Staphylococcus aureus Host Tropism and Its Implications for Murine Infection Models
Abstract
:1. Staphylococcus aureus
2. S. aureus’ Extended Host Spectrum
3. Host Adaptation of S. aureus
- Core genome (75%), which is quite conserved in all lineages and codes for housekeeping genes, genes of central metabolism, and some conserved virulence factors such as α-hemolysin (hla);
- Accessory genome (15%) that consists of mobile genetic elements (MGE), such as transposons, prophages, pathogenicity islands, plasmids, and chromosomal cassettes;
4. Implications of Staphylococcal Host Adaptation for Murine Colonization and Infection Models
4.1. Current Problems with Conventional S. aureus Mouse Models
4.1.1. Genetic Variations among S. aureus Isolates
4.1.2. Genetic Variations among Mouse Strains
4.1.3. Infectious Dose
4.1.4. Murine Microbiome
4.1.5. Constitution and Function of the Murine and Human Immune Systems
4.1.6. Species-Specific Staphylococcal Toxins and Immune Evasion Molecules
4.1.7. Species-Specific Staphylococcal Adhesins and Nutrient Acquisition Systems
4.2. Alternative Approaches to Conventional Mouse Models
4.2.1. Improving S. aureus Mouse Models by Using Host-Adapted S. aureus Strains
4.2.2. Improving S. aureus Mouse Models by Using Humanized Mice
4.2.3. Dirty Mice, Natural Microbiota, and Wildlings
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
A/E | Attaching and effacing family |
APC | Antigen presenting cell |
C5a | Complement component 5a |
C5aR1 | Complement C5a receptor 1 |
CA-MRSA | Community-associated methicillin-resistant Staphylococcus aureus |
CC | Clonal complex |
CD | Cluster of differentiation |
CFU | Colony forming units |
CHIPS | Chemotaxis inhibitory protein of Staphylococcus aureus |
coa | Coagulase |
dltB | D-alanyl-lipoteichoic acid biosynthesis protein B |
DTR | Diphtheria toxin receptor |
e.g., | Exempli gratia |
EHSG | Extended-host-spectrum genotypes |
ESKAPE | Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. |
Fnbp | Fibronectin binding protein |
GM-CSF | Granulocyte-macrophage colony-stimulating factor |
h | Hours |
HA-MRSA | Hospital-associated methicillin-resistant Staphylococcus aureus |
hC5aR1 | Humanized complement C5a receptor 1 |
hHb | Humanized hemoglobin |
HIS | Human immune system |
HLA | Human leukocyte antigen |
hla | α-hemolysin |
hlb | β-hemolysin |
HlgCB | γ- hemolysin C/B |
hPMN | Human polymorphonuclear leukocytes |
i.e., | Id est |
i.n. | Intranasal |
i.p. | Intraperitoneal |
i.t. | Intratracheal |
i.v. | Intravenous |
IAV | Influenza A virus |
IEC | Immune evasion cluster |
IFNγ | Interferon γ |
IgG | Immunoglobulin G |
IL | Interleukin |
IsdB | Iron-regulated surface determinant protein B |
KD | Dissociation constant |
LA-MRSA | Livestock-associated methicillin-resistant Staphylococcus aureus |
LukAB | Leukocodin A/B |
M | Molar units |
MGE | Mobile genetic elements |
MHC | Major histocompatibility complex |
MISTRG | M-CSFh/h IL-3/GM-CSFh/h SIRPah/h TPOh/h RAG2−/− IL2Rγ−/− mice |
MITRG | M-CSFh/h IL-3/GM-CSFh/h TPOh/h RAG2−/− IL2Rγ−/− mice |
MLST | Multi-locus sequence typing |
MRSA | Methicillin-resistant Staphylococcus aureus |
MSSA | Methicillin-sensitive Staphylococcus aureus |
N.A. | Not applicable |
ND | Not determined |
NF-κB | Nuclear factor kappa B |
