Activating Telomerase TERT Promoter Mutations and Their Application for the Detection of Bladder Cancer
Abstract
:1. Introduction
2. Telomerase Reactivation in Bladder Cancer and Early-Generation of Telomerase Urinary-Based Biomarkers
3. Urinary TERT Promoter Mutations: The Holy Grail of a Biomarker for Bladder Cancer Detection and Surveillance?
3.1. TERT Promoter Mutations and Biological Significance in Bladder Carcinogenesis
3.2. Analytical Methods for Detecting Mutations in the TERT Promoter: Comparison of Analytical Performance and Bias
3.3. Predictive Significance of Determining TERT Promoter Mutations in Urine
4. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
Abbreviations
BC | Bladder cancer |
NMIBC | Non-muscle-invasive bladder cancer |
MIBC | Muscle-invasive bladder cancer |
HTERT | Human telomerase reverse transcriptase |
NGS | Next-generation sequencing |
ddPCR | Droplet digital polymerase chain reaction |
References
- Antoni, S.; Ferlay, J.; Soerjomataram, I.; Znaor, A.; Jemal, A.; Bray, F. Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur. Urol. 2017, 71, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Stasik, S.; Salomo, K.; Heberling, U.; Froehner, M.; Sommer, U.; Baretton, G.B.; Ehninger, G.; Wirth, M.P.; Thiede, C.; Fuessel, S. Evaluation of TERT promoter mutations in urinary cell-free DNA and sediment DNA for detection of bladder cancer. Clin. Biochem. 2019, 64, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Hannen, R.; Bartsch, J.W. Essential roles of telomerase reverse transcriptase hTERT in cancer stemness and metastasis. FEBS Lett. 2018, 592, 2023–2031. [Google Scholar] [CrossRef] [PubMed]
- Jafri, M.A.; Ansari, S.A.; Alqahtani, M.H.; Shay, J.W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 2016, 8, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, X.; Larsson, C.; Xu, D. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: Old actors and new players. Oncogene 2019, 38, 6172–6183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leao, R.; Apolonio, J.D.; Lee, D.; Figueiredo, A.; Tabori, U.; Castelo-Branco, P. Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: Clinical impacts in cancer. J. Biomed. Sci. 2018, 25, 22. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.D.; Leao, R.; Komosa, M.; Gallo, M.; Zhang, C.H.; Lipman, T.; Remke, M.; Heidari, A.; Nunes, N.M.; Apolonio, J.D.; et al. DNA hypermethylation within TERT promoter upregulates TERT expression in cancer. J. Clin. Investig. 2019, 129, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Chiba, K.; Lorbeer, F.K.; Shain, A.H.; McSwiggen, D.T.; Schruf, E.; Oh, A.; Ryu, J.; Darzacq, X.; Bastian, B.C.; Hockemeyer, D. Mutations in the promoter of the telomerase gene TERT contribute to tumorigenesis by a two-step mechanism. Science 2017, 357, 1416–1420. [Google Scholar] [CrossRef] [Green Version]
- Gunes, C.; Wezel, F.; Southgate, J.; Bolenz, C. Implications of TERT promoter mutations and telomerase activity in urothelial carcinogenesis. Nat. Rev. Urol. 2018, 15, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Avogbe, P.H.; Manel, A.; Vian, E.; Durand, G.; Forey, N.; Voegele, C.; Zvereva, M.; Hosen, M.I.; Meziani, S.; De Tilly, B.; et al. Urinary TERT promoter mutations as non-invasive biomarkers for the comprehensive detection of urothelial cancer. EBioMedicine 2019, 44, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Hosen, M.I.; Sheikh, M.; Zvereva, M.; Scelo, G.; Forey, N.; Durand, G.; Voegele, C.; Poustchi, H.; Khoshnia, M.; Roshandel, G.; et al. Urinary TERT promoter mutations are detectable up to 10 years prior to clinical diagnosis of bladder cancer: Evidence from the Golestan Cohort Study. EBioMedicine 2020, 53, 17. [Google Scholar] [CrossRef] [PubMed]
