Gestational Diabetes Type 2: Variation in High-Density Lipoproteins Composition and Function
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Study Population
2.2. Changes Observed in GDMA2 HDL Composition, APOA1 and PON1 Expression in Maternal Blood
2.3. APOA1 and PON1 Protein Expression in Placental Tissue
2.4. HDL Cell Migration in HUVEC
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Blood Samples
4.3. Placental Biopsies
4.4. APOA1 Concentration
4.5. HDL Assays and Electrophoresis
4.6. Placenta Protein Extraction
4.7. Western Blot
4.8. Cell Culture and Incubation
4.9. Cell Migration (Scratch Test)
4.10. Gelatin Zymography
4.11. Real Time Polymerase Chain Reaction (PCR)
4.12. Statistical Analyses
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- American Diabetes Association. 13. Management of Diabetes in Pregnancy: Standards of medical care in diabetes-2018. Diabetes Care 2018, 41, S137–S143. [Google Scholar] [CrossRef] [Green Version]
- Sheiner, E.; Kapur, A.; Retnakaran, R.; Hadar, E.; Poon, L.C.; McIntyre, H.D.; Divakar, H.; Staff, A.C.; Narula, J.; Kihara, A.B.; et al. FIGO (International Federation of Gynecology and Obstetrics) Postpregnancy Initiative: Long-term maternal implications of pregnancy complications-follow-up considerations. Int. J. Gynaecol. Obstet. 2019, 147, 1–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podrez, E.A. Anti-oxidant properties of high-density lipoprotein and atherosclerosis. Clin. Exp. Pharmacol. Physiol. 2010, 37, 719–725. [Google Scholar] [CrossRef] [Green Version]
- Kontush, A.; Chapman, M.J. Antiatherogenic function of HDL particle subpopulations: Focus on antioxidative activities. Curr. Opin. Lipidol. 2010, 21, 312–318. [Google Scholar] [CrossRef]
- Kontush, A.; Chapman, M.J. Lipidomics as a tool for the study of lipoprotein metabolism. Curr. Atheroscler. Rep. 2010, 12, 194–201. [Google Scholar] [CrossRef]
- Shen, Y.; Ding, F.H.; Sun, J.T.; Pu, L.J.; Zhang, R.Y.; Zhang, Q.; Chen, Q.J.; Shen, W.F.; Lu, L. Association of elevated apoA-I glycation and reduced HDL-associated paraoxonase1, 3 activity, and their interaction with angiographic severity of coronary artery disease in patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2015, 14, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seetharam, D.; Mineo, C.; Gormley, A.K.; Gibson, L.L.; Vongpatanasin, W.; Chambliss, K.L.; Hahner, L.D.; Cummings, M.L.; Kitchens, R.L.; Marcel, Y.L.; et al. High-density lipoprotein promotes endothelial cell migration and reendothelialization via scavenger receptor-B type I. Circ. Res. 2006, 98, 63–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Einbinder, Y.; Biron-Shental, T.; Agassi-Zaitler, M.; Tzadikevitch-Geffen, K.; Vaya, J.; Khatib, S.; Ohana, M.; Benchetrit, S.; Zitman-Gal, T. High-density lipoproteins (HDL) composition and function in preeclampsia. Arch. Gynecol. Obstet. 2018, 298, 405–413. [Google Scholar] [CrossRef]
- Barter, P.J.; Nicholls, S.; Rye, K.A.; Anantharamaiah, G.M.; Navab, M.; Fogelman, A.M. Antiinflammatory properties of HDL. Circ. Res. 2004, 95, 764–772. [Google Scholar] [CrossRef]
- Riwanto, M.; Landmesser, U. High density lipoproteins and endothelial functions: Mechanistic insights and alterations in cardiovascular disease. J. Lipid Res. 2013, 54, 3227–3243. [Google Scholar] [CrossRef] [Green Version]
