Pharmacogenetics of Type 2 Diabetes—Progress and Prospects
Abstract
:1. Introduction
2. Pharmacogenetic Studies in Type 2 Diabetes
3. Genes Associated with Metformin Response
3.1. SLC22A1
3.2. SLC22A2
3.3. SLC47A1
3.4. SLC47A2
3.5. Other Genes Associated with Metformin Response
4. Genes Associated with Sulfonylurea/Meglitinides Response
4.1. ABCC8
4.2. KCNJ11
4.3. CYP2C9
4.4. NOS1AP
4.5. TCF7L2
4.6. Other Genes Associated with Sulfonylurea/Meglitinides Response
5. Genes Associated with DPP4-inhibitors and GLP1 Receptor Agonists Response
5.1. GLP1R
5.2. TCF7L2
5.3. DPP4
5.4. KCNQ1
5.5. Other Genes Associated with DPP4-Inhibitors and GLP1 Receptor Agonists Response
6. Genes Associated with SGLT-2 Inhibitors Response
7. Discussion
8. Methods
Author Contributions
Funding
Conflicts of Interest
Abbreviations
T2D | Type 2 diabetes mellitus |
HbA1c | Glycated hemoglobin |
GWAS | Genome wide association studies |
NGS | Next generation sequencing |
AMPK | 5′ Adenosine monophosphate-activated protein kinase |
DPP4I | Inhibitors of dipeptidyl peptidase 4 |
GLP1RA | Glucagon-like peptide-1 receptor agonists |
References
- Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Mannino, G.C.; Andreozzi, F.; Sesti, G. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes Metab. Res. Rev. 2019, 35, e3109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Usman, K.; Banerjee, M. Pharmacogenetic studies update in type 2 diabetes mellitus. World J. Diabetes 2016, 7, 302–315. [Google Scholar] [CrossRef]
- Rich, S.S. Mapping genes in diabetes. Genetic epidemiological perspective. Diabetes 1990, 39, 1315–1319. [Google Scholar] [CrossRef] [PubMed]
- Sladek, R.; Rocheleau, G.; Rung, J.; Dina, C.; Shen, L.; Serre, D.; Boutin, P.; Vincent, D.; Belisle, A.; Hadjadj, S.; et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445, 881–885. [Google Scholar] [CrossRef]
- Zeggini, E.; Scott, L.J.; Saxena, R.; Voight, B.F.; Marchini, J.L.; Hu, T.; de Bakker, P.I.W.; Abecasis, G.R.; Almgren, P.; Andersen, G.; et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 2008, 40, 638–645. [Google Scholar] [CrossRef]
- Marchini, J.; Howie, B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 2010, 11, 499–511. [Google Scholar] [CrossRef]
- Barbitoff, Y.A.; Serebryakova, E.A.; Nasykhova, Y.A.; Predeus, A.V.; Polev, D.E.; Shuvalova, A.R.; Vasiliev, E.V.; Urazov, S.P.; Sarana, A.M.; Scherbak, S.G.; et al. Identification of novel candidate markers of type 2 diabetes and obesity in Russia by exome sequencing with a limited sample size. Genes 2018, 9, 415. [Google Scholar] [CrossRef] [Green Version]
- Nasykhova, Y.A.; Barbitoff, Y.A.; Serebryakova, E.A.; Katserov, D.S.; Glotov, A.S. Recent advances and perspectives in next generation sequencing application to the genetic research of type 2 diabetes. World J. Diabetes 2019, 10, 376–395. [Google Scholar] [CrossRef]
- Langenberg, C.; Lotta, L.A. Genomic insights into the causes of type 2 diabetes. Lancet 2018, 391, 2463–2474. [Google Scholar] [CrossRef]
- Aneesh, T.P.; Sonal Sekhar, M.; Jose, A.; Chandran, L.; Zachariah, S.M. Pharmacogenomics: The right drug to the right person. J. Clin. Med. Res. 2009, 1, 191–194. [Google Scholar] [CrossRef] [Green Version]
- Dodds, S. The How-To for Type 2: An Overview of Diagnosis and Management of Type 2 Diabetes Mellitus. Nurs. Clin. N. Am. 2017, 52, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Buse, J.B.; Wexler, D.J.; Tsapas, A.; Rossing, P.; Mingrone, G.; Mathieu, C.; D’Alessio, D.A.; Davies, M.J. 2019 update to: Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2020, 43, 487–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foretz, M.; Guigas, B.; Viollet, B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2019, 15, 569–589. [Google Scholar] [CrossRef] [Green Version]
- Pernicova, I.; Korbonits, M. Metformin--mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 2014, 10, 143–156. [Google Scholar] [CrossRef]
- Raj, G.M.; Mathaiyan, J.; Wyawahare, M.; Priyadarshini, R. Lack of effect of the SLC47A1 and SLC47A2 gene polymorphisms on the glycemic response to metformin in type 2 diabetes mellitus patients. Drug Metab. Pers. Ther. 2018, 33, 175–185. [Google Scholar] [CrossRef]
- Florez, J.C. Does metformin work for everyone? A genome-wide association study for metformin response. Curr. Diab. Rep. 2011, 11, 467–469. [Google Scholar] [CrossRef]
- Haupt, E.; Knick, B.; Koschinsky, T.; Liebermeister, H.; Schneider, J.; Hirche, H. Oral antidiabetic combination therapy with sulphonylureas and metformin. Diabete et Metabolisme 1991, 17, 224–231. [Google Scholar]
- DeFronzo, R.A. Pharmacologic therapy for type 2 diabetes mellitus. Ann. Intern. Med. 1999, 131, 281–303. [Google Scholar] [CrossRef]
- Zhou, K.; Bellenguez, C.; Spencer, C.C.A.; Bennett, A.J.; Coleman, R.L.; Tavendale, R.; Hawley, S.A.; Donnelly, L.A.; Schofield, C.; Groves, C.J.; et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat. Genet. 2011, 43, 117–120. [Google Scholar] [CrossRef]
- Van Leeuwen, N.; Nijpels, G.; Becker, M.L.; Deshmukh, H.; Zhou, K.; Stricker, B.H.C.; Uitterlinden, A.G.; Hofman, A.; Van ’T Riet, E.; Palmer, C.N.A.; et al. A gene variant near ATM is significantly associated with metformin treatment response In type 2 diabetes: A replication and meta-analysis of five cohorts. Diabetologia 2012, 55, 1971–1977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Guo, Y.; Ye, W.; Wang, Y.; Li, X.; Tian, Y.; Liu, Z.; Li, S.; Yan, J. RS11212617 is associated with metformin treatment response in type 2 diabetes in Shanghai local Chinese population. Int. J. Clin. Pract. 2014, 68, 1462–1466. [Google Scholar] [CrossRef] [PubMed]
- Altall, R.M.; Qusti, S.Y.; Filimban, N.; Alhozali, A.M.; Alotaibi, N.A.; Dallol, A.; Chaudhary, A.G.; Bakhashab, S. SLC22A1 and ATM genes polymorphisms are associated with the risk of type 2 diabetes mellitus in western Saudi Arabia: A case-control study. Appl. Clin. Genet. 2019, 12, 213–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, K.; Yee, S.W.; Seiser, E.L.; Van Leeuwen, N.; Tavendale, R.; Bennett, A.J.; Groves, C.J.; Coleman, R.L.; Van Der Heijden, A.A.; Beulens, J.W.; et al. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat. Genet. 2016, 48, 1055–1059. [Google Scholar] [CrossRef] [Green Version]
- Rathmann, W.; Strassburger, K.; Bongaerts, B.; Kuss, O.; Müssig, K.; Burkart, V.; Szendroedi, J.; Kotzka, J.; Knebel, B.; Al-Hasani, H.; et al. A variant of the glucose transporter gene SLC2A2 modifies the glycaemic response to metformin therapy in recently diagnosed type 2 diabetes. Diabetologia 2019, 62, 286–291. [Google Scholar] [CrossRef] [Green Version]
- Rotroff, D.M.; Yee, S.W.; Zhou, K.; Marvel, S.W.; Shah, H.S.; Jack, J.R.; Havener, T.M.; Hedderson, M.M.; Kubo, M.; Herman, M.A.; et al. Genetic variants in CPA6 and PRPF31 are associated with variation in response to metformin in individuals with type 2 diabetes. Diabetes 2018, 67, 1428–1440. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Ye, W.; Wang, Y.; Jiang, Z.; Meng, X.; Xiao, Q.; Zhao, Q.; Yan, J. Genetic variants of OCT1 influence glycemic response to metformin in Han Chinese patients with type-2 diabetes mellitus in Shanghai. Int. J. Clin. Exp. Pathol. 2015, 8, 953–9542. [Google Scholar]