- Kamata, S.; Kageyama, Y.; Yonese, J.; Oshima, H. Significant telomere reduction in human superficial transitional cell carcinoma. Br. J. Urol. 1996, 78, 704–708. [Google Scholar] [CrossRef] [PubMed]
- Turner, K.J.; Vasu, V.; Griffin, D.K. Telomere Biology and Human Phenotype. Cells 2019, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Zvereva, M.I.; Shcherbakova, D.M.; Dontsova, O.A. Telomerase: Structure, functions, and activity regulation. Biochemistry 2010, 75, 1563–1583. [Google Scholar] [CrossRef]
- Schmidt, J.C.; Cech, T.R. Human telomerase: Biogenesis, trafficking, recruitment, and activation. Genes Dev. 2015, 29, 1095–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, N.W.; Piatyszek, M.A.; Prowse, K.R.; Harley, C.B.; West, M.D.; Ho, P.L.; Coviello, G.M.; Wright, W.E.; Weinrich, S.L.; Shay, J.W. Specific association of human telomerase activity with immortal cells and cancer. Science 1994, 266, 2011–2015. [Google Scholar] [CrossRef]
- Sanchini, M.A.; Gunelli, R.; Nanni, O.; Bravaccini, S.; Fabbri, C.; Sermasi, A.; Bercovich, E.; Ravaioli, A.; Amadori, D.; Calistri, D. Relevance of urine telomerase in the diagnosis of bladder cancer. JAMA 2005, 294, 2052–2056. [Google Scholar] [CrossRef] [Green Version]
- Landman, J.; Chang, Y.; Kavaler, E.; Droller, M.J.; Liu, B.C. Sensitivity and specificity of NMP-22, telomerase, and BTA in the detection of human bladder cancer. Urology 1998, 52, 398–402. [Google Scholar] [CrossRef]
- Kinoshita, H.; Ogawa, O.; Kakehi, Y.; Mishina, M.; Mitsumori, K.; Itoh, N.; Yamada, H.; Terachi, T.; Yoshida, O. Detection of telomerase activity in exfoliated cells in urine from patients with bladder cancer. J. Natl. Cancer Inst. 1997, 89, 724–730. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, K.; Sugino, T.; Tahara, H.; Woodman, A.; Bolodeoku, J.; Nargund, V.; Fellows, G.; Goodison, S.; Tahara, E.; Tarin, D. Telomerase activity in bladder carcinoma and its implication for noninvasive diagnosis by detection of exfoliated cancer cells in urine. Cancer 1997, 79, 362–369. [Google Scholar] [CrossRef]
- Sanchini, M.A.; Bravaccini, S.; Medri, L.; Gunelli, R.; Nanni, O.; Monti, F.; Baccarani, P.C.; Ravaioli, A.; Bercovich, E.; Amadori, D.; et al. Urine telomerase: An important marker in the diagnosis of bladder cancer. Neoplasia 2004, 6, 234–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, P.S.; Chan, J.B.; Levin, M.R.; Rao, J. Urine cytology and adjunct markers for detection and surveillance of bladder cancer. Am. J. Transl. Res. 2010, 2, 412–440. [Google Scholar] [PubMed]
- Li, T.; Zou, L.; Zhang, J.; Li, G.; Ling, L. Non-invasive diagnosis of bladder cancer by detecting telomerase activity in human urine using hybridization chain reaction and dynamic light scattering. Anal. Chim. Acta 2019, 13, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Ludlow, A.T.; Robin, J.D.; Sayed, M.; Litterst, C.M.; Shelton, D.N.; Shay, J.W.; Wright, W.E. Quantitative telomerase enzyme activity determination using droplet digital PCR with single cell resolution. Nucleic Acids Res. 2014, 42, e104. [Google Scholar] [CrossRef] [PubMed]
- Vukašinović, A.R.; Kotur-Stevuljević, J.M.; Mlakar, V.; Sopić, M.D.; Cvetković, Z.P.; Petković, M.R.; Spasojević-Kalimanovska, V.V.; Bogavac-Stanojević, N.B.; Ostanek, B. Telomerase stability and evaluation of real-time telomeric repeat amplification protocol. Scand. J. Clin. Lab. Investig. 2019, 79, 188–193. [Google Scholar] [CrossRef]
- Su, D.; Huang, X.; Dong, C.; Ren, J. Quantitative Determination of Telomerase Activity by Combining Fluorescence Correlation Spectroscopy with Telomerase Repeat Amplification Protocol. Anal. Chem. 2018, 90, 1006–1013. [Google Scholar] [CrossRef]
- Müller, M. Telomerase: Its clinical relevance in the diagnosis of bladder cancer. Oncogene 2002, 21, 650–655. [Google Scholar] [CrossRef] [Green Version]
