The Role of Tryptophan Metabolites in Musculoskeletal Stem Cell Aging
Abstract
:1. Introduction
2. Kynurenine Impacts MSCs and Causes Age-Related Bone Loss
2.1. Kynurenic Acid Antagonizes NMDA Receptors Found on Osteoclasts
2.2. 3-Hydroxykynurenine Increases Oxidative Stress and Leads to Cytotoxic Effects
2.3. The 3-Hydroxyanthranilic Acid to Anthranilic Acid Ratio
3. Xanthurenic Acid Induces Cell Apoptosis
3.1. Picolinic Acid Increases Bone Marrow Adiposity
3.2. Quinolinic Acid Is a Neurotoxin Related to Neurodegenerative Diseases
3.3. Nicotinamide Adenine Dinucleotide (NAD+) Decline Is Related to the Appearance of Age-Related Diseases
3.4. The Dual Role of Serotonin in Bone Homeostasis
3.5. The Use of Melatonin as an Osteogenic Therapy
4. Summary
5. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3HKYN | 3-hydroxykynurenine |
KYNA | kynurenic acid |
AA | anthranilic acid |
BMD | bone mineral density |
XA | xanthurenic acid |
PIA | picolinic acid |
QA | quinolinic acid |
TDO | trypophan 2,3-dioxygenase |
MSC | mesenchymal stem cell |
BM | bone marrow |
HSC | hematopoietic stem cell |
ROS | reactive oxygen species |
BMSC | bone marrow stromal cell |
Kyn | kynurenine |
Trp | tryptophan |
IDO | indoleamine 2,3-dioxygenase |
BV | bone volume |
TV | total volume |
TPH | tryptophan hydroxylase |
KAT | kynurenine aminotransferase |
KMO | kynurenine monooxygenase |
ACMS | 2-amino-3-carboxymuconate-6-semialdehyde |
ACMSD | 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase |
3-HAO | 3-hydroxyanthanilate oxidase |
QPRT | quinolinate phosphoribosyl transferase |
CNS | central nervous system |
AD | Alzheimer’s Disease; Huntington’s Disease |
HD; 3HAA | 3-hydroxyanthranilic acid |
OCN | osteocalcin |
ALS | amyotrophic lateral sclerosis |
NAD | nicotinamide adenine dinucleotide |
MuSC | muscle stem cell |
SE | serotonin |
BDS | Brain-derived serotonin |
GDS | gut-derived serotonin |
VMH | ventromedial nucleus of hypothalamus |
ME | melatonin |
ERS | endoplasmic reticulum stress |
References
- He, W.; Goodkind, D.; Kowal, P. An Aging World: 2015. International Population Reports; P95-16-1, 3-11; United States Census Bureau: Suitland, MD, USA, 2016.
- Wright, N.C.; Looker, A.C.; Saag, K.G.; Curtis, J.R.; Delzell, E.S.; Randall, S.; Dawson-Hughes, B. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J. Bone Miner. Res. 2014, 29, 2520–2526. [Google Scholar] [CrossRef] [Green Version]
- Sozen, T.; Ozisik, L.; Başaran, N.C.; Özışık, L. An overview and management of osteoporosis. Eur. J. Rheumatol. 2017, 4, 46–56. [Google Scholar] [CrossRef]
- Bonafede, M.; Espindle, D.; Bower, A.G. The direct and indirect costs of long bone fractures in a working age US population. J. Med Econ. 2012, 16, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Charbord, P. Bone marrow mesenchymal stem cells: Historical overview and concepts. Hum. Gene Ther. 2010, 21, 1045–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohyeldin, A.; Garzon-Muvdi, T.; Quiñones-Hinojosa, A. Oxygen in stem cell biology: A critical component of the stem cell niche. Cell Stem Cell 2010, 7, 150–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suda, T.; Takubo, K.; Semenza, G.L. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 2011, 9, 298–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanovic, Z.; Bartolozzi, B.; Bernabei, P.A.; Cipolleschi, M.G.; Rovida, E.; Milenkovic, P.; Praloran, V.; Dello Sbarba, P. Incubation of murine bone marrow cells in hypoxia ensures the maintenance of marrow-repopulating ability together with the expansion of committed progenitors. Br. J. Haematol. 2000, 108, 424–429. [Google Scholar] [CrossRef]
- Chen, F.; Liu, Y.; Wong, N.K.; Xiao, J.; So, K.F. Oxidative stress in stem cell aging. Cell Transplant. 2017, 26, 1483–1495. [Google Scholar] [CrossRef]
- Atashi, F.; Modarressi, A.; Pepper, M.S. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: A review. Stem Cells Dev. 2015, 24, 1150–1163. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, Z.; Zhang, Y.; Yang, H. IL-6 contributes to the defective osteogenesis of bone marrow stromal cells from the vertebral body of the glucocorticoid-induced osteoporotic Mouse. PLoS ONE 2016, 11, e0154677. [Google Scholar] [CrossRef] [Green Version]
- Ding, K.; Cain, M.; Davis, M.; Bergson, C.; McGee-Lawrence, M.; Perkins, C.; Hardigan, T.; Shi, X.; Zhong, Q.; Xu, J.; et al. Amino acids as signaling molecules modulating bone turnover. Bone 2018, 115, 15–24. [Google Scholar] [CrossRef] [PubMed]
- El Refaey, M.; Zhong, Q.; Hill, W.D.; Shi, X.-M.; Hamrick, M.W.; Bailey, L.; Johnson, M.; Xu, J.; Bollag, W.B.; Chutkan, N.; et al. Aromatic amino acid activation of signaling pathways in bone marrow mesenchymal stem cells depends on oxygen tension. PLoS ONE 2014, 9, e91108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorgdrager, F.J.H.; Naudé, P.J.W.; Kema, I.P.; Nollen, E.A.; De Deyn, P.P. Tryptophan metabolism in inflammaging: From biomarker to therapeutic target. Front. Immunol. 2019, 10, 2565. [Google Scholar] [CrossRef] [PubMed]
- Caballero, B.; Gleason, R.E.; Wurtman, R.J. Plasma amino acid concentrations in healthy elderly men and women. Am. J. Clin. Nutr. 1991, 53, 1249–1252. [Google Scholar] [CrossRef]
- Kim, B.; Hamrick, M.W.; Yoo, H.J.; Lee, S.H.; Kim, S.J.; Koh, J.-M.; Isales, C. The detrimental effects of kynurenine, a tryptophan metabolite, on human bone metabolism. J. Clin. Endocrinol. Metab. 2019, 104, 2334–2342. [Google Scholar] [CrossRef]
- Ma, S.; Yim, S.H.; Lee, S.; Kim, E.B.; Lee, S.-R.; Chang, K.-T.; Buffenstein, R.; Lewis, K.N.; Park, T.J.; Miller, R.A.; et al. Organization of the mammalian metabolome according to organ function, lineage specialization, and longevity. Cell Metab. 2015, 22, 332–343. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Ou, G.; Hamrick, M.; Hill, W.; Borke, J.; Wenger, K.; Chutkan, N.; Yu, J.; Mi, Q.-S.; Isales, C.M.; et al. Age-related changes in the osteogenic differentiation potential of mouse bone marrow stromal cells. J. Bone Miner. Res. 2008, 23, 1118–1128. [Google Scholar] [CrossRef] [Green Version]
- El Refaey, M.; McGee-Lawrence, M.E.; Fulzele, S.; Kennedy, E.J.; Bollag, W.B.; Elsalanty, M.; Zhong, Q.; Ding, K.-H.; Bendzunas, N.G.; Shi, X.-M.; et al. Kynurenine, a tryptophan metabolite that accumulates with age, induces bone loss. J. Bone Miner. Res. 2017, 32, 2182–2193. [Google Scholar] [CrossRef]