- Kwan, B.C.; Kronenberg, F.; Beddhu, S.; Cheung, A.K. Lipoprotein metabolism and lipid management in chronic kidney disease. J. Am. Soc. Nephrol. 2007, 18, 1246–1261. [Google Scholar] [CrossRef] [PubMed]
- Mackness, M.; Mackness, B. Human paraoxonase-1 (PON1): Gene structure and expression, promiscuous activities and multiple physiological roles. Gene 2015, 567, 12–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viktorinova, A.; Jurkovicova, I.; Fabryova, L.; Kinova, S.; Koren, M.; Stecova, A.; Svitekova, K. Abnormalities in the relationship of paraoxonase 1 with HDL and apolipoprotein A1 and their possible connection to HDL dysfunctionality in type 2 diabetes. Diabetes Res. Clin. Pr. 2018, 140, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Gelisgen, R.; Genc, H.; Kayali, R.; Oncul, M.; Benian, A.; Guralp, O.; Uludag, S.; Cakatay, U.; Albayrak, M.; Uzun, H. Protein oxidation markers in women with and without gestational diabetes mellitus: A possible relation with paraoxonase activity. Diabetes Res. Clin. Pr. 2011, 94, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Camuzcuoglu, H.; Toy, H.; Cakir, H.; Celik, H.; Erel, O. Decreased paraoxonase and arylesterase activities in the pathogenesis of future atherosclerotic heart disease in women with gestational diabetes mellitus. J. Women’s Health 2009, 18, 1435–1439. [Google Scholar] [CrossRef]
- Li, H.; Yin, Q.; Li, N.; Ouyang, Z.; Zhong, M. Plasma Markers of Oxidative Stress in Patients with Gestational Diabetes Mellitus in the Second and Third Trimester. Obstet. Gynecol. Int. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sandovici, I.; Hoelle, K.; Angiolini, E.; Constancia, M. Placental adaptations to the maternal-fetal environment: Implications for fetal growth and developmental programming. Reprod. Biomed. Online 2012, 25, 68–89. [Google Scholar] [CrossRef] [Green Version]
- Sreckovic, I.; Birner-Gruenberger, R.; Besenboeck, C.; Miljkovic, M.; Stojakovic, T.; Scharnagl, H.; Marsche, G.; Lang, U.; Kotur-Stevuljevic, J.; Jelic-Ivanovic, Z.; et al. Gestational diabetes mellitus modulates neonatal high-density lipoprotein composition and its functional heterogeneity. Biochim. Biophys. Acta 2014, 1841, 1619–1627. [Google Scholar] [CrossRef]
- Timur, H.; Daglar, H.K.; Kara, O.; Kirbas, A.; Inal, H.A.; Turkmen, G.G.; Yilmaz, Z.; Elmas, B.; Uygur, D. A study of serum Apo A-1 and Apo B-100 levels in women with preeclampsia. Pregnancy Hypertens. 2016, 6, 121–125. [Google Scholar] [CrossRef]
- Melhem, H.; Kallol, S.; Huang, X.; Luthi, M.; Ontsouka, C.E.; Keogh, A.; Stroka, D.; Thormann, W.; Schneider, H.; Albrecht, C. Placental secretion of apolipoprotein A1 and E: The anti-atherogenic impact of the placenta. Sci. Rep. 2019, 9, 6225. [Google Scholar] [CrossRef]
- Eslamian, L.; Akbari, S.; Marsoosi, V.; Jamal, A. Association between fetal overgrowth and metabolic parameters in cord blood of newborns of women with GDM. Minerva Medica 2013, 104, 317–324. [Google Scholar] [PubMed]