- Weikert, S.; Krause, H.; Wolff, I.; Christoph, F.; Schrader, M.; Emrich, T.; Miller, K.; Müller, M. Quantitative evaluation of telomerase subunits in urine as biomarkers for noninvasive detection of bladder cancer. Int. J. Cancer 2005, 117, 274–280. [Google Scholar] [CrossRef]
- Glukhov, A.I.; Grigorieva, Y.E.; Gordeev, S.A.; Vinarov, A.Z.; Potoldykova, N.V. Development of noninvasive bladder cancer diagnosis on basis of telomerase and it’s subunits hTERT and hTR detection. Biomed. Khim. 2015, 61, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Tilki, D.; Burger, M.; Dalbagni, G.; Grossman, H.B.; Hakenberg, O.W.; Palou, J.; Reich, O.; Roupret, M.; Shariat, S.F.; Zlotta, A.R. Urine markers for detection and surveillance of non-muscle-invasive bladder cancer. Eur. Urol. 2011, 60, 484–492. [Google Scholar] [CrossRef]
- Liu, K.; Hodes, R.J.; Weng, N. Cutting edge: Telomerase activation in human T lymphocytes does not require increase in telomerase reverse transcriptase (hTERT) protein but is associated with hTERT phosphorylation and nuclear translocation. J. Immunol. 2001, 166, 4826–4830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- March-Villalba, J.A.; Panach-Navarrete, J.; Herrero-Cervera, M.J.; Aliño-Pellicer, S.; Martínez-Jabaloyas, J.M. hTERT mRNA expression in urine as a useful diagnostic tool in bladder cancer. Comparison with cytology and NMP22 BladderCheck Test®. Actas Urológicas Españolas (Engl. Ed.) 2018, 42, 524–530. [Google Scholar] [CrossRef]
- Clinton, T.; Lotan, Y. Review of the Clinical Approaches to the Use of Urine-based Tumor Markers in Bladder Cancer. Rambam Maimonides Med. J. 2017, 8, e0040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ecke, T.H.; Weiß, S.; Stephan, C.; Hallmann, S.; Arndt, C.; Barski, D.; Otto, T.; Gerullis, H. UBC(®) Rapid Test-A Urinary Point-of-Care (POC) Assay for Diagnosis of Bladder Cancer with a focus on Non-Muscle Invasive High-Grade Tumors: Results of a Multicenter-Study. Int. J. Mol. Sci. 2018, 19, 3841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Sullivan, P.; Sharples, K.; Dalphin, M.; Davidson, P.; Gilling, P.; Cambridge, L.; Harvey, J.; Toro, T.; Giles, N.; Luxmanan, C.; et al. A multigene urine test for the detection and stratification of bladder cancer in patients presenting with hematuria. J. Urol. 2012, 188, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Bravaccini, S.; Casadio, V.; Gunelli, R.; Bucchi, L.; Zoli, W.; Amadori, D.; Silvestrini, R.; Calistri, D. Combining cytology, TRAP assay, and FISH analysis for the detection of bladder cancer in symptomatic patients. Ann. Oncol. 2011, 22, 2294–2298. [Google Scholar] [CrossRef]
- Halling, K.C.; King, W.; Sokolova, I.A.; Karnes, R.J.; Meyer, R.G.; Powell, E.L.; Sebo, T.J.; Cheville, J.C.; Clayton, A.C.; Krajnik, K.L.; et al. A comparison of BTA stat, hemoglobin dipstick, telomerase and Vysis UroVysion assays for the detection of urothelial carcinoma in urine. J. Urol. 2002, 167, 2001–2006. [Google Scholar] [CrossRef]
- Cavallo, D.; Casadio, V.; Bravaccini, S.; Iavicoli, S.; Pira, E.; Romano, C.; Fresegna, A.M.; Maiello, R.; Ciervo, A.; Buresti, G.; et al. Assessment of DNA damage and telomerase activity in exfoliated urinary cells as sensitive and noninvasive biomarkers for early diagnosis of bladder cancer in ex-workers of a rubber tyres industry. Biomed. Res. Int. 2014, 2014, 370907. [Google Scholar] [CrossRef] [Green Version]
- Schmitz-Dräger, B.J.; Droller, M.; Lokeshwar, V.B.; Lotan, Y.; Hudson, M.A.; van Rhijn, B.W.; Marberger, M.J.; Fradet, Y.; Hemstreet, G.P.; Malmstrom, P.U.; et al. Molecular markers for bladder cancer screening, early diagnosis, and surveillance: The WHO/ICUD consensus. Urol. Int. 2015, 94, 1–24. [Google Scholar] [CrossRef]