- Yeung, A.W.; Terentis, A.C.; King, N.J.; Thomas, S.R. Role of indoleamine 2,3-dioxygenase in health and disease. Clin. Sci. 2015, 129, 601–672. [Google Scholar] [CrossRef]
- Mailankot, M.; Nagaraj, R.H. Induction of indoleamine 2,3-dioxygenase by interferon-gamma in human lens epithelial cells: Apoptosis through the formation of 3-hydroxykynurenine. Int. J. Biochem. Cell Boil. 2010, 42, 1446–1454. [Google Scholar] [CrossRef] [Green Version]
- McGee-Lawrence, M.E.; Carpio, L.R.; Schulze, R.J.; Pierce, J.L.; McNiven, M.A.; Farr, J.N.; Khosla, S.; Oursler, M.J.; Westendorf, J.J. Hdac3 deficiency increases marrow adiposity and induces lipid storage and glucocorticoid metabolism in osteochondroprogenitor cells. J. Bone Miner. Res. 2015, 31, 116–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalton, S.; Smith, K.; Singh, K.; Kaiser, H.; Kolhe, R.; Mondal, A.K.; Khayrullin, A.; Isales, C.M.; Hamrick, M.W.; Hill, W.D.; et al. Accumulation of kynurenine elevates oxidative stress and alters microRNA profile in human bone marrow stromal cells. Exp. Gerontol. 2020, 130, 110800. [Google Scholar] [CrossRef] [PubMed]
- Kondrikov, D.; Elmansi, A.; Bragg, R.T.; Mobley, T.; Barrett, T.; Eisa, N.; Kondrikova, G.; Schoeinlein, P.; Aguilar-Perez, A.; Shi, X.-M.; et al. Kynurenine inhibits autophagy and promotes senescence in aged bone marrow mesenchymal stem cells through the aryl hydrocarbon receptor pathway. Exp. Gerontol. 2020, 130, 110805. [Google Scholar] [CrossRef] [PubMed]
- Elmansi, A.M.; Hussein, K.A.; Herrero, S.M.; Periyasamy-Thandavan, S.; Aguilar-Pérez, A.; Kondrikova, G.; Kondrikov, D.; Eisa, N.H.; Pierce, J.L.; Kaiser, H.; et al. Age-related increase of kynurenine enhances miR29b-1-5p to decrease both CXCL12 signaling and the epigenetic enzyme Hdac3 in bone marrow stromal ells. Bone Rep. 2020, 12, 100270. [Google Scholar] [CrossRef]
- Majláth, Z.; Török, N.; Toldi, J.; Vécsei, L. Memantine and kynurenic acid: Current neuropharmacological aspects. Curr. Neuropharmacol. 2016, 14, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Moroni, F.; Russi, P.; Carlá, V.; Lombardi, G. Kynurenic acid is present in the rat brain and its content increases during development and aging processes. Neurosci. Lett. 1988, 94, 145–150. [Google Scholar] [CrossRef]
- Chenu, C.; Serre, C.; Raynal, C.; Burt-Pichat, B.; Delmas, P. Glutamate receptors are expressed by bone cells and are involved in bone resorption. Bone 1998, 22, 295–299. [Google Scholar] [CrossRef]
- Isales, C.; Ding, K.; Bollag, W. Kynurenic acid a tryptophan metabolite induces bone loss in mice. Innov. Aging 2018, 2, 100–101. [Google Scholar] [CrossRef]
- Stone, T.W.; Stoy, N.; Darlington, L.G. An expanding range of targets for kynurenine metabolites of tryptophan. Trends Pharmacol. Sci. 2012, 34, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Okuda, S.; Nishiyama, N.; Saito, H.; Katsuki, H. Hydrogen peroxide-mediated neuronal cell death induced by an endogenous neurotoxin, 3-hydroxykynurenine. Proc. Natl. Acad. Sci. USA 1996, 93, 12553–12558. [Google Scholar] [CrossRef] [Green Version]
