef]
- Aaberg-Jessen, C.; Halle, B.; Jensen, S.S.; Muller, S.; Romer, U.M.; Pedersen, C.B.; Brunner, N.; Kristensen, B.W. Comparative studies of TIMP-1 immunohistochemistry, TIMP-1 FISH analysis and plasma TIMP-1 in glioblastoma patients. J. Neurooncol. 2016, 130, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Wiemels, J.L.; Bracci, P.M.; Wrensch, M.R.; McCoy, L.S.; Rice, T.; Sison, J.D.; Patoka, J.S.; Wiencke, J.K. Circulating levels of the innate and humoral immune regulators CD14 and CD23 are associated with adult glioma. Cancer Res. 2010, 70, 7534–7542. [Google Scholar] [CrossRef] [Green Version]
- Wiemels, J.L.; Wilson, D.; Patil, C.; Patoka, J.; McCoy, L.; Rice, T.; Schwartzbaum, J.; Heimberger, A.; Sampson, J.H.; Chang, S.; et al. IgE, allergy, and risk of glioma: Update from the San Francisco Bay Area Adult Glioma Study in the temozolomide era. Int. J. Cancer 2009, 125, 680–687. [Google Scholar] [CrossRef]
- Linos, E.; Raine, T.; Alonso, A.; Michaud, D. Atopy and risk of brain tumors: A meta-analysis. J. Natl. Cancer Inst. 2007, 99, 1544–1550. [Google Scholar] [CrossRef] [Green Version]
- Wiemels, J.L.; Wiencke, J.K.; Patoka, J.; Moghadassi, M.; Chew, T.; McMillan, A.; Miike, R.; Barger, G.; Wrensch, M. Reduced immunoglobulin E and allergy among adults with glioma compared with controls. Cancer Res. 2004, 64, 8468–8473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acharya, M.; Borland, G.; Edkins, A.L.; Maclellan, L.M.; Matheson, J.; Ozanne, B.W.; Cushley, W. CD23/FcepsilonRII: Molecular multi-tasking. Clin. Exp. Immunol. 2010, 162, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.L.; Pierre, J.; Smith-Norowitz, T.A.; Hagler, M.; Bowne, W.; Pincus, M.R.; Mueller, C.M.; Zenilman, M.E.; Bluth, M.H. Immunoglobulin E antibodies from pancreatic cancer patients mediate antibody-dependent cell-mediated cytotoxicity against pancreatic cancer cells. Clin. Exp. Immunol. 2008, 153, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Jin, Q.; Zhang, G.Z.; Wang, Y.J.; Jiang, T.; Wu, A.H.; Wang, J.F.; Qiu, X.G. Increase of plasma IgE during treatment correlates with better outcome of patients with glioblastoma. Chin. Med. J. (Engl.) 2011, 124, 3042–3048. [Google Scholar] [PubMed]
- Wrensch, M.; Wiencke, J.K.; Wiemels, J.; Miike, R.; Patoka, J.; Moghadassi, M.; McMillan, A.; Kelsey, K.T.; Aldape, K.; Lamborn, K.R.; et al. Serum IgE, tumor epidermal growth factor receptor expression, and inherited polymorphisms associated with glioma survival. Cancer Res. 2006, 66, 4531–4541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calboli, F.C.; Cox, D.G.; Buring, J.E.; Gaziano, J.M.; Ma, J.; Stampfer, M.; Willett, W.C.; Tworoger, S.S.; Hunter, D.J.; Camargo, C.A., Jr.; et al. Prediagnostic plasma IgE levels and risk of adult glioma in four prospective cohort studies. J. Natl. Cancer Inst. 2011, 103, 1588–1595. [Google Scholar] [CrossRef] [Green Version]
- Schlehofer, B.; Siegmund, B.; Linseisen, J.; Schuz, J.; Rohrmann, S.; Becker, S.; Michaud, D.; Melin, B.; Bas Bueno-de-Mesquita, H.; Peeters, P.H.; et al. Primary brain tumours and specific serum immunoglobulin E: A case-control study nested in the European Prospective Investigation into Cancer and Nutrition cohort. Allergy 2011, 66, 1434–1441. [Google Scholar] [CrossRef]
- Olteanu, H.; Fenske, T.S.; Harrington, A.M.; Szabo, A.; He, P.; Kroft, S.H. CD23 expression in follicular lymphoma: Clinicopathologic correlations. Am. J. Clin. Pathol. 2011, 135, 46–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, M.; Carvalho, B.; Vaz, R.; Linhares, P. Influence of neutrophil-lymphocyte ratio in prognosis of glioblastoma multiforme. J. Neurooncol. 2018, 136, 173–180. [Google Scholar] [CrossRef]