- Larré, S.; Catto, J.W.; Cookson, M.S.; Messing, E.M.; Shariat, S.F.; Soloway, M.S.; Svatek, R.S.; Lotan, Y.; Zlotta, A.R.; Grossman, H.B. Screening for bladder cancer: Rationale, limitations, whom to target, and perspectives. Eur. Urol. 2013, 63, 1049–1058. [Google Scholar] [CrossRef]
- Xylinas, E.; Kluth, L.A.; Rieken, M.; Karakiewicz, P.I.; Lotan, Y.; Shariat, S.F. Urine markers for detection and surveillance of bladder cancer. Urol. Oncol. 2014, 32, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Shegay, P.V.; Zhavoronkov, A.A.; Gaifullin, N.M.; Vorob’ev, N.V.; Alekseev, B.Y.; Popov, S.V.; Garazha, A.V.; Buzdin, A.A.; Kaprin, A.D. Potentialities of MicroRNA Diagnosis in Patients with Bladder Cancer. Bull. Exp. Biol. Med. 2017, 164, 106–108. [Google Scholar] [CrossRef] [PubMed]
- Killela, P.J.; Reitman, Z.J.; Jiao, Y.; Bettegowda, C.; Agrawal, N.; Diaz, L.A., Jr.; Friedman, A.H.; Friedman, H.; Gallia, G.L.; Giovanella, B.C.; et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc. Natl. Acad. Sci. USA 2013, 110, 6021–6026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horn, S.; Figl, A.; Rachakonda, P.S.; Fischer, C.; Sucker, A.; Gast, A.; Kadel, S.; Moll, I.; Nagore, E.; Hemminki, K.; et al. TERT promoter mutations in familial and sporadic melanoma. Science 2013, 339, 959–961. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.W.; Hodis, E.; Xu, M.J.; Kryukov, G.V.; Chin, L.; Garraway, L.A. Highly recurrent TERT promoter mutations in human melanoma. Science 2013, 339, 957–959. [Google Scholar] [CrossRef] [Green Version]
- Descotes, F.; Kara, N.; Decaussin-Petrucci, M.; Piaton, E.; Geiguer, F.; Rodriguez-Lafrasse, C.; Terrier, J.E.; Lopez, J.; Ruffion, A. Non-invasive prediction of recurrence in bladder cancer by detecting somatic TERT promoter mutations in urine. Br. J. Cancer 2017, 117, 583–587. [Google Scholar] [CrossRef]
- Hayashi, Y.; Fujita, K.; Matsuzaki, K.; Matsushita, M.; Kawamura, N.; Koh, Y.; Nakano, K.; Wang, C.; Ishizuya, Y.; Yamamoto, Y.; et al. Diagnostic potential of TERT promoter and FGFR3 mutations in urinary cell-free DNA in upper tract urothelial carcinoma. Cancer Sci. 2019, 110, 1771–1779. [Google Scholar] [CrossRef] [Green Version]
- Allory, Y.; Beukers, W.; Sagrera, A.; Flandez, M.; Marques, M.; Marquez, M.; van der Keur, K.A.; Dyrskjot, L.; Lurkin, I.; Vermeij, M.; et al. Telomerase reverse transcriptase promoter mutations in bladder cancer: High frequency across stages, detection in urine, and lack of association with outcome. Eur. Urol. 2014, 65, 360–366. [Google Scholar] [CrossRef] [Green Version]
- Eich, M.-L.; Rodriguez Pena, M.D.C.; Springer, S.U.; Taheri, D.; Tregnago, A.C.; Salles, D.C.; Bezerra, S.M.; Cunha, I.W.; Fujita, K.; Ertoy, D.; et al. Incidence and distribution of UroSEEK gene panel in a multi-institutional cohort of bladder urothelial carcinoma. Mod. Pathol. 2019, 32, 1544–1550. [Google Scholar] [CrossRef]
- Hurst, C.; Platt, F.; Knowles, M. Abstract 2240: TERT promoter mutations are highly prevalent in bladder cancer and represent a potential new urinary biomarker. Cancer Res. 2014, 74, 2240. [Google Scholar]
- Kurtis, B.; Zhuge, J.; Ojaimi, C.; Ye, F.; Cai, D.; Zhang, D.; Fallon, J.T.; Zhong, M. Recurrent TERT promoter mutations in urothelial carcinoma and potential clinical applications. Ann. Diagn. Pathol. 2016, 21, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Pietzak, E.J.; Bagrodia, A.; Cha, E.K.; Drill, E.N.; Iyer, G.; Isharwal, S.; Ostrovnaya, I.; Baez, P.; Li, Q.; Berger, M.F.; et al. Next-generation Sequencing of Nonmuscle Invasive Bladder Cancer Reveals Potential Biomarkers and Rational Therapeutic Targets. Eur. Urol. 2017, 72, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Rachakonda, P.S.; Hosen, I.; de Verdier, P.J.; Fallah, M.; Heidenreich, B.; Ryk, C.; Wiklund, N.P.; Steineck, G.; Schadendorf, D.; Hemminki, K.; et al. TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism. Proc. Natl. Acad. Sci. USA 2013, 110, 17426–17431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinde, I.; Munari, E.; Faraj, S.F.; Hruban, R.H.; Schoenberg, M.; Bivalacqua, T.; Allaf, M.; Springer, S.; Wang, Y.; Diaz, L.A., Jr.; et al. TERT promoter mutations occur early in urothelial neoplasia and are biomarkers of early disease and disease recurrence in urine. Cancer Res. 2013, 73, 7162–7167. [Google Scholar] [CrossRef] [Green Version]