- Guidetti, P.; Bates, G.P.; Graham, R.K.; Hayden, M.R.; Leavitt, B.R.; Macdonald, M.E.; Slow, E.J.; Wheeler, V.C.; Woodman, B.; Schwarcz, R. Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington disease mice. Neurobiol. Dis. 2006, 23, 190–197. [Google Scholar] [CrossRef]
- Korlimbinis, A.; Truscott, R.J.W. Identification of 3-hydroxykynurenine bound to proteins in the human Lens. A possible role in age-related nuclear cataract. Biochemistry 2006, 45, 1950–1960. [Google Scholar] [CrossRef]
- Fatokun, A.A.; Stone, T.W.; Smith, R.A. Responses of differentiated MC3T3-E1 osteoblast-like cells to reactive oxygen species. Eur. J. Pharmacol. 2008, 587, 35–41. [Google Scholar] [CrossRef]
- Apalset, E.M.; Gjesdal, C.G.; Ueland, P.M.; Øyen, J.; Meyer, K.; Midttun, Ø.; Eide, G.E.; Tell, G.S. Interferon gamma (IFN-γ)-mediated inflammation and the kynurenine pathway in relation to risk of hip fractures: The Hordaland Health Study. Osteoporos Int. 2014, 25, 2067–2075. [Google Scholar] [CrossRef]
- Hertenstein, A.; Schumacher, T.; Litzenburger, U.; Opitz, C.A.; Falk, C.S.; Serafini, T.; Wick, W.; Platten, M. Suppression of human CD4+ T cell activation by 3,4-dimethoxycinnamonyl-anthranilic acid (tranilast) is mediated by CXCL9 and CXCL10. Biochem. Pharmacol. 2011, 82, 632–641. [Google Scholar] [CrossRef] [Green Version]
- Inglis, J.J.; Criado, G.; Andrews, M.; Feldmann, M.; Williams, R.O. The anti-allergic drug, N-(3′,4′-dimethoxycinnamonyl) anthranilic acid, exhibits potent anti-inflammatory and analgesic properties in arthritis. Rheumatology 2007, 46, 1428–1432. [Google Scholar] [CrossRef] [Green Version]
- Pérez-González, A.; Alvarez-Idaboy, J.; Galano, A. Dual antioxidant/pro-oxidant behavior of the tryptophan metabolite 3-hydroxyanthranilic acid: A theoretical investigation of reaction mechanisms and kinetics. New J. Chem. 2017, 41, 3829–3845. [Google Scholar] [CrossRef]
- Dykens, J.; Sullivan, S.G.; Stern, A. Oxidative reactivity of the tryptophan metabolites 3-hydroxyanthranilate, cinnabarinate, quinolinate and picolinate. Biochem. Pharmacol. 1987, 36, 211–217. [Google Scholar] [CrossRef]
- Meek, A.R.; Simms, G.A.; Weaver, D.F. Searching for an endogenous anti-Alzheimer molecule: Identifying small molecules in the brain that slow alzheimer disease progression by inhibition of ß-amyloid aggregation. J. Psychiatr. Neurosci. 2013, 38, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Darlington, L.G.; Forrest, C.M.; Mackay, G.M.; Smith, R.A.; Smith, A.J.; Stoy, N.; Stone, T.W. On the biological importance of the 3-hydroxyanthranilic Acid: Anthranilic acid ratio. Int. J. Tryptophan Res. 2010, 3. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Ogbechi, J.; Clanchy, F.; Williams, R.O.; Stone, T.W. IDO and kynurenine metabolites in peripheral and CNS disorders. Front. Immunol. 2020, 20, 388. [Google Scholar] [CrossRef] [Green Version]
- Apalset, E.M.; Gjesdal, C.G.; Ueland, P.M.; Midttun, Ø.; Ulvik, A.; Eide, G.E.; Meyer, K.; Tell, G.S. Interferon (IFN)-γ-mediated inflammation and the kynurenine pathway in relation to bone mineral density: The Hordaland Health Study. Clin. Exp. Immunol. 2014, 176, 452–460. [Google Scholar] [CrossRef] [Green Version]