- Tarasova, L.; Kalnina, I.; Geldnere, K.; Bumbure, A.; Ritenberga, R.; Nikitina-Zake, L.; Fridmanis, D.; Vaivade, I.; Pirags, V.; Klovins, J. Association of genetic variation in the organic cation transporters OCT1, OCT2 and multidrug and toxin extrusion 1 transporter protein genes with the gastrointestinal side effects and lower BMI in metformin-treated type 2 diabetes patients. Pharmacogenet. Genomics 2012, 22, 659–666. [Google Scholar] [CrossRef]
- Shu, Y.; Sheardown, S.A.; Brown, C.; Owen, R.P.; Zhang, S.; Castro, R.A.; Ianculescu, A.G.; Yue, L.; Lo, J.C.; Burchard, E.G.; et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J. Clin. Investig. 2007, 117, 1422–1431. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.L.; Visser, L.E.; van Schaik, R.H.N.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H.C. Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J. 2009, 9, 242–247. [Google Scholar] [CrossRef]
- Jablonski, K.A.; McAteer, J.B.; De Bakker, P.I.W.; Franks, P.W.; Pollin, T.I.; Hanson, R.L.; Saxena, R.; Fowler, S.; Shuldiner, A.R.; Knowler, W.C.; et al. Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program. Diabetes 2010, 59, 2672–2681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, D.; Guo, Y.; Li, X.; Yin, J.Y.; Zheng, W.; Qiu, X.W.; Xiao, L.; Liu, R.R.; Wang, S.Y.; Gong, W.J.; et al. The Impacts of SLC22A1 rs594709 and SLC47A1 rs2289669 Polymorphisms on Metformin Therapeutic Efficacy in Chinese Type 2 Diabetes Patients. Int. J. Endocrinol. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, H.; Cho, H.Y.; Yoo, H.D.; Kim, S.M.; Lee, Y.B. Influences of organic cation transporter polymorphisms on the population pharmacokinetics of metformin in healthy subjects. AAPS J. 2013, 15, 571–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H.J.; Song, I.S.; Ho, J.S.; Kim, W.Y.; Lee, C.H.; Shim, J.C.; Zhou, H.H.; Sang, S.L.; Shin, J.G. Identification and functional characterization of genetic variants of human organic cation transporters in a Korean population. Drug Metab. Dispos. 2007, 35, 667–675. [Google Scholar] [CrossRef] [Green Version]
- Zaharenko, L.; Kalnina, I.; Geldnere, K.; Konrade, I.; Grinberga, S.; Židzik, J.; Javorský, M.; Lejnieks, A.; Nikitina-Zake, L.; Fridmanis, D.; et al. Single nucleotide polymorphisms in the intergenic region between metformin transporter OCT2 and OCT3 coding genes are associated with short-Term response to metformin monotherapy in type 2 diabetes mellitus patients. Eur. J. Endocrinol. 2016, 175, 531–540. [Google Scholar] [CrossRef]
- Mousavi, S.; Kohan, L.; Yavarian, M.; Habib, A. Pharmacogenetic variation of SLC47A1 gene and metformin response in type2 diabetes patients. Mol. Biol. Res. Commun. 2017, 6, 91–94. [Google Scholar] [CrossRef]
- Tkáč, I.; Klimčáková, L.; Javorský, M.; Fabianová, M.; Schroner, Z.; Hermanová, H.; Babjaková, E.; Tkáčová, R. Pharmacogenomic association between a variant in SLC47A1 gene and therapeutic response to metformin in type 2 diabetes. Diabetes Obes. Metab. 2013, 15, 189–191. [Google Scholar] [CrossRef]
- Stocker, S.L.; Morrissey, K.M.; Yee, S.W.; Castro, R.A.; Xu, L.; Dahlin, A.; Ramirez, A.H.; Roden, D.M.; Wilke, R.A.; McCarty, C.A.; et al. The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin. Pharmacol. Kajiwara Ther. 2013, 93, 186–194. [Google Scholar] [CrossRef]
- Kajiwara, M.; Terada, T.; Ogasawara, K.; Iwano, J.; Katsura, T.; Fukatsu, A.; Doi, T.; Inui, K.I. Identification of multidrug and toxin extrusion (MATE1 and MATE2-K) variants with complete loss of transport activity. J. Hum. Genet. 2009, 54, 40–46. [Google Scholar] [CrossRef]
- Choi, J.H.; Yee, S.W.; Ramirez, A.H.; Morrissey, K.M.; Jang, G.H.; Joski, P.J.; Mefford, J.A.; Hesselson, S.E.; Schlessinger, A.; Jenkins, G.; et al. A common 5′-UTR variant in MATE2-K is associated with poor response to metformin. Clin. Pharmacol. Ther. 2011, 90, 674–684. [Google Scholar] [CrossRef] [Green Version]
- Goswami, S.; Yee, S.W.; Stocker, S.; Mosley, J.D.; Kubo, M.; Castro, R.; Mefford, J.A.; Wen, C.; Liang, X.; Witte, J.; et al. Genetic variants in transcription factors are associated with the pharmacokinetics and pharmacodynamics of metformin. Clin. Pharmacol. Ther. 2014, 96, 370–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breitenstein, M.K.; Wang, L.; Simon, G.; Ryu, E.; Armasu, S.M.; Ray, B.; Weinshilboum, R.M.; Pathak, J. Leveraging an electronic health record-linked biorepository to generate a metformin pharmacogenomics hypothesis. AMIA Summits Transl. Sci. Proc. 2015, 2015, 26–30. [Google Scholar] [PubMed]
- Chen, E.C.; Liang, X.; Yee, S.W.; Geier, E.G.; Stocker, S.L.; Chen, L.; Giacomini, K.M. Targeted disruption of organic cation transporter 3 attenuates the pharmacologic response to metformin. Mol. Pharmacol. 2015, 88, 75–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shokri, F.; Ghaedi, H.; Fard, S.G.; Movafagh, A.; Abediankenari, S.; Mahrooz, A.; Kashi, Z.; Omrani, M.D. Impact of ATM and SLC22A1 polymorphisms on therapeutic response to metformin in Iranian diabetic patients. Int. J. Mol. Cell. Med. 2016, 5, 1–7. [Google Scholar] [CrossRef]
- Vilvanathan, S.; Gurusamy, U.; Mukta, V.; Das, A.K.; Chandrasekaran, A. Allele and genotype frequency of a genetic variant in ataxia telangiectasia mutated gene affecting glycemic response to metformin in South Indian population. Indian J. Endocrinol. Metab. 2014, 18, 850–854. [Google Scholar] [CrossRef]
- Florez, J.C.; Barrett-Connor, E.; Jablonski, K.A.; Knowler, W.C.; Taylor, A.; Shuldiner, A.R.; Mather, K.; Pollin, T.I.; Horton, E.; White, N.H. The C allele of ATM rs11212617 does not associate with metformin response in the diabetes prevention program. Diabetes Care 2012, 35, 1864–1867. [Google Scholar] [CrossRef] [Green Version]
- Zolk, O. Current understanding of the pharmacogenomics of metformin. Clin. Pharmacol. Ther. 2009, 86, 595–598. [Google Scholar] [CrossRef]
- Gründemann, D.; Gorboulev, V.; Gambaryan, S.; Veyhl, M.; Koepsell, H. Drug excretion mediated by a new prototype of polyspecific transporter. Nature 1994, 372, 549–552. [Google Scholar] [CrossRef] [Green Version]
- Mato, E.P.M.; Guewo-Fokeng, M.; Essop, M.F.; Owira, P.M.O. Genetic polymorphisms of organic cation transporter 1 (OCT1) and responses to metformin therapy in individuals with type 2 diabetes. Medicine 2018, 97, e11349. [Google Scholar] [CrossRef]
- Shikata, E.; Yamamoto, R.; Takane, H.; Shigemasa, C.; Ikeda, T.; Otsubo, K.; Ieiri, I. Human organic cation transporter (OCT1 and OCT2) gene polymorphisms and therapeutic effects of metformin. J. Hum. Genet. 2007, 52, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Klen, J.; Goričar, K.; Janež, A.; Dolžan, V. The role of genetic factors and kidney and liver function in glycemic control in type 2 diabetes patients on long-term metformin and sulphonylurea cotreatment. Biomed. Res. Int. 2014. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Takizawa, M.; Chen, E.; Schlessinger, A.; Segenthelar, J.; Choi, J.H.; Sali, A.; Kubo, M.; Nakamura, S.; Iwamoto, Y.; et al. Genetic polymorphisms in organic cation transporter 1 (OCT1) in Chinese and Japanese populations exhibit altered function. J. Pharmacol. Exp. Ther. 2010, 335, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Florez, J.C. Pharmacogenetics in type 2 diabetes: Precision medicine or discovery tool? Diabetologia 2017, 60, 800–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, K.; Donnelly, L.A.; Kimber, C.H.; Donnan, P.T.; Doney, A.S.F.; Leese, G.; Hattersley, A.T.; McCarthy, M.I.; Morris, A.D.; Palmer, C.N.A.; et al. Reduced-function SLC22A1 polymorphisms encoding organic cation transporter 1 and glycemic response to metformin: A GoDARTS study. Diabetes 2009, 58, 1434–1439. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Kusuhara, H.; Yokochi, M.; Toyoshima, J.; Inoue, K.; Yuasa, H.; Sugiyama, Y. Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug-drug interactions caused by cimetidine in the kidney. J. Pharmacol. Exp. Ther. 2012, 340, 393–403. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Giacomini, K.M. Transporters Involved in Metformin Pharmacokinetics and Treatment Response. J. Pharm. Sci. 2017, 106, 2245–2250. [Google Scholar] [CrossRef] [Green Version]