- Cowan, M.; Springer, S.; Nguyen, D.; Taheri, D.; Guner, G.; Rodriguez, M.A.; Wang, Y.; Kinde, I.; VandenBussche, C.J.; Olson, M.T.; et al. High prevalence of TERT promoter mutations in primary squamous cell carcinoma of the urinary bladder. Mod. Pathol. 2016, 29, 511–515. [Google Scholar] [CrossRef]
- Zheng, X.; Zhuge, J.; Bezerra, S.M.; Faraj, S.F.; Munari, E.; Fallon, J.T., 3rd; Yang, X.J.; Argani, P.; Netto, G.J.; Zhong, M. High frequency of TERT promoter mutation in small cell carcinoma of bladder, but not in small cell carcinoma of other origins. J. Hematol. Oncol. 2014, 7, 014–0047. [Google Scholar] [CrossRef] [Green Version]
- Cowan, M.L.; Springer, S.; Nguyen, D.; Taheri, D.; Guner, G.; Mendoza Rodriguez, M.A.; Wang, Y.; Kinde, I.; Del Carmen Rodriguez Pena, M.; VandenBussche, C.J.; et al. Detection of TERT promoter mutations in primary adenocarcinoma of the urinary bladder. Hum. Pathol. 2016, 53, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Palsgrove, D.N.; Taheri, D.; Springer, S.U.; Cowan, M.; Guner, G.; Mendoza Rodriguez, M.A.; Rodriguez Pena, M.D.C.; Wang, Y.; Kinde, I.; Ricardo, B.F.P.; et al. Targeted sequencing of plasmacytoid urothelial carcinoma reveals frequent TERT promoter mutations. Hum. Pathol. 2019, 85, 1–9. [Google Scholar] [CrossRef]
- Borah, S.; Xi, L.; Zaug, A.J.; Powell, N.M.; Dancik, G.M.; Cohen, S.B.; Costello, J.C.; Theodorescu, D.; Cech, T.R. Cancer. TERT promoter mutations and telomerase reactivation in urothelial cancer. Science 2015, 347, 1006–1010. [Google Scholar] [CrossRef] [Green Version]
- Ségal-Bendirdjian, E.; Geli, V. Non-canonical Roles of Telomerase: Unraveling the Imbroglio. Front. Cell Dev. Biol. 2019, 7, 332. [Google Scholar] [CrossRef]
- Wang, K.; Liu, T.; Ge, N.; Liu, L.; Yuan, X.; Liu, J.; Kong, F.; Wang, C.; Ren, H.; Yan, K.; et al. TERT promoter mutations are associated with distant metastases in upper tract urothelial carcinomas and serve as urinary biomarkers detected by a sensitive castPCR. Oncotarget 2014, 5, 12428–12439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; et al. Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies. Sci. Transl. Med. 2014, 6, 224ra24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srisuwan, W.; Tatu, T. A Simple Whole-Blood Polymerase Chain Reaction without DNA Extraction for Thalassemia Diagnosis. Hemoglobin 2018, 42, 178–183. [Google Scholar] [CrossRef]
- Kikin, O.; D’Antonio, L.; Bagga, P.S. QGRS Mapper: A web-based server for predicting G-quadruplexes in nucleotide sequences. Nucl. Acids Res. 2006, 34, W676–W682. [Google Scholar] [CrossRef]
- Batista, R.; Vinagre, J.; Prazeres, H.; Sampaio, C.; Peralta, P.; Conceição, P.; Sismeiro, A.; Leão, R.; Gomes, A.; Furriel, F.; et al. Validation of a Novel, Sensitive, and Specific Urine-Based Test for Recurrence Surveillance of Patients With Non-Muscle-Invasive Bladder Cancer in a Comprehensive Multicenter Study. Front. Genet. 2019, 10, 1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 2017, 14, 531–548. [Google Scholar] [CrossRef] [PubMed]
- Kinde, I.; Wu, J.; Papadopoulos, N.; Kinzler, K.W.; Vogelstein, B. Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl. Acad. Sci. USA 2011, 108, 9530–9535. [Google Scholar] [CrossRef] [Green Version]
- Forshew, T.; Murtaza, M.; Parkinson, C.; Gale, D.; Tsui, D.W.Y.; Kaper, F.; Dawson, S.-J.; Piskorz, A.M.; Jimenez-Linan, M.; Bentley, D.; et al. Noninvasive Identification and Monitoring of Cancer Mutations by Targeted Deep Sequencing of Plasma DNA. Sci. Transl. Med. 2012, 4, 136ra68. [Google Scholar] [CrossRef]