NOD | Nonobese diabetic |
NSG | NOD-scid-IL2Rγnull mice |
PVL | Panton–Valentine leukocidin |
Ref. | Reference |
saeR | Staphylococcus aureus exoprotein expression protein R |
s.c. | Subcutaneous |
SCCmec | Staphylococcal cassette chromosome mec |
SEA | Staphylococcal enterotoxin A |
SEB | Staphylococcal enterotoxin B |
sfb | Segmented filamentous bacteria |
spa | Staphylococcal protein A |
SP-B | Surfactant protein B |
ST | Sequence type |
Th1 | T helper cell type 1 |
Th2 | T helper cell type 2 |
TNFα | Tumor necrosis factor α |
VRSA | Vancomycin-resistant Staphylococcus aureus |
vwb | Von Willebrand binding protein |
WHO | World Health Organization |
WTA | Wall teichoic acid |
β-GlcNAc | β-N-acetylglucosamine |
References
- Ogston, A. Classics in infectious diseases. “On abscesses”. Rev. Infect. Dis. 1984, 6, 122–128. [Google Scholar]
- Pelz, A.; Wieland, K.-P.; Putzbach, K.; Hentschel, P.; Albert, K.; Götz, F. Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J. Biol. Chem. 2005, 280, 32493–32498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goh, S.H.; Byrne, S.K.; Zhang, J.L.; Chow, A.W. Molecular typing of Staphylococcus aureus on the basis of coagulase gene polymorphisms. J. Clin. Microbiol. 1992, 30, 1642–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [Green Version]
- Sakr, A.; Brégeon, F.; Mège, J.-L.; Rolain, J.-M.; Blin, O. Staphylococcus aureus Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. Front. Microbiol. 2018, 9, 2419. [Google Scholar] [CrossRef]
- Wertheim, H.F.L.; Melles, D.C.; Vos, M.C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H.A.; Nouwen, J.L. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5, 751–762. [Google Scholar] [CrossRef]
- van Belkum, A.; Verkaik, N.J.; De Vogel, C.P.; Boelens, H.A.; Verveer, J.; Nouwen, J.L.; Verbrugh, H.A.; Wertheim, H.F.L. Reclassification of Staphylococcus aureus nasal carriage types. J. Infect. Dis. 2009, 199, 1820–1826. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [Green Version]
- Zhen, X.; Lundborg, C.S.; Zhang, M.; Sun, X.; Li, Y.; Hu, X.; Gu, S.; Gu, Y.; Wei, J.; Dong, H. Clinical and economic impact of methicillin-resistant Staphylococcus aureus: A multicentre study in China. Sci. Rep. 2020, 10, 3900. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Antimicrobial Resistance. Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014; ISBN 978-92-4-156474-8. [Google Scholar]
- Rice, L.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Henderson, A.; Nimmo, G.R. Control of healthcare- and community-associated MRSA: Recent progress and persisting challenges. Br. Med. Bull. 2018, 125, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Y. Molecular pathogenesis of Staphylococcus aureus infection. Pediatr. Res. 2009, 65, 71R–77R. [Google Scholar] [CrossRef]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- Rudkin, J.K.; Edwards, A.M.; Bowden, M.G.; Brown, E.L.; Pozzi, C.; Waters, E.M.; Chan, W.C.; Williams, P.; O’Gara, J.P.; Massey, R.C. Methicillin resistance reduces the virulence of healthcare-associated methicillin-resistant Staphylococcus aureus by interfering with the agr quorum sensing system. J. Infect. Dis. 2012, 205, 798–806. [Google Scholar] [CrossRef] [Green Version]