- Malina, H.Z.; Richter, C.; Mehl, M.; Hess, O.M. Pathological apoptosis by xanthurenic acid, a tryptophan metabolite: Activation of cell caspases but not cytoskeleton breakdown. BMC Physiol. 2001, 1, 7. [Google Scholar] [CrossRef]
- Malina, H.Z.; Hess, O.M. Xanthurenic acid translocates proapoptotic Bcl-2 family proteins into mitochondria and impairs mitochondrial function. BMC Biol. 2004, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Malina, H.Z.; Richter, C.; Eppstein, B.F.; Hess, O.M. Lens epithelial cell apoptosis and intracellular Ca2+ increase in the presence of xanthurenic acid. BMC Opthalmol. 2002, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Grant, R.S.; Coggan, S.E.; Smythe, G.A. The physiological action of picolinic acid in the human brain. Int. J. Tryptophan Res. 2009, 2, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Cockhill, J.; Jhamandas, K.; Boegman, R.J.; Beninger, R. Action of picolinic acid and structurally related pyridine carboxylic acids on quinolinic acid-induced cortical cholinergic damage. Brain Res. J. 1992, 599, 57–63. [Google Scholar] [CrossRef]
- Beninger, R.J.; Colton, A.M.; Ingles, J.L.; Jhamandas, K.; Boegman, R.J. Picolinic acid blocks the neurotoxic but not the neuroexcitant properties of quinolinic acid in the rat brain: Evidence from turning behavior and tyrosine hydroxylase immunohistochemistry. Neuroscience 1994, 61, 603–612. [Google Scholar] [CrossRef]
- Vidal, C.; Li, W.; Santner-Nanan, B.; Lim, C.K.; Guillemin, G.J.; Ball, H.J.; Hunt, N.H.; Nanan, R.; Duque, G. The kynurenine pathway of tryptophan degradation is activated during osteoblastogenesis. Stem Cell. 2014, 33, 111–121. [Google Scholar] [CrossRef]
- Ding, K.; McGee-Lawrence, M.E.; Kaiser, H.; Sharma, A.K.; Pierce, J.L.; Irsik, D.L.; Bollag, W.B.; Xu, J.; Zhong, Q.; Hill, W.; et al. Picolinic acid, a tryptophan oxidation product, does not impact bone mineral density but increases marrow adiposity. Exp. Gerontol. 2020, 133, 110885. [Google Scholar] [CrossRef]
- Jhamandas, K.H.; Boegman, R.J.; Beninger, R.J.; Miranda, A.F.; Lipic, K.A. Excitotoxicity of quinolinic acid: Modulation by endogenous antagonists. Neurotox. Res. 2000, 2, 139–155. [Google Scholar] [CrossRef]
- De Bie, J.; Guest, J.; Guillemin, G.J.; Grant, R.; Bie, J. Central kynurenine pathway shift with age in women. J. Neurochem. 2015, 136, 995–1003. [Google Scholar] [CrossRef] [Green Version]
- Moroni, F.; Lombardi, G.; Moneti, G.; Aldinio, C. The excitotoxin quinolinic acid is present in the brain of several mammals and its cortical content increases during the aging process. Neurosci. Lett. 1984, 47, 51–55. [Google Scholar] [CrossRef]
- Tan, L.; Yu, J. The kynurenine pathway in neurodegenerative diseases: Mechanistic and therapeutic considerations. J. Neurol. Sci. 2012, 323, 1–8. [Google Scholar] [CrossRef]
- Braidy, N.; Berg, J.; Clement, J.; Khorshidi, F.; Poljak, A.; Jayasena, T.; Grant, R.; Sachdev, P.S. Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: Rationale, biochemistry, pharmacokinetics, and outcomes. Antioxid Redox Signal. 2019, 30, 251–294. [Google Scholar] [CrossRef]