- Tzvetkov, M.V.; Vormfelde, S.V.; Balen, D.; Meineke, I.; Schmidt, T.; Sehrt, D.; Sabolić, I.; Koepsell, H.; Brockmöller, J. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2 and OCT3 on the renal clearance of metformin. Clin. Pharmacol. Ther. 2009, 86, 299–306. [Google Scholar] [CrossRef]
- Al-Eitan, L.N.; Almomani, B.A.; Nassar, A.M.; Elsaqa, B.Z.; Saadeh, N.A. Metformin pharmacogenetics: Effects of SLC22A1, SLC22A2 and SLC22A3 polymorphisms on glycemic control and HBA1c levels. J. Pers. Med. 2019, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, M.; Matsumoto, T.; Morimoto, R.; Arioka, S.; Omote, H.; Moriyama, Y. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc. Natl. Acad. Sci. USA 2005, 102, 17923–17928. [Google Scholar] [CrossRef] [Green Version]
- Toyama, K.; Yonezawa, A.; Masuda, S.; Osawa, R.; Hosokawa, M.; Fujimoto, S.; Inagaki, N.; Inui, K.; Katsura, T. Loss of multidrug and toxin extrusion 1 (MATE1) is associated with metformin-induced lactic acidosis. Br. J. Pharmacol. 2012, 166, 1183–1191. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.L.; Visser, L.E.; Van Schaik, R.H.N.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H.C. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: A preliminary study. Diabetes 2009, 58, 745–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.Y.; Zhang, R.; Shao, X.Y.; Hu, C.; Wang, C.R.; Lu, J.X.; Bao, Y.Q.; Jia, W.P.; Xiang, K.S. Association of KCNJ11 and ABCC8 genetic polymorphisms with response to repaglinide in Chinese diabetic patients. Acta Pharmacol. Sin. 2008, 29, 983–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dujic, T.; Zhou, K.; Yee, S.W.; van Leeuwen, N.; de Keyser, C.E.; Javorský, M.; Goswami, S.; Zaharenko, L.; Hougaard Christensen, M.M.; Out, M.; et al. Variants in Pharmacokinetic Transporters and Glycemic Response to Metformin: A Metgen Meta-Analysis. Clin. Pharmacol. Ther. 2017, 101, 763–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruthur, N.M.; Gribble, M.O.; Bennett, W.L.; Bolen, S.; Wilson, L.M.; Balakrishnan, P.; Sahu, A.; Bass, E.; Kao, W.H.L.; Clark, J.M. The pharmacogenetics of Type 2 Diabetes: A systematic review. Diabetes Care 2014, 37, 876–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, A.E.; Yeaman, S.J.; Walker, M. Targeted suppression of calpain-10 expression impairs insulin-stimulated glucose uptake in cultured primary human skeletal muscle cells. Mol. Genet. Metab. 2007, 91, 318–324. [Google Scholar] [CrossRef]
- Suzuki, K.; Hata, S.; Kawabata, Y.; Sorimachi, H. Structure, activation and biology of calpain. Diabetes 2004, 53 (Suppl. 1), S12–S18. [Google Scholar] [CrossRef] [Green Version]
- Lattard, V.; Zhang, J.; Cashman, J.R. Alternative processing events in human FMO genes. Mol. Pharmacol. 2004, 65, 1517–1525. [Google Scholar] [CrossRef] [Green Version]
- Ashcroft, F.M.; Rorsman, P. Electrophysiology of the pancreatic β-cell. Prog. Biophys. Mol. Biol. 1989, 54, 87–143. [Google Scholar] [CrossRef]
- Grant, J.S.; Graven, L.J. Progressing from Metformin to Sulfonylureas or Meglitinides. Work. Health Saf. 2016, 64, 433–439. [Google Scholar] [CrossRef]
- Elbein, S.C.; Sun, J.; Scroggin, E.; Teng, K.; Hasstedt, S.J. Role of common sequence variants in insulin secretion in familial type 2 diabetic kindreds: The sulfonylurea receptor, glucokinase and hepatocyte nuclear factor 1α genes. Diabetes Care 2001, 24, 472–478. [Google Scholar] [CrossRef] [Green Version]
- Meirhaeghe, A.; Helbecque, N.; Cottel, D.; Arveiler, D.; Ruidavets, J.B.; Haas, B.; Ferrières, J.; Tauber, J.P.; Bingham, A.; Amouyel, P. Impact of sulfonylurea receptor 1 genetic variability on non-insulin-dependent diabetes mellitus prevalence and treatment: A population study. Am. J. Med. Genet. 2001, 101, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Nikolac, N.; Simundic, A.M.; Saracevic, A.; Katalinic, D. ABCC8 polymorphisms are associated with triglyceride concentration in type 2 diabetics on sulfonylurea therapy. Genet. Test. Mol. Biomarkers. 2012, 16, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Zychma, M.J.; Gumprecht, J.; Strojek, K.; Grzeszczak, W.; Moczulski, D.; Trautsolt, W.; Karasek, D. Sulfonylurea receptor gene 16-3 polymorphism—Association with sulfonylurea or insulin treatment in type 2 diabetic subjects. Med. Sci. Monit. 2002, 8, CR512–CR515. [Google Scholar] [PubMed]
- Sanchez-Ibarra, H.E.; Reyes-Cortes, L.M.; Jiang, X.L.; Luna-Aguirre, C.M.; Aguirre-Trevino, D.; Morales-Alvarado, I.A.; Leon-Cachon, R.B.; Lavalle-Gonzalez, F.; Morcos, F.; Barrera-Saldaña, H.A. Genotypic and Phenotypic Factors Influencing Drug Response in Mexican Patients With Type 2 Diabetes Mellitus. Front. Pharmacol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; He, Y.J.; Han, C.T.; Liu, Z.Q.; Li, Q.; Fan, L.; Tan, Z.R.; Zhang, W.X.; Yu, B.N.; Wang, D.; et al. Effect of SLCO1B1 genetic polymorphism on the pharmacokinetics of nateglinide. Br. J. Clin Pharmacol. 2006, 62, 567–572. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Mao, G.; Ren, X.; Xing, H.; Tang, G.; Li, Q.; Li, X.; Sun, L.; Yang, J.; Ma, W.; et al. Ser 1369Ala variant in sulfonylurea receptor gene ABCC8 Is associated with antidiabetic efficacy of gliclazide in Chinese Type 2 diabetic patients. Diabetes Care 2008, 31, 1939–1944. [Google Scholar] [CrossRef] [Green Version]
- Florez, J.C.; Burtt, N.; De Bakker, P.I.W.; Almgren, P.; Tuomi, T.; Holmkvist, J.; Gaudet, D.; Hudson, T.J.; Schaffner, S.F.; Daly, M.J.; et al. Haplotype Structure and Genotype-Phenotype Correlations of the Sulfonylurea Receptor and the Islet ATP-Sensitive Potassium Channel Gene Region. Diabetes 2004, 53, 1360–1368. [Google Scholar] [CrossRef] [Green Version]
- Nikolac, N.; Simundic, A.M.; Katalinic, D.; Topic, E.; Cipak, A.; Zjacic, R.V. Metabolic control in type 2 diabetes is associated with sulfonylurea receptor-1 (SUR-1) but not with KCNJ11 polymorphisms. Arch. Med. Res. 2009, 40, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Gloyn, A.L.; Hashim, Y.; Ashcroft, S.J.H.; Ashfield, R.; Wiltshire, S.; Turner, R.C. Erratum: Association studies of variants in promoter and coding regions of beta-cell ATP sensitive K-channel genes SUR1 and Kir6.2 with Type 2 diabetes mellitus (UKPDS 53) (Diabetic Medicine (2001) 18 (206–212)). Diabet. Med. 2003, 20, 252. [Google Scholar] [CrossRef] [Green Version]
- Sesti, G.; Laratta, E.; Cardellini, M.; Andreozzi, F.; Del Guerra, S.; Irace, C.; Gnasso, A.; Grupillo, M.; Lauro, R.; Hribal, M.L.; et al. The E23K variant of KCNJ11 encoding the pancreatic β-cell adenosine 5′-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 2006, 91, 2334–2339. [Google Scholar] [CrossRef]