- Löffler, B.; Hussain, M.; Grundmeier, M.; Brück, M.; Holzinger, D.; Varga, G.; Roth, J.; Kahl, B.C.; Proctor, R.A.; Peters, G. Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog. 2010, 6, e1000715. [Google Scholar] [CrossRef]
- Voss, A.; Loeffen, F.; Bakker, J.; Klaassen, C.; Wulf, M. Methicillin-resistant Staphylococcus aureus in pig farming. Emerg. Infect. Dis. 2005, 11, 1965–1966. [Google Scholar] [CrossRef]
- Anjum, M.F.; Marco-Jimenez, F.; Duncan, D.; Marín, C.; Smith, R.P.; Evans, S.J. Livestock-Associated Methicillin-Resistant Staphylococcus aureus from Animals and Animal Products in the UK. Front. Microbiol. 2019, 10, 2136. [Google Scholar] [CrossRef] [Green Version]
- Cuny, C.; Wieler, L.H.; Witte, W. Livestock-Associated MRSA: The Impact on Humans. Antibiotics 2015, 4, 521–543. [Google Scholar] [CrossRef]
- Heaton, C.J.; Gerbig, G.R.; Sensius, L.D.; Patel, V.; Smith, T.C. Staphylococcus aureus Epidemiology in Wildlife: A Systematic Review. Antibiotics 2020, 9, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monecke, S.; Gavier-Widén, D.; Hotzel, H.; Peters, M.; Guenther, S.; Lazaris, A.; Loncaric, I.; Müller, E.; Reissig, A.; Ruppelt-Lorz, A.; et al. Diversity of Staphylococcus aureus Isolates in European Wildlife. PLoS ONE 2016, 11, e0168433. [Google Scholar] [CrossRef] [Green Version]
- Destoumieux-Garzón, D.; Mavingui, P.; Boetsch, G.; Boissier, J.; Darriet, F.; Duboz, P.; Fritsch, C.; Giraudoux, P.; Le Roux, F.; Morand, S.; et al. The One Health Concept: 10 Years Old and a Long Road Ahead. Front. Vet. Sci. 2018, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Matuszewska, M.; Murray, G.G.R.; Harrison, E.M.; Holmes, M.A.; Weinert, L.A. The Evolutionary Genomics of Host Specificity in Staphylococcus aureus. Trends Microbiol. 2020, 28, 465–477. [Google Scholar] [CrossRef]
- Silva, V.; Capelo, J.L.; Igrejas, G.; Poeta, P. Molecular Epidemiology of Staphylococcus aureus Lineages in Wild Animals in Europe: A Review. Antibiotics 2020, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Haag, A.F.; Fitzgerald, J.R.; Penadés, J.R. Staphylococcus aureus in Animals. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Raafat, D.; Mrochen, D.M.; Al’Sholui, F.; Heuser, E.; Ryll, R.; Pritchett-Corning, K.R.; Jacob, J.; Walther, B.; Matuschka, F.-R.; Richter, D.; et al. Molecular Epidemiology of Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus in Wild, Captive and Laboratory Rats: Effect of Habitat on the Nasal S. aureus Population. Toxins 2020, 12, 80. [Google Scholar] [CrossRef] [Green Version]
- Mrochen, D.M.; Grumann, D.; Schulz, D.; Gumz, J.; Trübe, P.; Pritchett-Corning, K.; Johnson, S.; Nicklas, W.; Kirsch, P.; Martelet, K.; et al. Global spread of mouse-adapted Staphylococcus aureus lineages CC1, CC15, and CC88 among mouse breeding facilities. Int. J. Med. Microbiol. 2018, 308, 598–606. [Google Scholar] [CrossRef]
- Schulz, D.; Grumann, D.; Trübe, P.; Pritchett-Corning, K.; Johnson, S.; Reppschläger, K.; Gumz, J.; Sundaramoorthy, N.; Michalik, S.; Berg, S.; et al. Laboratory Mice Are Frequently Colonized with Staphylococcus aureus and Mount a Systemic Immune Response—Note of Caution for In vivo Infection Experiments. Front. Cell. Infect. Microbiol. 2017, 7, 152. [Google Scholar] [CrossRef] [Green Version]