- Schultz, M.B.; Sinclair, D.A. Why NAD+ Declines during aging: It’s destroyed. Cell Metab. 2017, 23, 965–966. [Google Scholar] [CrossRef] [Green Version]
- McReynolds, M.R.; Chellappa, K.; Baur, J. Age-related NAD+decline. Exp. Gerontol. 2020, 134, 110888. [Google Scholar] [CrossRef]
- Johnson, S.; Imai, S. NAD+ biosynthesis, aging, and disease. F1000Research 2018, 7, 132. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, J.; Zaidi, M. Extracellular NAD+ metabolism modulates osteoclastogenesis. Biochem. Biophys. Res. Commun. 2014, 349, 533–539. [Google Scholar] [CrossRef] [Green Version]
- Aman, Y.; Qiu, Y.; Tao, J.; Fang, E.F. Therapeutic potential of boosting NAD+ in aging and age-related diseases. Transl. Med. Aging 2018, 2, 30–37. [Google Scholar] [CrossRef]
- Zhang, H.; Ryu, D.; Wu, Y.; Gariani, K.; Wang, X.; Luan, P.; Damico, D.; Ropelle, E.R.; Lutolf, M.P.; Aebersold, R.; et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 2016, 352, 1436–1443. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.H.; Wang, H.; Denou, E.; Ghia, J.-E.; Rossi, L.; Fontes, M.E.; Bernier, S.P.; Shajib, S.; Banskota, S.; Collins, S.M.; et al. Modulation of gut microbiota composition by serotonin signaling influences intestinal immune response and susceptibility to colitis. Cell Mol. Gastroenterol. Hepatol. 2019, 7, 709–728. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.D.; Pontrello, C.; Burke, S. Robust and tissue-specific expression of tph2 versus tph1 in rat raphe and pineal gland. Biol. Psychiatr. 2004, 55, 428–433. [Google Scholar] [CrossRef]
- Meltzer, C.C.; Smith, G.; DeKosky, S.T.; Pollock, B.G.; Mathis, C.A.; Moore, R.Y.; Kupfer, D.J.; Reynoldsiii, C.F. Serotonin in aging, late-life depression, and Alzheimer’s Disease: The emerging role of functional imaging. Neuropsychopharmacology 1998, 18, 407–430. [Google Scholar] [CrossRef] [Green Version]
- Yano, J.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the mut Microbiota regulate host serotonin biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef] [Green Version]
- Yadav, V.K.; Oury, F.; Suda, N.; Liu, Z.-W.; Gao, X.-B.; Confavreux, C.; Klemenhagen, K.C.; Tanaka, K.F.; Gingrich, J.A.; Guo, X.E.; et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 2009, 138, 976–989. [Google Scholar] [CrossRef] [Green Version]
- Irani, B.G.; Le Foll, C.; Dunn-Meynell, A.; Levin, B.E. Effects of leptin on rat ventromedial hypothalamic neurons. Endocrinology 2008, 149, 5146–5154. [Google Scholar] [CrossRef]
- Takeda, S.; Karsenty, G. Central control of bone formation. J. Bone Miner Metab. 2001, 19, 195–198. [Google Scholar] [CrossRef]
- Pawlak, D.; Oksztulska-Kolanek, E.; Znorko, B.; Domaniewski, T.; Rogalska, J.; Roszczenko, A.; Brzoska, M.M.; Pryczynicz, A.; Kemona, A.; Pawlak, K. The Association between Elevated Levels of Peripheral Serotonin and Its Metabolite—5-Hydroxyindoleacetic Acid and Bone Strength and Metabolism in Growing Rats with Mild Experimental Chronic Kidney Disease. PLoS ONE 2016, 11, e0163526. [Google Scholar] [CrossRef]