- Javorsky, M.; Klimcakova, L.; Schroner, Z.; Zidzik, J.; Babjakova, E.; Fabianova, M.; Kozarova, M.; Tkacova, R.; Salagovic, J.; Tkac, I. KCNJ11 gene E23K variant and therapeutic response to sulfonylureas. Eur. J. Intern. Med. 2012, 23, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Sisi, A.E.; Metwally, S.S.; Dawood, N.A. Effect of genetic polymorphisms on the development of secondary failure to sulfonylurea in Egyptian patients with type 2 diabetes. Ther. Adv. Endocrinol. Metab. 2011, 2, 155–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirchheiner, J.; Brockmöller, J.; Meineke, I.; Bauer, S.; Rohde, W.; Meisel, C.; Roots, I. Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clin. Pharmacol. Ther. 2002, 71, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Kirchheiner, J.; Bauer, S.; Meineke, I.; Rohde, W.; Prang, V.; Meisel, C.; Roots, I.; Brockmöller, J. Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers. Pharmacogenetics 2002, 12, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Blaisdell, J.; Jorge-Nebert, L.F.; Coulter, S.; Ferguson, S.S.; Lee, S.J.; Chanas, B.; Xi, T.; Mohrenweiser, H.; Ghanayem, B.; Goldstein, J.A. Discovery of new potentially defective alleles of human CYP2C9. Pharmacogenetics. 2004, 14, 527–537. [Google Scholar] [CrossRef]
- Zhou, S.-F.; Zhou, Z.-W.; Yang, L.-P.; Cai, J.-P. Substrates, Inducers, Inhibitors and Structure-Activity Relationships of Human Cytochrome P450 2C9 and Implications in Drug Development. Curr. Med. Chem. 2009, 16, 3480–3675. [Google Scholar] [CrossRef]
- Holstein, A.; Hahn, M.; Körner, A.; Stumvoll, M.; Kovacs, P. TCF7L2 and therapeutic response to sulfonylureas in patients with type 2 diabetes. BMC Med. Genet. 2011, 12, 30. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.L.; Aarnoudse, A.J.L.H.J.; Newton-Cheh, C.; Hofman, A.; Witteman, J.C.M.; Uitterlinden, A.G.; Visser, L.E.; Stricker, B.H.C. Common variation in the NOS1AP gene is associated with reduced glucose-lowering effect and with increased mortality in users of sulfonylurea. Pharmacogenet. Genomics 2008, 18, 591–597. [Google Scholar] [CrossRef]
- Qin, W.; Zhang, R.; Hu, C.; Wang, C.R.; Lu, J.Y.; Yu, W.H.; Bao, Y.Q.; Xiang, K.S.; Jia, W.P. A variation in NOS1AP gene is associated with repaglinide efficacy on insulin resistance in type 2 diabetes of Chinese. Acta Pharmacol. Sin. 2010, 31, 450–454. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Y.; Lv, D.M.; Song, J.F.; Lu, Q.; Gao, X.; Zhang, F.; Guo, H.; Li, W.; Yin, X.X. Effects of NOS1AP rs12742393 polymorphism on repaglinide response in Chinese patients with type 2 diabetes mellitus. Pharmacotherapy 2014, 34, 131–139. [Google Scholar] [CrossRef]
- Dhawan, D.; Padh, H. Genetic variations in TCF7L2 influence therapeutic response to sulfonylureas in Indian diabetics. Diabetes Res. Clin. Pract. 2016, 121, 35–40. [Google Scholar] [CrossRef]
- Schroner, Z.; Javorsky, M.; Tkacova, R.; Klimcakova, L.; Dobrikova, M.; Habalova, V.; Kozarova, M.; Zidzik, J.; Rudikova, M.; Tkac, I. Effect of sulphonylurea treatment on glycaemic control is related to TCF7L2 genotype in patients with type 2 diabetes. Diabetes Obes. Metab. 2011, 13, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Pearson, E.R.; Donnelly, L.A.; Kimber, C.; Whitley, A.; Doney, A.S.F.; McCarthy, M.I.; Hattersley, A.T.; Morris, A.D.; Palmer, C.N.A. Variation in TCF7L2 influences therapeutic response to sulfonylureas: A GoDARTs study. Diabetes 2007, 56, 2178–2182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, M.; Xu, X.J.; Yin, J.Y.; Wu, J.; Chen, X.; Gong, Z.-C.; Ren, H.-Y.; Huang, Q.; Sheng, F.-F.; Zhou, H.-H.; et al. KCNJ11 Lys23Glu and TCF7L2 rs290487(C/T) polymorphisms affect therapeutic efficacy of repaglinide in Chinese patients with type 2 diabetes. Clin. Pharmacol. Ther. 2010, 87, 330–335. [Google Scholar] [CrossRef]
- Seeringer, A.; Parmar, S.; Fischer, A.; Altissimo, B.; Zondler, L.; Lebedeva, E.; Pitterle, K.; Roots, I.; Kirchheiner, J. Genetic variants of the insulin receptor substrate-1 are influencing the therapeutic efficacy of oral antidiabetics. Diabetes Obes. Metab. 2010, 12, 1106–1112. [Google Scholar] [CrossRef]
- Sesti, G.; Marini, M.A.; Cardellini, M.; Sciacqua, A.; Frontoni, S.; Andreozzi, F.; Irace, C.; Lauro, D.; Gnasso, A.; Federici, M.; et al. The Arg972 variant in insulin receptor substrate-1 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. Diabetes Care 2004, 27, 1394–1398. [Google Scholar] [CrossRef] [Green Version]
- Prudente, S.; Morini, E.; Lucchesi, D.; Lamacchia, O.; Bailetti, D.; Mercuri, L.; Alberico, F.; Copetti, M.; Pucci, L.; Fariello, S.; et al. IRS1 G972R missense polymorphism is associated with failure to oral antidiabetes drugs in white patients with type 2 diabetes from Italy. Diabetes 2014, 63, 3135–3140. [Google Scholar] [CrossRef] [Green Version]
- Daily, E.B.; Aquilante, C.L. Cytochrome P450 2C8 pharmacogenetics: A review of clinical studies. Pharmacogenomics 2009, 10, 1489–1510. [Google Scholar] [CrossRef] [Green Version]
- Niemi, M.; Backman, J.T.; Kajosaari, L.I.; Leathart, J.B.; Neuvonen, M.; Daly, A.K.; Eichelbaum, M.; Kivistö, K.T.; Neuvonen, P.J. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin. Pharmacol. Ther. 2005, 77, 468–478. [Google Scholar] [CrossRef]
- Dai, X.P.; Huang, Q.; Yin, J.Y.; Guo, Y.; Gong, Z.C.; Lei, M.X.; Jiang, T.J.; Zhou, H.H.; Liu, Z.Q. KCNQ1 gene polymorphisms are associated with the therapeutic efficacy of repaglinide in Chinese type 2 diabetic patients. Clin. Exp. Pharmacol. Physiol. 2012, 39, 462–468. [Google Scholar] [CrossRef]
- Yu, W.; Hu, C.; Zhang, R.; Wang, C.; Qin, W.; Lu, J.; Jiang, F.; Tang, S.; Bao, Y.; Xiang, K.; et al. Effects of KCNQ1 polymorphisms on the therapeutic efficacy of oral antidiabetic drugs in Chinese patients with type 2 diabetes. Clin. Pharmacol. Ther. 2011, 89, 437–442. [Google Scholar] [CrossRef]
- Patch, A.M.; Flanagan, S.E.; Boustred, C.; Hattersley, A.T.; Ellard, S. Mutations in the ABCC8 gene encoding the SUR1 subunit of the KATP channel cause transient neonatal diabetes, permanent neonatal diabetes or permanent diabetes diagnosed outside the neonatal period. Diabetes Obes. Metab. 2007, 9 (Suppl. 2), 28–39. [Google Scholar] [CrossRef] [PubMed]
- Song, I.S.; Shin, H.J.; Shim, E.J.; Jung, I.S.; Kim, W.Y.; Shon, J.H.; Shin, J.G. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin. Pharmacol. Ther. 2008, 84, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Klen, J.; Dolžan, V.; Janež, A. CYP2C9, KCNJ11 and ABCC8 polymorphisms and the response to sulphonylurea treatment in type 2 diabetes patients. Eur. J. Clin. Pharmacol. 2014, 70, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Schulz, R.; Rassaf, T.; Massion, P.B.; Kelm, M.; Balligand, J.L. Recent advances in the understanding of the role of nitric oxide in cardiovascular homeostasis. Pharmacol. Ther. 2005, 108, 225–256. [Google Scholar] [CrossRef] [PubMed]