- Gale, D.; Lawson, A.R.J.; Howarth, K.; Madi, M.; Durham, B.; Smalley, S.; Calaway, J.; Blais, S.; Jones, G.; Clark, J.; et al. Development of a highly sensitive liquid biopsy platform to detect clinically-relevant cancer mutations at low allele fractions in cell-free DNA. PLoS ONE 2018, 13, e0194630. [Google Scholar] [CrossRef]
- Newman, A.M.; Bratman, S.V.; To, J.; Wynne, J.F.; Eclov, N.C.; Modlin, L.A.; Liu, C.L.; Neal, J.W.; Wakelee, H.A.; Merritt, R.E.; et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 2014, 20, 548–554. [Google Scholar] [CrossRef]
- Delhomme, T.M.; Avogbe, P.H.; Gabriel, A.A.G.; Alcala, N.; Leblay, N.; Voegele, C.; Vallée, M.; Chopard, P.; Chabrier, A.; Abedi-Ardekani, B.; et al. Needlestack: An ultra-sensitive variant caller for multi-sample next generation sequencing data. NAR Genom. Bioinform. 2020, 2, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahmcke, C.M.; Steven, K.E.; Larsen, L.K.; Poulsen, A.L.; Abdul-Al, A.; Dahl, C.; Guldberg, P. A Prospective Blinded Evaluation of Urine-DNA Testing for Detection of Urothelial Bladder Carcinoma in Patients with Gross Hematuria. Eur. Urol. 2016, 70, 916–919. [Google Scholar] [CrossRef] [PubMed]
- Critelli, R.; Fasanelli, F.; Oderda, M.; Polidoro, S.; Assumma, M.B.; Viberti, C.; Preto, M.; Gontero, P.; Cucchiarale, G.; Lurkin, I.; et al. Detection of multiple mutations in urinary exfoliated cells from male bladder cancer patients at diagnosis and during follow-up. Oncotarget 2016, 7, 67435–67448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Liu, T.; Liu, L.; Liu, J.; Liu, C.; Wang, C.; Ge, N.; Ren, H.; Yan, K.; Hu, S.; et al. TERT promoter mutations in renal cell carcinomas and upper tract urothelial carcinomas. Oncotarget 2014, 5, 1829–1836. [Google Scholar] [CrossRef]
- Springer, S.U.; Chen, C.-H.; Rodriguez Pena, M.D.C.; Li, L.; Douville, C.; Wang, Y.; Cohen, J.D.; Taheri, D.; Silliman, N.; Schaefer, J.; et al. Non-invasive detection of urothelial cancer through the analysis of driver gene mutations and aneuploidy. eLife 2018, 7, e32143. [Google Scholar] [CrossRef]
- Ou, Z.; Li, K.; Yang, T.; Dai, Y.; Chandra, M.; Ning, J.; Wang, Y.; Xu, R.; Gao, T.; Xie, Y.; et al. Detection of bladder cancer using urinary cell-free DNA and cellular DNA. Clin. Transl. Med. 2020, 9, 4. [Google Scholar] [CrossRef] [Green Version]
- Ward, D.G.; Baxter, L.; Gordon, N.S.; Ott, S.; Savage, R.S.; Beggs, A.D.; James, J.D.; Lickiss, J.; Green, S.; Wallis, Y.; et al. Multiplex PCR and Next Generation Sequencing for the Non-Invasive Detection of Bladder Cancer. PLoS ONE 2016, 11, e0149756. [Google Scholar] [CrossRef]
- Togneri, F.S.; Ward, D.G.; Foster, J.M.; Devall, A.J.; Wojtowicz, P.; Alyas, S.; Vasques, F.R.; Oumie, A.; James, N.D.; Cheng, K.K.; et al. Genomic complexity of urothelial bladder cancer revealed in urinary cfDNA. Eur. J. Hum. Genet. 2016, 24, 1167–1174. [Google Scholar] [CrossRef] [Green Version]
- Szarvas, T.; Kovalszky, I.; Bedi, K.; Szendroi, A.; Majoros, A.; Riesz, P.; Fule, T.; Laszlo, V.; Kiss, A.; Romics, I. Deletion analysis of tumor and urinary DNA to detect bladder cancer: Urine supernatant versus urine sediment. Oncol Rep. 2007, 18, 405–409. [Google Scholar] [CrossRef] [Green Version]