- Bambury, R.M.; Teo, M.Y.; Power, D.G.; Yusuf, A.; Murray, S.; Battley, J.E.; Drake, C.; O’Dea, P.; Bermingham, N.; Keohane, C.; et al. The association of pre-treatment neutrophil to lymphocyte ratio with overall survival in patients with glioblastoma multiforme. J. Neurooncol. 2013, 114, 149–154. [Google Scholar] [CrossRef]
- Han, S.; Meng, L.; Han, S.; Wang, Y.; Wu, A. Plasma IGFBP-2 levels after postoperative combined radiotherapy and chemotherapy predict prognosis in elderly glioblastoma patients. Plos ONE 2014, 9, e93791. [Google Scholar] [CrossRef] [PubMed]
- Tchirkov, A.; Khalil, T.; Chautard, E.; Mokhtari, K.; Veronese, L.; Irthum, B.; Vago, P.; Kemeny, J.L.; Verrelle, P. Interleukin-6 gene amplification and shortened survival in glioblastoma patients. Br. J. Cancer 2007, 96, 474–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, Y.; He, X.; Song, W.; Han, D.; Niu, J.; Wang, J. Role of IL-6 in the invasiveness and prognosis of glioma. Int. J. Clin. Exp. Med. 2015, 8, 9114–9120. [Google Scholar] [PubMed]
- Knebel, F.H.; Albuquerque, R.C.; Massaro, R.R.; Maria-Engler, S.S.; Campa, A. Dual effect of serum amyloid A on the invasiveness of glioma cells. Mediat. Inflamm. 2013, 2013, 509089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, N.T.; McKenzie, J.A.; Hagberg, J.M.; Witkowski, S. Plasma fetuin-A concentrations in young and older high- and low-active men. Metabolism 2011, 60, 265–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, H.; Kazama, J.J.; Wada, Y.; Kuroda, T.; Narita, I.; Gejyo, F.; Gao, P.; Yamashita, H. Decreased levels of circulating alpha2-Heremans-Schmid glycoprotein/Fetuin-A (AHSG) in patients with rheumatoid arthritis. Intern. Med. 2007, 46, 1685–1691. [Google Scholar] [CrossRef] [Green Version]
- Reinehr, T.; Roth, C.L. Fetuin-A and its relation to metabolic syndrome and fatty liver disease in obese children before and after weight loss. J. Clin. Endocrinol. Metab. 2008, 93, 4479–4485. [Google Scholar] [CrossRef] [Green Version]
- Ribom, D.; Westman-Brinkmalm, A.; Smits, A.; Davidsson, P. Elevated levels of alpha-2-Heremans-Schmid glycoprotein in CSF of patients with low-grade gliomas. Tumour. Biol. 2003, 24, 94–99. [Google Scholar] [CrossRef]
- Petrik, V.; Saadoun, S.; Loosemore, A.; Hobbs, J.; Opstad, K.S.; Sheldon, J.; Tarelli, E.; Howe, F.A.; Bell, B.A.; Papadopoulos, M.C. Serum alpha 2-HS glycoprotein predicts survival in patients with glioblastoma. Clin. Chem 2008, 54, 713–722. [Google Scholar] [CrossRef] [Green Version]
- Mansilla, M.J.; Montalban, X.; Espejo, C. Heat shock protein 70: Roles in multiple sclerosis. Mol. Med. 2012, 18, 1018–1028. [Google Scholar] [CrossRef]
- Strik, H.M.; Weller, M.; Frank, B.; Hermisson, M.; Deininger, M.H.; Dichgans, J.; Meyermann, R. Heat shock protein expression in human gliomas. Anticancer Res. 2000, 20, 4457–4462. [Google Scholar] [PubMed]
- Borg, N.; Guilfoyle, M.R.; Greenberg, D.C.; Watts, C.; Thomson, S. Serum albumin and survival in glioblastoma multiforme. J. Neurooncol. 2011, 105, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.W.; Dong, H.; Yang, Y.; Luo, J.W.; Wang, X.; Liu, Y.H.; Mao, Q. Significance of the prognostic nutritional index in patients with glioblastoma: A retrospective study. Clin. Neurol. Neurosurg. 2016, 151, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Dai, Y.; Zhou, F.; Long, Z.; Li, Y.; Liu, B.; Xie, D.; Tang, J.; Tan, J.; Yao, K.; et al. The prognostic role of preoperative serum albumin/globulin ratio in patients with bladder urothelial carcinoma undergoing radical cystectomy. Urol. Oncol. 2016, 34, 484.e1–484.e8. [Google Scholar] [CrossRef]