- Lajoix, A.D.; Reggio, H.; Chardès, T.; Péraldi-Roux, S.; Tribillac, F.; Roye, M.; Dietz, S.; Broca, C.; Manteghetti, M.; Ribes, G.; et al. A neuronal isoform of nitric oxide synthase expressed in pancreatic β-cells controls insulin secretion. Diabetes 2001, 50, 1311–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H.J.; Lee, S.Y.; Kim, Y.G.; Oh, S.Y.; Kim, J.W.; Huh, W.S.; Ko, J.W.; Kim, H.G. Effect of genetic polymorphisms on the pharmacokinetics and efficacy of glimepiride in a Korean population. Clin. Chim. Acta 2011, 412, 1831–1834. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.; Brubaker, P.L.; Jin, T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by β-catenin and glycogen synthase kinase-3β. J. Biol. Chem. 2005, 280, 1457–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43 (Suppl. 1), S98–S110. [CrossRef] [PubMed] [Green Version]
- Jensterle, M.; Pirš, B.; Goričar, K.; Dolžan, V.; Janež, A. Genetic variability in GLP-1 receptor is associated with inter-individual differences in weight lowering potential of liraglutide in obese women with PCOS: A pilot study. Eur. J. Clin. Pharmacol. 2015, 71, 817–824. [Google Scholar] [CrossRef] [PubMed]
- De Luis, D.A.; Diaz Soto, G.; Izaola, O.; Romero, E. Evaluation of weight loss and metabolic changes in diabetic patients treated with liraglutide, effect of RS 6923761 gene variant of glucagon-like peptide 1 receptor. J. Diabetes Complicat. 2015, 29, 595–598. [Google Scholar] [CrossRef] [PubMed]
- Chedid, V.; Vijayvargiya, P.; Carlson, P.; Van Malderen, K.; Acosta, A.; Zinsmeister, A.; Camilleri, M. Allelic variant in the glucagon-like peptide 1 receptor gene associated with greater effect of liraglutide and exenatide on gastric emptying: A pilot pharmacogenetics study. Neurogastroenterol. Motil. 2018, 30, e13313. [Google Scholar] [CrossRef] [PubMed]
- Sathananthan, A.; Dalla Man, C.; Micheletto, F.; Zinsmeister, A.R.; Camilleri, M.; Giesler, P.D.; Laugen, J.M.; Toffolo, G.; Rizza, R.A.; Cobelli, C.; et al. Common genetic variation in GLP1R and insulin secretion in response to exogenous GLP-1 in nondiabetic subjects: A pilot study. Diabetes Care 2010, 33, 2074–2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.H.; Lee, Y.S.; Huang, Y.Y.; Hsieh, S.H.; Chen, Z.S.; Tsai, C.N. Polymorphisms of GLP-1 receptor gene and response to GLP-1 analogue in patients with poorly controlled type 2 diabetes. J. Diabetes Res. 2015, 176949. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Wang, K.; Liu, H.; Cao, R. GLP1R variant is associated with response to exenatide in overweight Chinese Type 2 diabetes patients. Pharmacogenomics 2019, 20, 273–277. [Google Scholar] [CrossRef]
- Ferreira, M.C.; Da Silva, M.E.R.; Fukui, R.T.; Do Carmo Arruda-Marques, M.; Azhar, S.; Dos Santos, R.F. Effect of TCF7L2 polymorphism on pancreatic hormones after exenatide in type 2 diabetes. Diabetol. Metab. Syndr. 2019, 11, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luis, D.A.; Ovalle, H.F.; Soto, G.D.; Izaola, O.; de la Fuente, B.; Romero, E. Role of genetic variation in the cannabinoid receptor gene (CNR1) (G1359A polymorphism) on weight loss and cardiovascular risk factors after liraglutide treatment in obese patients with diabetes mellitus type 2. J. Investig. Med. 2014, 62, 324–327. [Google Scholar] [CrossRef]
- Zhou, L.M.; Xu, W.; Yan, X.M.; Li, M.; Liang, H.; Weng, J.P. Association between SORCS1 rs1416406 and therapeutic effect of exenatide. Zhonghua Yi Xue Za Zhi 2017, 97, 1415–1419. [Google Scholar] [CrossRef]
- Pereira, M.J.; Lundkvist, P.; Kamble, P.G. A randomized controlled trial of dapagliflozin plus once-weekly exenatide versus placebo in individuals with obesity and without diabetes: Metabolic effects and markers associated with bodyweight loss. Diabetes Ther. 2018, 9, 1511–1532. [Google Scholar] [CrossRef] [Green Version]
- Nauck, M.A.; Meier, J.J. Incretin hormones: Their role in health and disease. Diabetes Obes. Metab. 2018, 20 (Suppl. 1), 5–21. [Google Scholar] [CrossRef]
- McIntosh, C.H.S.; Demuth, H.U.; Pospisilik, J.A.; Pederson, R. Dipeptidyl peptidase IV inhibitors: How do they work as new antidiabetic agents? Regul. Pept. 2005, 128, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Hinnen, D. Glucagon-like peptide 1 receptor agonists for type 2 diabetes. Diabetes Spectr. 2017, 30, 202–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, E.; Park, H.S.; Kwon, O.; Choe, E.Y.; Wang, H.J.; Lee, Y.H.; Lee, S.H.; Kim, C.H.; Kim, L.K.; Kwak, S.H.; et al. A genetic variant in GLP1R is associated with response to DPP-4 inhibitors in patients with type 2 diabetes. Medicine (Baltimore) 2016, 95, e5155. [Google Scholar] [CrossRef] [PubMed]
- Javorský, M.; Gotthardová, I.; Klimčáková, L.; Kvapil, M.; Židzik, J.; Schroner, Z.; Doubravová, P.; Gala, I.; Dravecká, I.; Tkáč, I. A missense variant in GLP1R gene is associated with the glycaemic response to treatment with gliptins. Diabetes, Obes. Metab. 2016, 18, 941–944. [Google Scholar] [CrossRef]
- Mashayekhi, M.; Wilson, J.; Jafarian-Kerman, S.; Brown, N. OR05-6 The Effect of the GLP1R Variant rs6923761 on Post-Prandial Glucose Levels during Treatment with Sitagliptin. J. Endocr. Soc. 2019, 3 (Suppl. 1), OR05-6. [Google Scholar] [CrossRef]
- Urgeová, A.; Javorský, M.; Klimčáková, L.; Zidzik, J.; Šalagovič, J.; Hubáček, J.A.; Doubravová, P.; Gotthardová, I.; Kvapil, M.; Pelikánová, T.; et al. Genetic variants associated with glycemic response to treatment with dipeptidylpeptidase 4 inhibitors. Pharmacogenomics 2020, 21, 317–323. [Google Scholar] [CrossRef]
- Zimdahl, H.; Ittrich, C.; Graefe-Mody, U.; Boehm, B.O.; Mark, M.; Woerle, H.J.; Dugi, K.A. Influence of TCF7L2 gene variants on the therapeutic response to the dipeptidylpeptidase-4 inhibitor linagliptin. Diabetologia 2014, 57, 1869–1875. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.R.; Shuey, M.M.; Brown, N.J.; Devin, J.K. Hypertension and type 2 diabetes are associated with decreased inhibition of dipeptidyl peptidase-4 by sitagliptin. J. Endocr. Soc. 2017, 1, 1168–1178. [Google Scholar] [CrossRef] [Green Version]
- Gotthardová, I.; Javorský, M.; Klimčáková, L.; Kvapil, M.; Schroner, Z.; Kozárová, M.; Malachovská, Z.; Ürgeová, A.; Židzik, J.; Tkáč, I. KCNQ1 gene polymorphism is associated with glycaemic response to treatment with DPP-4 inhibitors. Diabetes Res. Clin. Pract. 2017, 130, 142–147. [Google Scholar] [CrossRef]
- Matsui, M.; Takahashi, Y.; Takebe, N.; Takahashi, K.; Nagasawa, K.; Honma, H.; Oda, T.; Ono, M.; Nakagawa, R.; Sasai, T.; et al. Response to the dipeptidyl peptidase-4 inhibitors in Japanese patients with type 2 diabetes might be associated with a diplotype of two single nucleotide polymorphisms on the interleukin-6 promoter region under a certain level of physical activity. J. Diabetes Investig. 2015, 6, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Jamaluddin, J.L.; Huri, H.Z.; Vethakkan, S.R. Clinical and genetic predictors of dipeptidyl peptidase-4 inhibitor treatment response in Type 2 diabetes mellitus. Pharmacogenomics 2016, 17, 867–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- M’t Hart, L.; Fritsche, A.; Nijpels, G.; Van Leeuwen, N.; Donnelly, L.A.; Dekker, J.M.; Alssema, M.; Fadista, J.; Carlotti, F.; Gjesing, A.P.; et al. The CTRB1/2 locus affects diabetes susceptibility and treatment via the incretin pathway. Diabetes 2013, 62, 3275–3281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kan, H.; Hyogo, H.; Ochi, H.; Hotta, K.; Fukuhara, T.; Kobayashi, T.; Naeshiro, N.; Honda, Y.; Kawaoka, T.; Tsuge, M.; et al. Influence of the rs738409 polymorphism in patatin-like phospholipase 3 on the treatment efficacy of non-alcoholic fatty liver disease with type 2 diabetes mellitus. Hepatol. Res. 2016, 46, E146–E153. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.L.; Lee, W.J.; Chen, C.C.; Lu, C.H.; Chen, C.H.; Chou, Y.C.; Lee, I.T.; Sheu, W.H.H.; Wu, J.Y.; Yang, C.F.; et al. Pharmacogenetics of dipeptidyl peptidase 4 inhibitors in a Taiwanese population with type 2 diabetes. Oncotarget 2017, 8, 18050–18058. [Google Scholar] [CrossRef] [PubMed]