- He, D.; Pan, B.; Ren, H.; Zheng, L. Effects of diabetic HDL on endothelial cell function. Cardiovasc. Hematol. Disord. Drug Targets 2014, 14, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Feng, S.B.; Cao, Z.W.; Bei, J.J.; Chen, Q.; Zhao, W.B.; Xu, X.J.; Zhou, Z.; Yu, Z.P.; Hu, H.Y. Up-Regulated Expression of Matrix Metalloproteinases in Endothelial Cells Mediates Platelet Microvesicle-Induced Angiogenesis. Cell. Physiol. Biochem. 2017, 41, 2319–2332. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Huang, N.F.; Hsu, S. Mechanotransduction in endothelial cell migration. J. Cell. Biochem. 2005, 96, 1110–1126. [Google Scholar] [CrossRef] [PubMed]
- Thiery, J.P.; Acloque, H.; Huang, R.Y.; Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell 2009, 139, 871–890. [Google Scholar] [CrossRef]
- Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011, 473, 298–307. [Google Scholar] [CrossRef] [Green Version]
- Coustan, D.R.; Carpenter, M.W. The diagnosis of gestational diabetes. Diabetes Care 1998, 21 (Suppl. 2), B5–B8. [Google Scholar]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S13–S28. [Google Scholar] [CrossRef] [Green Version]
- Rashid, G.; Benchetrit, S.; Fishman, D.; Bernheim, J. Effect of advanced glycation end-products on gene expression and synthesis of TNF-alpha and endothelial nitric oxide synthase by endothelial cells. Kidney Int. 2004, 66, 1099–1106. [Google Scholar] [CrossRef] [Green Version]
Characteristic | GDMA2 (N = 20) | Normal Pregnancy (N = 10) | p-Value |
---|---|---|---|
Age (years) | 33.2 ± 5.2 | 28.4 ± 6.0 | 0.38 |
Gestational age (weeks) | 37.9 ± 1.6 | 39.7 ± 1.0 | 0.001 |
Body mass index (kg/m2) | 29.8 ± 11.2 | 30.6 ± 4.4 | 0.79 |
Systolic blood pressure (mmHg) | 116.6 ± 7.2 | 116.4 ± 8.2 | 0.94 |
Diastolic blood pressure (mmHg) | 74.6 ± 9.7 | 73.0 ± 10.9 | 0.70 |
Total serum cholesterol (mg/dL) | 226.7 ± 51.8 | 249 ± 54.5 | 0.29 |
Serum triglycerides (mg/dL) | 238 ± 105.6 | 239 ± 91 | 0.99 |
Serum HDL cholesterol (mg/dL) | 61.0 ± 15.6 | 66.9 ± 12.1 | 0.28 |
Serum LDL cholesterol (mg/dL) | 125.8 ± 52.0 | 136.4 ± 45.4 | 0.61 |
Fasting glucose (mg/dL) | 94.7 ± 16.12 | 84.1 ± 9.9 | 0.06 |
APOA1 (mg/dL) | 203 ± 40 | 242 ± 33 | 0.04 |
Characteristic | GDMA2 (N = 20) | Normal Pregnancy (N = 10) | p-Value |
---|---|---|---|
Total serum cholesterol (mg/dL) | 58.3 ± 13.1 | 54.3 ± 17.0 | 0.54 |
Serum triglycerides (mg/dL) | 40.9 ± 15.2 | 41.1 ± 10.14 | 0.96 |
Serum HDL cholesterol (mg/dL) | 27.0 ± 10.1 | 24.3 ± 11.3 | 0.55 |
Serum LDL cholesterol (mg/dL) | 22.4 ± 6.2 | 21.9 ± 8.6 | 0.86 |
APOA1 (mg/dL) | 84.0 ± 12.0 | 76 ± 12 | 0.16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasternak, Y.; Biron-Shental, T.; Ohana, M.; Einbinder, Y.; Arbib, N.; Benchetrit, S.; Zitman-Gal, T. Gestational Diabetes Type 2: Variation in High-Density Lipoproteins Composition and Function. Int. J. Mol. Sci. 2020, 21, 6281. https://doi.org/10.3390/ijms21176281
Pasternak Y, Biron-Shental T, Ohana M, Einbinder Y, Arbib N, Benchetrit S, Zitman-Gal T. Gestational Diabetes Type 2: Variation in High-Density Lipoproteins Composition and Function. International Journal of Molecular Sciences. 2020; 21(17):6281. https://doi.org/10.3390/ijms21176281
Chicago/Turabian StylePasternak, Yael, Tal Biron-Shental, Meital Ohana, Yael Einbinder, Nissim Arbib, Sydney Benchetrit, and Tali Zitman-Gal. 2020. "Gestational Diabetes Type 2: Variation in High-Density Lipoproteins Composition and Function" International Journal of Molecular Sciences 21, no. 17: 6281. https://doi.org/10.3390/ijms21176281