- He, Z.Q.; Duan, H.; Ke, C.; Zhang, X.H.; Guo, C.C.; Al-Nahari, F.; Zhang, J.; Chen, Z.H.; Chen, Y.S.; Liu, Z.G.; et al. Evaluation of cumulative prognostic score based on pretreatment plasma fibrinogen and serum albumin levels in patients with newly diagnosed high-grade gliomas. Oncotarget 2017, 8, 49605–49614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krenzlin, H.; Lorenz, V.; Alessandri, B. The involvement of thrombin in the pathogenesis of glioblastoma. J. Neurosci Res. 2017, 95, 2080–2085. [Google Scholar] [CrossRef]
- Shankar, G.M.; Balaj, L.; Stott, S.L.; Nahed, B.; Carter, B.S. Liquid biopsy for brain tumors. Expert Rev. Mol. Diagn. 2017, 17, 943–947. [Google Scholar] [CrossRef]
- Yekula, A.; Muralidharan, K.; Rosh, Z.S.; Youngkin, A.E.; Kang, K.M.; Balaj, L.; Carter, B.S. Liquid Biopsy Strategies to Distinguish Progression from Pseudoprogression and Radiation Necrosis in Glioblastomas. Adv. Biosyst. 2020, e2000029. [Google Scholar] [CrossRef]
- Saenz-Antonanzas, A.; Auzmendi-Iriarte, J.; Carrasco-Garcia, E.; Moreno-Cugnon, L.; Ruiz, I.; Villanua, J.; Egana, L.; Otaegui, D.; Sampron, N.; Matheu, A. Liquid Biopsy in Glioblastoma: Opportunities, Applications and Challenges. Cancers 2019, 11, 950. [Google Scholar] [CrossRef] [Green Version]
- Piccioni, D.E.; Achrol, A.S.; Kiedrowski, L.A.; Banks, K.C.; Boucher, N.; Barkhoudarian, G.; Kelly, D.F.; Juarez, T.; Lanman, R.B.; Raymond, V.M.; et al. Analysis of cell-free circulating tumor DNA in 419 patients with glioblastoma and other primary brain tumors. Cns. Oncol. 2019, 8, CNS34. [Google Scholar] [CrossRef]
Vascular Proliferation | Cell Growth | Inflammatory | Immune System | Coagulation | Nutritional |
---|---|---|---|---|---|
BMP-2 | α2-HS glycoprotein | CD23 | CD14 | Fibrinogen | IGFBP-2 |
CXCL 10 | BMP-2 | Albumin | CD23 | ETG | Albumin |
Haptoglobin α2 | Cathepsin D | Ratio N-L | IgE | Prothrombin factors | |
Metalloproteinase 9 | CXCL10 | Ratio P-L | Osteopontin | TF (Tissue factor) | |
Osteopontin | EGFR | Amyloid A1 | Recoverin | ||
YKL-40 | GFAP | TGF-β | |||
VEGF | Metalloproteinase 9 | TNF-α | |||
PDGF-b | Osteopontin | IL-6 | |||
TGF-β | Recoverin | ||||
TNF-α | PDGF-b | ||||
TSP1 | IGF-1 | ||||
TGF-β | |||||
TNF-α | |||||
IL-8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linhares, P.; Carvalho, B.; Vaz, R.; Costa, B.M. Glioblastoma: Is There Any Blood Biomarker with True Clinical Relevance? Int. J. Mol. Sci. 2020, 21, 5809. https://doi.org/10.3390/ijms21165809
Linhares P, Carvalho B, Vaz R, Costa BM. Glioblastoma: Is There Any Blood Biomarker with True Clinical Relevance? International Journal of Molecular Sciences. 2020; 21(16):5809. https://doi.org/10.3390/ijms21165809
Chicago/Turabian StyleLinhares, Paulo, Bruno Carvalho, Rui Vaz, and Bruno M. Costa. 2020. "Glioblastoma: Is There Any Blood Biomarker with True Clinical Relevance?" International Journal of Molecular Sciences 21, no. 16: 5809. https://doi.org/10.3390/ijms21165809
APA StyleLinhares, P., Carvalho, B., Vaz, R., & Costa, B. M. (2020). Glioblastoma: Is There Any Blood Biomarker with True Clinical Relevance? International Journal of Molecular Sciences, 21(16), 5809. https://doi.org/10.3390/ijms21165809