- Iskakova, A.N.; Aitkulova, A.M.; Sikhayeva, N.S.; Romanova, A.A.; Maratkyzy, L.; Akanov, Z.A.; Zholdybayeva, E.V. Dipeptidyl peptidase-4 inhbitors: Sensitivity markers. Eurasian J. Appl. Biotechnol. 2017, 3, 13–20. [Google Scholar] [CrossRef]
- Osada, U.N.; Sunagawa, H.; Terauchi, Y.; Ueda, S. A common susceptibility gene for type 2 diabetes is associated with drug response to a DPP-4 inhibitor: Pharmacogenomic cohort in Okinawa Japan. PLoS ONE 2016, 11, e0154821. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Habener, J.F. Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J. Biol. Chem. 2008, 283, 8723–8735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, L.; Matveyenko, A.V.; Kerr-Conte, J.; Cho, J.H.; McIntosh, C.H.S.; Maedler, K. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function. Hum. Mol. Genet. 2009, 18, 2388–2399. [Google Scholar] [CrossRef] [PubMed]
- Cauchi, S.; El Achhab, Y.; Choquet, H.; Dina, C.; Krempler, F.; Weitgasser, R.; Nejjari, C.; Patsch, W.; Chikri, M.; Meyre, D.; et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: A global meta-analysis. J. Mol. Med. 2007, 85, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O. Discovery of DiPeptidyl Peptidase-4 Gene Variants and the Associations with Efficacy of Vildagliptin in Patients with Typ e 2 Diabetes—A Pilot Study. J. Diabetes Metab. 2013, S13. [Google Scholar] [CrossRef]
- Wang, Q.; Curran, M.E.; Splawski, I.; Burn, T.C.; Millholland, J.M.; VanRaay, T.J.; Shen, J.; Timothy, K.W.; Vincent, G.M.; De Jager, T.; et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat. Genet. 1996, 12, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, K.; Senokuchi, T.; Lu, M.; Takemoto, M.; Fazlul Karim, M.; Go, C.; Sato, Y.; Hatta, M.; Yoshizawa, T.; Araki, E.; et al. Voltage-gated K+ channel KCNQ1 regulates insulin secretion in MIN6 β-cell line. Biochem. Biophys. Res. Commun. 2011, 407, 620–625. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, F.; Lu, H.; Ren, X.; Zou, J. Chromanol 293B, an inhibitor of KCNQ1 channels, enhances glucose-stimulated insulin secretion and increases glucagon-like peptide-1 level in mice. Islets 2014, 6, e962386. [Google Scholar] [CrossRef]
- Müssig, K.; Staiger, H.; Machicao, F.; Kirchhoff, K.; Guthoff, M.; Schäfer, S.A.; Kantartzis, K.; Silbernagel, G.; Stefan, N.; Holst, J.J.; et al. Association of type 2 diabetes candidate polymorphisms in KCNQ1 with incretin and insulin secretion. Diabetes 2009, 58, 1715–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smushkin, G.; Sathananthan, M.; Sathananthan, A.; Man, C.D.; Micheletto, F.; Zinsmeister, A.R.; Cobelli, C.; Vella, A. Diabetes-associated common genetic variation and its association with GLP-1 concentrations and response to exogenous GLP-1. Diabetes 2012, 61, 1082–1089. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, K.; Miyake, K.; Horikawa, Y.; Hara, K.; Osawa, H.; Furuta, H.; Hirota, Y.; Mori, H.; Jonsson, A.; Sato, Y.; et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet. 2008, 40, 1092–1097. [Google Scholar] [CrossRef]
- Schroner, Z.; Dobrikova, M.; Klimcakova, L.; Javorsky, M.; Zidzik, J.; Kozarova, M.; Hudakova, T.; Tkacova, R.; Salagovic, J.; Tkac, I. Variation in KCNQ1 is associated with therapeutic response to sulphonylureas. Med. Sci. Monit. 2011, 17, CR392–CR396. [Google Scholar] [CrossRef] [Green Version]
- Timper, K.; Dalmas, E.; Dror, E.; Rütti, S.; Thienel, C.; Sauter, N.S.; Bouzakri, K.; Bédat, B.; Pattou, F.; Kerr-Conte, J.; et al. Glucose-Dependent Insulinotropic Peptide Stimulates Glucagon-Like Peptide 1 Production by Pancreatic Islets via Interleukin 6, Produced by α Cells. Gastroenterology 2016, 151, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Wueest, S.; Laesser, C.I.; Böni-Schnetzler, M.; Item, F.; Lucchini, F.C.; Borsigova, M.; Müller, W.; Donath, M.Y.; Konrad, D. IL-6-type cytokine signaling in adipocytes induces intestinal GLP-1 secretion. Diabetes 2018, 67, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; van Dam, R.M.; Meigs, J.B.; Manson, J.A.E.; Hunter, D.; Hu, F.B. Genetic variation in IL6 gene and type 2 diabetes: Tagging-SNP haplotype analysis in large-scale case-control study and meta-analysis. Hum. Mol. Genet. 2006, 15, 1914–1920. [Google Scholar] [CrossRef]
- Huth, C.; Heid, I.M.; Vollmert, C.; Gieger, C.; Grallert, H.; Wolford, J.K.; Langer, B.; Thorand, B.; Klopp, N.; Hamid, Y.H.; et al. IL6 gene promoter polymorphisms and type 2 diabetes: Joint analysis of individual participants’ data from 21 studies. Diabetes 2006, 55, 2915–2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hugill, A.; Shimomura, K.; Ashcroft, F.M.; Cox, R.D. A mutation in KCNJ11 causing human hyperinsulinism (Y12X) results in a glucose-intolerant phenotype in the mouse. Diabetologia 2010, 53, 2352–2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, A.P.; Voight, B.F.; Teslovich, T.M.; Ferreira, T.; Segrè, A.V.; Steinthorsdottir, V.; Strawbridge, R.J.; Khan, H.; Grallert, H.; Mahajan, A.; et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 2012, 44, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Barata, L.; Feitosa, M.F.; Bielak, L.F.; Halligan, B.; Baldridge, A.S.; Guo, X.; Armstrong, L.M.; Smith, A.V.; Yao, J.; Palmer, N.D.; et al. Insulin Resistance Exacerbates Genetic Predisposition to Nonalcoholic Fatty Liver Disease in Individuals Without Diabetes. Hepatol. Commun. 2019, 3, 894–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.; Ferdaoussi, M.; Bautista, A.; Bergeron, V.; Smith, N.; Poitout, V.; MacDonald, P.E. A role for PKD1 in insulin secretion downstream of P2Y1 receptor activation in mouse and human islets. Physiol. Rep. 2019, 7, e14250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aquilante, C.L.; Wempe, M.F.; Sidhom, M.S.; Kosmiski, L.A.; Predhomme, J.A. Effect of ABCB1 polymorphisms and atorvastatin on sitagliptin pharmacokinetics in healthy volunteers. Eur. J. Clin. Pharmacol. 2013, 69, 1401–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walraven, J.; Zang, Y.; Trent, J.; Hein, D. Structure/Function Evaluations of Single Nucleotide Polymorphisms in Human N-Acetyltransferase 2. Curr. Drug Metab. 2008, 9, 471–486. [Google Scholar] [CrossRef] [PubMed]
- Knowles, J.W.; Xie, W.; Zhang, Z.; Chennemsetty, I.; Assimes, T.L.; Paananen, J.; Hansson, O.; Pankow, J.; Goodarzi, M.O.; Carcamo-Orive, I.; et al. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene. J. Clin. Investig. 2015, 125, 1739–1751. [Google Scholar] [CrossRef]
- Saxena, R.; Voight, B.F.; Lyssenko, V.; Burtt, N.P.; De Bakker, P.I.W.; Chen, H.; Roix, J.J.; Kathiresan, S.; Hirschhorn, J.N.; Daly, M.J.; et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007, 316, 1331–1336. [Google Scholar] [CrossRef]
- Steinthorsdottir, V.; Thorleifsson, G.; Reynisdottir, I.; Benediktsson, R.; Jonsdottir, T.; Walters, G.B.; Styrkarsdottir, U.; Gretarsdottir, S.; Emilsson, V.; Ghosh, S.; et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 2007, 39, 770–775. [Google Scholar] [CrossRef] [Green Version]