- Richardson, E.J.; Bacigalupe, R.; Harrison, E.M.; Weinert, L.A.; Lycett, S.; Vrieling, M.; Robb, K.; Hoskisson, P.A.; Holden, M.T.G.; Feil, E.J.; et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2018, 2, 1468–1478. [Google Scholar] [CrossRef]
- Shoemaker, L.G.; Hayhurst, E.; Weiss-Lehman, C.P.; Strauss, A.T.; Porath-Krause, A.; Borer, E.T.; Seabloom, E.W.; Shaw, A.K. Pathogens manipulate the preference of vectors, slowing disease spread in a multi-host system. Ecol. Lett. 2019, 22, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Münkemüller, T.; Lavergne, S.; Bzeznik, B.; Dray, S.; Jombart, T.; Schiffers, K.; Thuiller, W. How to measure and test phylogenetic signal. Methods Ecol. Evol. 2012, 3, 743–756. [Google Scholar] [CrossRef]
- Slatkin, M. Linkage disequilibrium—Understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 2008, 9, 477–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tibayrenc, M.; Ayala, F.J. Reproductive clonality of pathogens: A perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Nat. Rev. Microbiol. 2012, 109, E3305–E3313. [Google Scholar] [CrossRef] [Green Version]
- Feil, E.J.; Cooper, J.E.; Grundmann, H.; Robinson, D.A.; Enright, M.C.; Berendt, T.; Peacock, S.J.; Smith, J.M.; Murphy, M.; Spratt, B.G.; et al. How Clonal Is Staphylococcus aureus? J. Bacteriol. 2003, 185, 3307–3316. [Google Scholar] [CrossRef] [Green Version]
- Enright, M.C.; Day, N.P.J.; Davies, C.E.; Peacock, S.J.; Spratt, B.G. Multilocus Sequence Typing for Characterization of Methicillin-Resistant and Methicillin-Susceptible Clones of Staphylococcus aureus. J. Clin. Microbiol. 2000, 38, 1008–1015. [Google Scholar] [CrossRef] [Green Version]
- Vincze, S.; Stamm, I.; Monecke, S.; Kopp, P.A.; Semmler, T.; Wieler, L.H.; Lübke-Becker, A.; Walther, B. Molecular Analysis of Human and Canine Staphylococcus aureus Strains Reveals Distinct Extended-Host-Spectrum Genotypes Independent of Their Methicillin Resistance. Appl. Environ. Microbiol. 2013, 79, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Combes, C. Parasitism. In The Ecology and Evolution of Intimate Interactions; University of Chicago Press: Chicago, IL, USA, 2001; ISBN 0226114465. [Google Scholar]
- Loker, E.S. Macroevolutionary Immunology: A Role for Immunity in the Diversification of Animal life. Front. Immunol. 2012, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Schaumburg, F.; Onwugamba, F.C.; Akulenko, R.; Peters, G.; Mellmann, A.; Köck, R.; Becker, K. A geospatial analysis of flies and the spread of antimicrobial resistant bacteria. Int. J. Med. Microbiol. 2016, 306, 566–571. [Google Scholar] [CrossRef]
- Rossi, G.; Cerquetella, M.; Attili, A.R. Amphixenosic Aspects of Staphylococcus aureus Infection in Man and Animals. Curr. Top. Microbiol. Immunol. 2017, 409, 297–323. [Google Scholar] [CrossRef] [PubMed]
- Borremans, B.; Faust, C.; Manlove, K.R.; Sokolow, S.H.; Lloyd-Smith, J.O. Cross-species pathogen spillover across ecosystem boundaries: Mechanisms and theory. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2019, 374, 20180344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bäumler, A.; Fang, F.C. Host specificity of bacterial pathogens. Cold Spring Harb. Perspect. Med. 2013, 3, a010041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsay, J.A. Staphylococcus aureus genomics and the impact of horizontal gene transfer. Int. J. Med. Microbiol. 2014, 304, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, J.A. Genomic variation and evolution of Staphylococcus aureus. Int. J. Med. Microbiol. 2010, 300, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, J.A.; Holden, M.T.G. Staphylococcus aureus: Superbug, super genome? Trends Microbiol. 2004, 12, 378–385. [Google Scholar] [CrossRef]