- Russo, I.J.; Ju, Y.; Gordon, N.S.; Zeegers, M.P.; Cheng, K.K.; James, N.D.; Bryan, R.T.; Ward, D.G. Toward Personalised Liquid Biopsies for Urothelial Carcinoma: Characterisation of ddPCR and Urinary cfDNA for the Detection of the TERT 228 G > A/T Mutation. Bladder Cancer 2018, 4, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, Y.; Fujita, K.; Matsuzaki, K.; Eich, M.L.; Tomiyama, E.; Matsushita, M.; Koh, Y.; Nakano, K.; Wang, C.; Ishizuya, Y.; et al. Clinical Significance of Hotspot Mutation Analysis of Urinary Cell-Free DNA in Urothelial Bladder Cancer. Front. Oncol. 2020, 10, 755. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.G.; Gordon, N.S.; Boucher, R.H.; Pirrie, S.J.; Baxter, L.; Ott, S.; Silcock, L.; Whalley, C.M.; Stockton, J.D.; Beggs, A.D.; et al. Targeted deep sequencing of urothelial bladder cancers and associated urinary DNA: A 23-gene panel with utility for non-invasive diagnosis and risk stratification. BJU Int. 2019, 124, 532–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepe, M.S.; Etzioni, R.; Feng, Z.; Potter, J.D.; Thompson, M.L.; Thornquist, M.; Winget, M.; Yasui, Y. Phases of biomarker development for early detection of cancer. J. Natl. Cancer Inst. 2001, 93, 1054–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pesch, B.; Brüning, T.; Johnen, G.; Casjens, S.; Bonberg, N.; Taeger, D.; Müller, A.; Weber, D.G.; Behrens, T. Biomarker research with prospective study designs for the early detection of cancer. Biochim. Biophys. Acta 2014, 5, 874–883. [Google Scholar] [CrossRef] [PubMed]
- Svatek, R.S.; Hollenbeck, B.K.; Holmäng, S.; Lee, R.; Kim, S.P.; Stenzl, A.; Lotan, Y. The economics of bladder cancer: Costs and considerations of caring for this disease. Eur. Urol. 2014, 66, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Leal, J.; Luengo-Fernandez, R.; Sullivan, R.; Witjes, J.A. Economic Burden of Bladder Cancer Across the European Union. Eur. Urol. 2016, 69, 438–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotan, Y.; Svatek, R.S.; Sagalowsky, A.I. Should we screen for bladder cancer in a high-risk population?: A cost per life-year saved analysis. Cancer 2006, 107, 982–990. [Google Scholar] [CrossRef]
- Zanetti, M. A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat. Rev. Clin. Oncol. 2017, 14, 115–128. [Google Scholar] [CrossRef]
- Carrozza, F.; Santoni, M.; Piva, F.; Cheng, L.; Lopez-Beltran, A.; Scarpelli, M.; Montironi, R.; Battelli, N.; Tamberi, S. Emerging immunotherapeutic strategies targeting telomerases in genitourinary tumors. Crit. Rev. Oncol. Hematol. 2018, 131, 1–6. [Google Scholar] [CrossRef] [Green Version]
Article | Tumor Type | Method | Number of Patients | Size of Control Group | Sensitivity % | Specificity % | Length of PCR Product | Primers (Sequences Are Presented from 5′ End to End) and Probes |
---|---|---|---|---|---|---|---|---|
[56] | Small cell carcinoma (SCC) | PCR+ Sanger sequencing | 11 | 3 | 100 | 100 | 163 | CAGCGCTGCCTGAAACTC; GTCCTGCCCCTTCACCTT |
[61] | Ureter carcinoma (UC) | PCR+ Sanger sequencing | 20 | 0 | 94 | 10 | 193 | CACCCGTCCTGCCCCTTCACCTT; GGCTTCCCACGTGCGCAGCAGGA- |
Renal pelvic carcinoma (RPC) | 16 | 0 | 93.8 | 25 | 193 | |||
UTUC (RPC + UC) C228T | PCR+ Sanger sequencing | 10 | 37 | 60 | 97 | 193 | ||
castPCR | 10 | 37 | 90 | 92 | dnp * | dnp | ||
BC (C228T) | PCR+ Sanger sequencing | 36 | 33 | 47 | 100 | 193 | CACCCGTCCTGCCCCTTCACCTT; GGCTTCCCACGTGCGCAGCAGGA | |
castPCR | 36 | 33 | 86 | 97 | dnp | dnp | ||
UTUC + BC | PCR+ Sanger sequencing | 46 | 70 | 50 | 98 | 193 | CACCCGTCCTGCCCCTTCACCTT; GGCTTCCCACGTGCGCAGCAGGA | |
castPCR | 46 | 70 | 89 | 96 | dnp | dnp | ||
[10] | Urothelial cancer (UC) primary | UroMuTERT (NGS) | 45 | 94 | 86.7 | 94.7 | 147 | CTTCCAGCTCCGCCTCCTCCGCGCGG; AGCGCTGCCTGAAACTCGCGCC |
Urothelial cancer (UC) recurrence | 48 | 94 | 87.5 | 94.7 | 147 | |||
UC (Diaguro) | 93 | 94 | 87.1 | 94.7 | 147 | |||
[72] | Urothelial bladder carcinoma | ddPCR | 99 | 376 | 81.8 | 83.5 | 52 | C228T: CGGAAAGGAAGGGGAGGG;GTCCCCGGCCCAGC |
Mut: [6FAM]-CCC+C+T+T+CCGG-[BHQ_1] | ||||||||
WT: [HEX]-CCCC+T+C+CGGG-[BHQ_1] | ||||||||
60 | C250T: TGGGAGGGCCCGGAG;GACCCCGCCCCGT | |||||||
Mut: [6FAM]CCC+C+T+T+CCGG[BHQ_1] | ||||||||
WT: [HEX]CCCC+T+C+CCGG[BHQ_1] | ||||||||