- Tuerxunyiming, M.; Mohemaiti, P.; Wufuer, H.; Tuheti, A. Association of rs7754840 G/C polymorphisms in CDKAL1 with type 2 diabetes: A meta-analysis of 70141 subjects. Int. J. Clin. Exp. Med. 2015, 8, 17392–17405. [Google Scholar] [PubMed]
- Li, Y.Y.; Wang, L.S.; Lu, X.Z.; Yang, Z.J.; Wang, X.M.; Zhou, C.W.; Xu, J.; Qian, Y.; Chen, A.L. CDKAL1 gene rs7756992 A/G polymorphism and type 2 diabetes mellitus: A meta-analysis of 62,567 subjects. Sci. Rep. 2013, 3, 3131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, J.; Pei, Y.; Liu, X.; Qiu, Q.; Sun, Y.; Zhu, Y.; Yang, M.; Qi, L. The CDKAL1 gene is associated with impaired insulin secretion and glucose-related traits: The Cardiometabolic Risk in Chinese (CRC) study. Clin. Endocrinol. (Oxf). 2015, 83, 651–655. [Google Scholar] [CrossRef] [PubMed]
- De Miguel-Yanes, J.M.; Manning, A.K.; Shrader, P.; McAteer, J.B.; Goel, A.; Hamsten, A.; Fox, C.S.; Florez, J.C.; Dupuis, J.; Meigs, J.B. Variants at the endocannabinoid receptor CB1 gene (CNR1) and insulin sensitivity, type 2 diabetes and coronary heart disease. Obesity 2011, 19, 2031–2037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moss, C.E.; Marsh, W.J.; Parker, H.E.; Ogunnowo-Bada, E.; Riches, C.H.; Habib, A.M.; Evans, M.L.; Gribble, F.M.; Reimann, F. Somatostatin receptor 5 and cannabinoid receptor 1 activation inhibit secretion of glucose-dependent insulinotropic polypeptide from intestinal K cells in rodents. Diabetologia 2012, 55, 3094–3103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodarzi, M.O.; Lehman, D.M.; Taylor, K.D.; Guo, X.; Cui, J.; Quiñones, M.J.; Clee, S.M.; Yandell, B.S.; Blangero, J.; Hsueh, W.A.; et al. SORCS1: A novel human type 2 diabetes susceptibility gene suggested by the mouse. Diabetes 2007, 56, 1922–1929. [Google Scholar] [CrossRef] [Green Version]
- Rendtorff, N.D.; Lodahl, M.; Boulahbel, H.; Johansen, I.R.; Pandya, A.; Welch, K.O.; Norris, V.W.; Arnos, K.S.; Bitner-Glindzicz, M.; Emery, S.B.; et al. Identification of p.A684V missense mutation in the WFS1 gene as a frequent cause of autosomal dominant optic atrophy and hearing impairment. Am. J. Med. Genet. Part A 2011, 155, 1298–1313. [Google Scholar] [CrossRef] [Green Version]
- Toots, M.; Seppa, K.; Jagomäe, T.; Koppel, T.; Pallase, M.; Heinla, I.; Terasmaa, A.; Plaas, M.; Vasar, E. Preventive treatment with liraglutide protects against development of glucose intolerance in a rat model of Wolfram syndrome. Sci. Rep. 2018, 8, 10183. [Google Scholar] [CrossRef] [Green Version]
- Seppa, K.; Toots, M.; Reimets, R.; Jagomäe, T.; Koppel, T.; Pallase, M.; Hasselholt, S.; Krogsbæk Mikkelsen, M.; Randel Nyengaard, J.; Vasar, E.; et al. GLP-1 receptor agonist liraglutide has a neuroprotective effect on an aged rat model of Wolfram syndrome. Sci. Rep. 2019, 9, 15742. [Google Scholar] [CrossRef]
- Sedman, T.; Rünkorg, K.; Krass, M.; Luuk, H.; Plaas, M.; Vasar, E.; Volke, V. Exenatide is an effective antihyperglycaemic agent in a mouse model of wolfram syndrome 1. J. Diabetes Res 2016, 2016, 9239530. [Google Scholar] [CrossRef] [Green Version]
- Kondo, M.; Tanabe, K.; Amo-Shiinoki, K.; Hatanaka, M.; Morii, T.; Takahashi, H.; Seino, S.; Yamada, Y.; Tanizawa, Y. Activation of GLP-1 receptor signalling alleviates cellular stresses and improves beta cell function in a mouse model of Wolfram syndrome. Diabetologia 2018, 61, 2189–2201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, E.M.; Loo, D.D.; Hirayama, B.A. Biology of human sodium glucose transporters. Physiol. Rev. 2011, 91, 733–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francke, S.; Mamidi, R.N.; Solanki, B.; Scheers, E.; Jadwin, A.; Favis, R.; Devineni, D. In vitro metabolism of canagliflozin in human liver, kidney, intestine microsomes and recombinant uridine diphosphate glucuronosyltransferases (UGT) and the effect of genetic variability of UGT enzymes on the pharmacokinetics of canagliflozin in humans. J. Clin. Pharmacol. 2015, 55, 1061–1072. [Google Scholar] [CrossRef]
- Santer, R.; Kinner, M.; Lassen, C.L.; Schneppenheim, R.; Eggert, P.; Bald, M.; Brodehl, J.; Daschner, M.; Ehrich, J.H.; Kemper, M.; et al. Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J. Am. Soc. Nephrol. 2003, 14, 2873–2882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurczak, M.J.; Lee, H.Y.; Birkenfeld, A.L.; Jornayvaz, F.R.; Frederick, D.W.; Pongratz, R.L.; Zhao, X.; Moeckel, G.W.; Samuel, V.T.; Whaley, J.M.; et al. SGLT2 deletion improves glucose homeostasis and preserves pancreatic beta-cell function. Diabetes 2011, 60, 890–898. [Google Scholar] [CrossRef] [Green Version]
- Zimdahl, H.; Haupt, A.; Brendel, M.; Bour, L.; Machicao, F.; Salsali, A.; Broedl, U.C.; Woerle, H.J.; Häring, H.U.; Staiger, H. Influence of common polymorphisms in the SLC5A2 gene on metabolic traits in subjects at increased risk of diabetes and on response to empagliflozin treatment in patients with diabetes. Pharmacogenet. Genomics 2017, 27, 135–142. [Google Scholar] [CrossRef]
- Dumas-Mallet, E.; Button, K.S.; Boraud, T.; Gonon, F.; Munafò, M.R. Low statistical power in biomedical science: A review of three human research domains. R. Soc. Open Sci. 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Daniel, W.W. Biostatistics: A Foundation for Analysis in the Health Sciences, 7th ed.; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Pourhoseingholi, M.A.; Vahedi, M.; Rahimzadeh, M. Sample size calculation in medical studies. Gastroenterol. Hepatol. Bed. Bench. 2013, 6, 14–17. [Google Scholar]
- Christensen, M.M.; Pedersen, R.S.; Stage, T.B.; Brasch-Andersen, C.; Nielsen, F.; Damkier, P.; Beck-Nielsen, H.; Brøsen, K.A. A gene-gene interaction between polymorphisms in the OCT2 and MATE1 genes influences the renal clearance of metformin. Pharmacogenet. Genomics 2013, 23, 526–534. [Google Scholar] [CrossRef]
- Rukov, J.L.; Shomron, N. MicroRNA pharmacogenomics: Post-transcriptional regulation of drug response. Trends Mol. Med. 2011, 17, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Xiao, D.; Ming, G.; Yin, J.; Zhou, H.; Liu, Z. Type 2 diabetes mellitus-related genetic polymorphisms in microRNAs and microRNA target sites. J. Diabetes 2014, 6, 279–289. [Google Scholar] [CrossRef]
- Demirsoy, İ.H.; Ertural, D.Y.; Balci, Ş.; Çınkır, Ü.; Sezer, K.; Tamer, L.; Aras, N. Profiles of circulating miRNAs following metformin treatment in patients with type 2 diabetes. J. Med. Biochem. 2018, 37, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Capuani, B.; Pacifici, F.; Della-Morte, D.; Lauro, D. Glucagon Like Peptide 1 and microRNA in metabolic diseases: Focusing on GLP1 action on miRNAs. Front. Endocrinol. (Lausanne) 2018, 9, 719. [Google Scholar] [CrossRef]
- Davegårdh, C.; García-Calzón, S.; Bacos, K.; Ling, C. DNA methylation in the pathogenesis of type 2 diabetes in humans. Mol. Metab. 2018, 14, 12–25. [Google Scholar] [CrossRef]
- Kapustin, R.V.; Drobintseva, A.O.; Alekseenkova, E.N.; Onopriychuk, A.R.; Arzhanova, O.N.; Polyakova, V.O.; Kvetnoy, I.M. Placental protein expression of kisspeptin-1 (KISS1) and the kisspeptin-1 receptor (KISS1R) in pregnancy complicated by diabetes mellitus or preeclampsia. Arch. Gynecol. Obstet. 2020, 437–445. [Google Scholar] [CrossRef] [PubMed]
- PharmGKB. Available online: https://www.pharmgkb.org (accessed on 11 September 2020).