- Mor, A.; Pawlak, K.; Kalaska, B.; Domaniewski, T.; Sieklucka, B.; Zieminska, M.; Cylwik, B.; Pawlak, D. Modulation of the paracrine kynurenic system in bone as a new regulator of osteoblastogenesis and bone mineral status in an animal model of chronic kidney disease treated with LP533401. Int. J. Mol. Sci. 2020, 21, 5979. [Google Scholar] [CrossRef]
- Kalaska, B.; Pawlak, K.; Domaniewski, T.; Oksztulska-Kolanek, E.; Znorko, B.; Roszczenko, A.; Rogalska, J.; Brzoska, M.M.; Lipowicz, P.; Doroszko, M.; et al. Elevated levels of peripheral kynurenine decrease bone strength in rats with chronic kidney disease. Front. Physiol. 2017, 8, 836. [Google Scholar] [CrossRef] [Green Version]
- Kalaska, B.; Pawlak, K.; Oksztulska-Kolanek, E.; Domaniewski, T.; Znorko, B.; Karbowska, M.; Citkowska, A.; Rogalska, J.; Roszczenko, A.; Brzoska, M.M.; et al. A link between central kynurenine metabolism and bone strength in rats with chronic kidney disease. Peer J. 2017, 5, e3199. [Google Scholar] [CrossRef] [Green Version]
- Ducy, P.; Karsenty, G. The two faces of serotonin in bone biology. J. Cell Biol. 2010, 191, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Yadav, V.K.; Ducy, P. Lrp5 and bone formation. Ann. N. Y. Acad. Sci. 2010, 1192, 103–109. [Google Scholar] [CrossRef]
- Yadav, V.K.; Ryu, J.; Suda, N.; Tanaka, K.F.; Gingrich, J.A.; Schütz, G.; Glorieux, F.H.; Chiang, C.Y.; Zajac, J.D.; Insogna, K.; et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in duodenum. Cell 2008, 135, 825–837. [Google Scholar] [CrossRef] [Green Version]
- Yadav, V.K.; Arantes, H.P.; Barros, E.R.; Lazaretti-Castro, M.; Ducy, P. Genetic analysis of Lrp5 function in osteoblast progenitors. Calcif. Tissue Int. 2010, 86, 382–388. [Google Scholar] [CrossRef]
- Kode, A.; Mosialou, I.; Silva, B.C.; Rached, M.; Zhou, B.; Wang, J.; Townes, T.M.; Hen, R.; Depinho, R.A.; Guo, X.E.; et al. FOXO1 orchestrates the bone-suppressing function of gut-derived serotonin. J. Clin. Investig. 2012, 122, 3490–3503. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.M. Light, melatonin and the sleep-wake cycle. J. Psychiatr. Neurosci. 1994, 19, 345–353. [Google Scholar]
- Chen, C.Q.; Fichna, J.; Bashashati, M.; Li, Y.-Y.; Storr, M. Distribution, function and physiological role of melatonin in the lower gut. World J. Gastroenterol. 2011, 17, 3888–3898. [Google Scholar] [CrossRef]
- Karasek, M. Melatonin, human aging, and age-related diseases. Exp. Gerontol. 2004, 39, 1723–1729. [Google Scholar] [CrossRef]
- Fang, J.; Yan, Y.; Teng, X.; Wen, X.; Li, N.; Peng, S.; Liu, W.; Donadeu, F.X.; Zhao, S.; Hua, J. Melatonin prevents senescence of canine adipose-derived mesenchymal stem cells through activating NRF2 and inhibiting ER stress. Aging 2018, 10, 2954–2972. [Google Scholar] [CrossRef]
- Lee, J.H.; Yoon, Y.; Han, Y.S.; Jung, S.K.; Lee, S.H. Melatonin protects mesenchymal stem cells from autophagy-mediated death under ischaemic ER-stress conditions by increasing prion protein expression. Cell Prolif. 2018, 52, e12545. [Google Scholar] [CrossRef] [Green Version]