[55] | Squamous cell carcinoma Benign transurethral bladder biopsy samples | Safe-SeqS | 15 0 i | 94 ii 8 | 80 | dnp | 125 dnp | 1st couple: CACACAGGAAACAGCTATGACCATGGGCCGCGGAAAGGAAG; CGACGTAAAACGACGGCCAGTNNNNNNNNNNNNNNCGTCCTGCCCCTTCACC ** 2nd couple: CACACAGGAAACAGCTATGACCATGGCGGAAAGGAAAGGGAG; CGACGTAAAACGACGGCCAGTNNNNNNNNNNNNNNCCGTCCCGACCCCTC |
[73] | NMIBC primary | SNaPshot assay | 230 | 0 | 69 | 52 | dnp | dnp |
[48] | BC (primary) | SNaPshot assay | 118 | 0 | 62 | – | 155 | AGCGCTGCCTGAAACTCG; CCCTTCACCTTCCAGCTC |
BC (recurrence) | 113 | 0 | 42 | – | 155 | Probes: for C228T/A T23GGCTGGGAGGGCCCGGA | ||
BC (recurrence-free samples) | 0 | 218 | – | 73 | 155 | for C250T T39CTGGGCCGGGGACCCGG | ||
[74] | Renal pelvic carcinoma (RPC) | 5 | 0 | 60 | dnp | 193 | CACCCGTCCTGCCCCTTCACCTT; GGCTTCCCACGTGCGCAGCAGGA | |
UTUC | 14 | 0 | 29 | dnp | 193 | |||
Chromophobe renal cell carcinoma (CRCC) | 8 | 0 | 13 | dnp | 193 | |||
Ureter carcinoma (UC) | 9 | 0 | 11 | dnp | 193 | |||
Clear cell renal cell carcinoma (CCRCC) | 96 | 0 | 9.3 | dnp | 193 | |||
Renal cell carcinoma iii (RCC) | 109 | 0 | 9.2 | dnp | 193 | |||
[75] | BC early detection | PCR + Illumina sequencing | 570 | 188 | 57 | 99.4 | 126 | GGCCGCGGAAAGGAAG; CGTCCTGCCCCTTCACC |
UTUC | 56 | 188 | 29 | 99.4 | ||||
BC surveillance | 322 | 188 | 57 | 99.4 | ||||
[11] | BC | UroMuTERT and ddPCR | 30 | 101 | 46.7 | 100 | 65 | C228T: CCCTCCCGGGTCC; CCGCGGAAAGGAAGG; probes: Mut: CCCGGAaGGGGCTG (FAM_lowaBlack); WT: CGGAgGGGGCTGG (HEX_IowaBlack). C250T CTTCACCTTCCAGCTCC; GAGGGCCCGGAGG; probes: Mut: CCCGGaAGGGGTCG (FAM_lowBlack); WT: ACCCGGgAGGGGT (HEX_IowaBlack). |
[47] | UTUC | ddPCR | 56 | 50 | 46.4 | 96 | 113 | dnp |
[76] | BC (supernatant) BC (sediment) Non-cancer hematuria | NGS | 92 | 0 | 46 | 100 | NGS-primers: ACCTTCCAGCTCCGCCTCCTCCGCGCGGAC; AGAGGGCGGGGCCGCGGAAAGGAAGGGGAG | |
92 | 0 | 48 | 100 | |||||
0 | 33 | |||||||
[57] | Primary bladder adenocarcinoma | Safe-SeqS | 14 | 94 iv | 28.6 | dnp | 125 | 1st couple: CACACAGGAAACAGCTATGACCATGGGCCGCGGAAAGGAAG; CGACGTAAAACGACGGCCAGTNNNNNNNNNNNNNNCGTCCTGCCCCTTCACC 2nd couple: CACACAGGAAACAGCTATGACCATGGCGGAAAGGAAAGGGAG; CGACGTAAAACGACGGCCAGTNNNNNNNNNNNNNNCCGTCCCGACCCCTC |
Benign transurethral bladder biopsy samples | 0 | 8 | dnp | |||||
[53] | Urothelial cell carcinoma | PCR+ Sanger sequencing | 327 | 0 | dnp | 65.4 | 343 | AGCACCTCGCGGTAGTGG; GGATTCGCGGGCACAGAC |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zvereva, M.; Pisarev, E.; Hosen, I.; Kisil, O.; Matskeplishvili, S.; Kubareva, E.; Kamalov, D.; Tivtikyan, A.; Manel, A.; Vian, E.; et al. Activating Telomerase TERT Promoter Mutations and Their Application for the Detection of Bladder Cancer. Int. J. Mol. Sci. 2020, 21, 6034. https://doi.org/10.3390/ijms21176034
Zvereva M, Pisarev E, Hosen I, Kisil O, Matskeplishvili S, Kubareva E, Kamalov D, Tivtikyan A, Manel A, Vian E, et al. Activating Telomerase TERT Promoter Mutations and Their Application for the Detection of Bladder Cancer. International Journal of Molecular Sciences. 2020; 21(17):6034. https://doi.org/10.3390/ijms21176034
Chicago/Turabian StyleZvereva, Maria, Eduard Pisarev, Ismail Hosen, Olga Kisil, Simon Matskeplishvili, Elena Kubareva, David Kamalov, Alexander Tivtikyan, Arnaud Manel, Emmanuel Vian, and et al. 2020. "Activating Telomerase TERT Promoter Mutations and Their Application for the Detection of Bladder Cancer" International Journal of Molecular Sciences 21, no. 17: 6034. https://doi.org/10.3390/ijms21176034
APA StyleZvereva, M., Pisarev, E., Hosen, I., Kisil, O., Matskeplishvili, S., Kubareva, E., Kamalov, D., Tivtikyan, A., Manel, A., Vian, E., Kamalov, A., Ecke, T., & Calvez-Kelm, F. L. (2020). Activating Telomerase TERT Promoter Mutations and Their Application for the Detection of Bladder Cancer. International Journal of Molecular Sciences, 21(17), 6034. https://doi.org/10.3390/ijms21176034