No. | Gene Symbol | Region | dbSNP ID | SNP | Alleles | Effect | References |
---|---|---|---|---|---|---|---|
1 | ATM | 11q22.3 | rs11212617 | Intronic | A/C | ↑ | [20,21,22,23] |
2 | SLC2A2 | 3q26.2 | rs8192675 | Intronic | A/G | ↑ | [24,25] |
3 | PRPF31 | 19q13.42–q13.42 | rs254271 | Intronic | C/A | ↓ | [26] |
4 | CPA6 | 8q13.2–q13.2 | rs2162145 | Intronic | T/A | ↑ | [26] |
5 | SLC22A1 | 6q25.3 | rs628031 | Missense Met408Val | A/G | ↑ SE | [27,28] |
s12208357 | Missense Arg61Cys | C/T | ↓ | [29] | |||
rs34130495 | Missense Gly401Ser | A/G | ↓ | [29] | |||
rs622342 | Intronic | C/T | ↓ | [30] | |||
rs683369 | Missense Leu160Phe | G/C | ↓ | [31] | |||
rs36056065 | Indel GTAAGTTG | -/GTAAGTTG | SE | [28] | |||
rs594709 | Intronic | A/G | ↑ | [32] | |||
rs2282143 | Missense Pro341Leu | C/T | ↑ | [33] | |||
rs72552763 | IndelGAT | -/GAT | ↓ | [29] | |||
6 | SLC22A2 | 6q25.3 | rs316019 | Missense Ala270Ser | G/T | ↓ | [34] |
rs145450955 | Missense Thr201Met | G/A | ↓ | [34] | |||
rs201919874 | Missense Thr199Ile | C/T | ↓ | [34] | |||
rs3119309 | Intergenic | C/T | ↓ | [35] | |||
rs7757336 | Intergenic | G/T | ↓ | [35] | |||
rs2481030 | Intergenic | A/G | ↓ | [35] | |||
rs662301 | Non coding transcript | T/C | ↓ | [31] | |||
7 | SLC47A1 | 17p11.2 | rs2289669 | Intronic | G/A | ↑↓ | [31,32,36,37] |
rs2252281 | 5′ UTR | T/C | ↑ | [38] | |||
8 | SLC47A2 | 17p11.2 | rs562968062 | Missense Gly211Val | C/A | ↓ | [39] |
rs12943590 | 5′ UTR | G/A | ↑ | [40] | |||
9 | PRKAA1 | 5p13.1 | rs249429 | Intronic | C/T | ↑ | [31] |
10 | PRKAA2 | 1p32.2 | rs9803799 | Non coding transcript | G/T | ↑ | [31] |
11 | PRKAB2 | 1q21.1 | rs6690158 | Intronic | T/C | ↓ | [31] |
12 | STK11 | 19p13.3 | rs741765 | Intronic | T/C | ↑ | [31] |
13 | PPARA | 22q13.31 | rs4253652 | Intronic | G/A | ↓ | [31] |
14 | PPARGC1A | 4p15.2 | rs10213440 | Intronic | C/T | ↓ | [31] |
15 | PCK1 | 20q13.31 | rs4810083 | Intergenic | T/C | ↑ | [31] |
16 | ABCC8 | 11p15.1 | rs4148609 | Intronic | A/G | ↑ | [31] |
17 | KCNJ11 | 11p15.1 | rs7124355 | Intergenic | A/G | ↓ | [31] |
18 | HNF4A | 20q13.12 | rs11086926 | 3′ UTR | G/T | ↓ | [31] |
19 | HNF1B | 17q12 | rs11868513 | Intronic | A/G | ↑ | [31] |
20 | ADIPOR2 | 12p13.33 | rs758027 | Intergenic | C/T | ↓ | [31] |
21 | CAPN10 | 2q37.3 | rs3792269 | Missense Arg197Gly | A/G | ↑ | [37] |
22 | GCK | 7p13 | rs2908289 | Intronic | A/G | ↓ | [31] |
23 | MEF2A | 15q26.3 | rs4424892 | Intergenic | G/A | ↓ | [31] |
24 | MEF2D | 1q22 | rs6666307 | Intronic | T/A | ↓ | [31] |
25 | ITLN2 | 1q23.3 | rs6701920 | 3′ UTR | A/G | ↑ | [31] |
26 | GCG | 2q24.2 | rs6733736 | Intronic | G/A | ↓ | [31] |
27 | PKLR | 1q22 | rs17367421 | Intronic | C/G | ↓ | [31] |
28 | PPARGC1B | 5q32 | rs741579 | Intronic | G/A | ↑ | [31] |
29 | SP1 | 12q13.13 | rs784888 | Intronic | G/C | ↑ | [41] |
30 | FMO5 | 1q21.1 | rs7541245 | Intronic | C/A | ↓ | [42] |
31 | SLC22A3 | 6q25.3 | rs2076828 | Non coding transcript | C/G | ↓ | [43] |
No. | Gene Symbol | Region | dbSNP ID | SNP | Alleles | Effect | References |
---|---|---|---|---|---|---|---|
1 | ABCC8 | 11p15.1 | rs1799854 | Intronic | C/T | ↓ | [62,70,71,72,73,74] |
rs757110 | Missense Ala1369Ser | T/G | ↑ | [75,76,77] | |||
rs1799859 | Synonymous Arg1273Arg | G/A | ↑ | [72,78] | |||
2 | KCNJ11 | 11p15.1 | rs5219 | Missense Lys23Glu | C/T | ↑ SF | [62,75,76,79,80,81,82] |
rs5210 | 3′ UTR | G/A | ↑ | [76] | |||
3 | CYP2C9 | 10q23.33 | rs1799853 | Missense Arg144Cys | C/T | ↑ | [83,84] |
rs9332239 | Missense Pro489Ser | C/T | ↓ | [85] | |||
rs1057910 | Missense Ile359Leu | A/C | ↑ | [86,87] | |||
4 | NOS1AP | 1q23.3 | rs10494366 | Intronic | G/T | ↑↓ | [88,89,90,91] |
rs12742393 | Intronic | A/C | ↑ | ||||
5 | TCF7L2 | 10q25.2 | rs7903146 | Intronic | C/T | ↓ | [69,87,91,92] |
rs12255372 | Intronic | G/T | ↑↓ | [87,91,92,93] | |||
rs290487 | Intronic | C/T | ↑ | [94] | |||
6 | IRS1 | 2q36.3 | rs1801278 | Missense Gly972Arg | G/A | ↓SF | [95,96,97] |
7 | CYP2C8 | 10q23.33 | rs10509681 (*2) | Missense Lys399Arg | T/C | ↑ | [98,99] |
rs11572080 (*3) | Missense Arg139Lys | G/A | ↑ | [98,99] | |||
8 | KCNQ1 | 11p15.4 | rs2237892 | Intronic | C/T | ↑ | [100] |
rs163184 | Intronic | T/G | ↓ | [92] | |||
rs2237895 | Intronic | A/C | ↑ | [100,101] |
No. | Gene Symbol | Region | dbSNP ID | SNP | Alleles | Effect | References |
---|---|---|---|---|---|---|---|
1 | GLP1R | 6p21.2 | rs6923761 | Missense Gly168Ser | G/A | ↑↓ | [110,111,112,113] |
rs3765467 | Missense Arg131Leu | C/T | ↑↓ | [113,114,115] | |||
rs10305420 | Missense Pro7Leu | C/T | ↓ | [110,115] | |||
rs761386 | Intronic | C/T | ↑↓ | [114] | |||
2 | TCF7L2 | 10q25.2 | rs7903146 | Intronic | C/T | ↑ | [116] |
3 | CNR1 | 6q15 | rs1049353 | Synonymous Thr453Thr | A/G | ↑ | [117] |
4 | SORCS1 | 10q25.1 | rs1416406 | Intronic | A/G | ↑ | [118] |
5 | WFS1 | 4p16.1 | rs10010131 | Intronic | A/G | ↓ | [119] |
No. | Gene Symbol | Region | dbSNP ID | SNP | Alleles | Effect | References |
---|---|---|---|---|---|---|---|
1 | GLP1R | 6p21.2 | rs3765467 | Missense Arg131Gln | C/T | ↑ | [123] |
rs6923761 | Missense Gly168Ser | G/A | ↑↓ | [124,125,126] | |||
2 | TCF7L2 | 10q25.2 | rs7903146 | Upstream gene | C/T | ↓ | [127] |
3 | DPP4 | 2q24.2 | rs2909451 | Intronic | C/T | ↓ | [128] |
rs759717 | Intronic | G/C | ↓ | ||||
4 | KCNQ1 | 11p15.4 | rs163184 | Intronic | T/G | ↓ | [126,129] |
5 | IL6 | 7p15.3 | rs1800796 | Upstream gene | G/* | ↑ † | [130] |
rs2097677 | Intronic | A/* | |||||
6 | KCNJ11 | 11p15.1 | rs2285676 | 3′UTR | A/T | ↓ | [131] |
7 | CTRB1/2 | 16q23.1 | rs7202877 | Intergenic | T/G | ↓ | [132] |
8 | PNPLA3 | 22q13.31 | rs738409 | Missense Ile148Met | C/G | ↑ | [133] |
9 | PRKD1 | 14q12 | rs57803087 | Intronic | A/G | ↑↓ | [134] |
10 | ABCB1 | 7q21.12 | rs1128503 | Synonymous Gly412Gly | A/G | ↓ | [135] |
11 | NAT2 | 8p22 | rs1041983 | Synonymous Tyr94Tyr | C/T | ↓ | |
12 | CDKAL1 | 6p22.3 | rs7754840 | Intronic | C/G | ↓ | [136] |
rs7756992 | Intronic | A/G | ↓ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasykhova, Y.A.; Tonyan, Z.N.; Mikhailova, A.A.; Danilova, M.M.; Glotov, A.S. Pharmacogenetics of Type 2 Diabetes—Progress and Prospects. Int. J. Mol. Sci. 2020, 21, 6842. https://doi.org/10.3390/ijms21186842
Nasykhova YA, Tonyan ZN, Mikhailova AA, Danilova MM, Glotov AS. Pharmacogenetics of Type 2 Diabetes—Progress and Prospects. International Journal of Molecular Sciences. 2020; 21(18):6842. https://doi.org/10.3390/ijms21186842
Chicago/Turabian StyleNasykhova, Yulia A., Ziravard N. Tonyan, Anastasiia A. Mikhailova, Maria M. Danilova, and Andrey S. Glotov. 2020. "Pharmacogenetics of Type 2 Diabetes—Progress and Prospects" International Journal of Molecular Sciences 21, no. 18: 6842. https://doi.org/10.3390/ijms21186842
APA StyleNasykhova, Y. A., Tonyan, Z. N., Mikhailova, A. A., Danilova, M. M., & Glotov, A. S. (2020). Pharmacogenetics of Type 2 Diabetes—Progress and Prospects. International Journal of Molecular Sciences, 21(18), 6842. https://doi.org/10.3390/ijms21186842