- Kotlarczyk, M.P.; Lassila, H.C.; O’Neill, C.K.; D’Amico, F.; Enderby, L.T.; Witt-Enderby, P.A.; Balk, J.L. Melatonin osteoporosis prevention study (MOPS): A randomized, double-blind, placebo-controlled study examining the effects of melatonin on bone health and quality of life in perimenopausal women. J. Pineal. Res. 2013, 52, 414–426. [Google Scholar] [CrossRef]
- Bao, T.; Zeng, L.; Yang, K.; Li, Y.; Ren, F.; Zhang, Y.; Gao, Z. Can Melatonin improve the osteopenia of perimenopausal and postmenopausal women? A meta-analysis. Int. J. Clin. Endocrinol. 2019, 2019, 5151678. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Su, P.; Xu, C.; Chen, C.; Liang, A.; Du, K.; Peng, Y.; Huang, D. Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARγ expression and enhancing Runx2 expression. J. Pineal. Res. 2010, 49, 364–372. [Google Scholar] [CrossRef]
- Maria, S.; Samsonraj, R.M.; Munmun, F.; Glas, J.; Silvestros, M.; Kotlarczyk, M.P.; Rylands, R.; Dudakovic, A.; Van Wijnen, A.J.; Enderby, L.T.; et al. Biological effects of melatonin on osteoblast/osteoclast cocultures, bone, and quality of life: Implications of a role for MT2 melatonin receptors, MEK1/2, and MEK5 in melatonin-mediated osteoblastogenesis. J. Pineal Res. 2018, 64, e12465. [Google Scholar] [CrossRef]
- Castro-Portuguez, R.; Sutphin, G.L. Kynurenine pathway, NAD(+) synthesis, and mitochondrial mitochondrial dysfunction: Targeting tryptophan metabolism to promote longevity and healthspan. Exp. Gerontol. 2020, 132, 110841. [Google Scholar] [CrossRef]
- Zhai, L.; Bell, A.; Ladomersky, E.; Lauing, K.L.; Bollu, L.; Sosman, J.A.; Zhang, B.; Wu, J.D.; Miller, S.D.; Meeks, J.J.; et al. Immunosuppresive IDO in cancer: Mechanisms of action, animal models, and targeting strategies. Front. Immunol. 2020, 11, 1185. [Google Scholar] [CrossRef]
Tryptophan Metabolites | Oxidative Stress | BM Adiposity | BMD | BV/TV | Osteogenesis | Osteoclastogenesis |
---|---|---|---|---|---|---|
1. Kyn | 🠕 | 🠕 | 🠗 | 🠗 | 🠗 | 🠕 |
2. KYNA | 🠗 | |||||
3. 3HKYN | 🠕 | 🠗 | ||||
5. 3HAA | 🠕 | |||||
6. XA | 🠕 | |||||
7. PIA | 🠕 | 🠕 | ||||
8. QA | 🠕 | |||||
9. NAD+ | 🠗 | 🠕 | * | |||
10. GDS | 🠗 | 🠗 | 🠕 | |||
11. BDS | 🠕 | 🠕 | 🠗 | |||
12. ME | 🠗 | 🠗 | 🠕 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anaya, J.M.; Bollag, W.B.; Hamrick, M.W.; Isales, C.M. The Role of Tryptophan Metabolites in Musculoskeletal Stem Cell Aging. Int. J. Mol. Sci. 2020, 21, 6670. https://doi.org/10.3390/ijms21186670
Anaya JM, Bollag WB, Hamrick MW, Isales CM. The Role of Tryptophan Metabolites in Musculoskeletal Stem Cell Aging. International Journal of Molecular Sciences. 2020; 21(18):6670. https://doi.org/10.3390/ijms21186670
Chicago/Turabian StyleAnaya, Jordan Marcano, Wendy B. Bollag, Mark W. Hamrick, and Carlos M. Isales. 2020. "The Role of Tryptophan Metabolites in Musculoskeletal Stem Cell Aging" International Journal of Molecular Sciences 21, no. 18: 6670. https://doi.org/10.3390/ijms21186670
APA StyleAnaya, J. M., Bollag, W. B., Hamrick, M. W., & Isales, C. M. (2020). The Role of Tryptophan Metabolites in Musculoskeletal Stem Cell Aging. International Journal of Molecular Sciences, 21(18), 6670. https://doi.org/10.3390/ijms21186670