- Lindsay, J.A.; Moore, C.E.; Day, N.P.; Peacock, S.J.; Witney, A.A.; Stabler, R.A.; Husain, S.E.; Butcher, P.D.; Hinds, J. Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J. Bacteriol. 2006, 188, 669–676. [Google Scholar] [CrossRef] [Green Version]
- Xia, G.; Wolz, C. Phages of Staphylococcus aureus and their impact on host evolution. Infect. Genet. Evol. 2014, 21, 593–601. [Google Scholar] [CrossRef]
- Josse, J.; Laurent, F.; Diot, A. Staphylococcal Adhesion and Host Cell Invasion: Fibronectin-Binding and Other Mechanisms. Front. Microbiol. 2017, 8, 2433. [Google Scholar] [CrossRef] [Green Version]
- Askarian, F.; Ajayi, C.; Hanssen, A.-M.; van Sorge, N.M.; Pettersen, I.; Diep, D.B.; Sollid, J.U.E.; Johannessen, M. The interaction between Staphylococcus aureus SdrD and desmoglein 1 is important for adhesion to host cells. Sci. Rep. 2016, 6, 22134. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, M.G.; Simpson, A.; Aho, S.; Uitto, J.; Pulkkinen, L. Interspecies conservation and differential expression of mouse desmoglein gene family. Exp. Dermatol. 2002, 11, 115–125. [Google Scholar] [CrossRef]
- Mestas, J.; Hughes, C.C.W. Of mice and not men: Differences between mouse and human immunology. J. Immunol. 2004, 172, 2731–2738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crosby, H.A.; Kwiecinski, J.; Horswill, A.R. Staphylococcus aureus Aggregation and Coagulation Mechanisms, and Their Function in Host-Pathogen Interactions. Adv. Appl. Microbiol. 2016, 96, 1–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, T.C.; Bellinger, D.A.; Merricks, E.P.; Raymer, R.A.; Kloos, M.T.; Defriess, N.; Ragni, M.V.; Griggs, T.R. Porcine and canine von Willebrand factor and von Willebrand disease: Hemostasis, thrombosis, and atherosclerosis studies. Thrombosis 2010, 2010, 461238. [Google Scholar] [CrossRef] [PubMed]
- Ben Zakour, N.L.; Sturdevant, D.E.; Even, S.; Guinane, C.M.; Barbey, C.; Alves, P.D.; Cochet, M.-F.; Gautier, M.; Otto, M.; Fitzgerald, J.R.; et al. Genome-wide analysis of ruminant Staphylococcus aureus reveals diversification of the core genome. J. Bacteriol. 2008, 190, 6302–6317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, J.M.-L.; Lloyd, D.H.; Lindsay, J.A. Staphylococcus aureus host specificity: Comparative genomics of human versus animal isolates by multi-strain microarray. Microbiology 2008, 154, 1949–1959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viana, D.; Blanco, J.; Tormo-Más, M.A.; Selva, L.; Guinane, C.M.; Baselga, R.; Corpa, J.M.; Lasa, I.; Novick, R.P.; Fitzgerald, J.R.; et al. Adaptation of Staphylococcus aureus to ruminant and equine hosts involves SaPI-carried variants of von Willebrand factor-binding protein. Mol. Microbiol. 2010, 77, 1583–1594. [Google Scholar] [CrossRef] [PubMed]
- De Jong, N.W.M.; Van Kessel, K.P.M.; van Strijp, J.A.G. Immune Evasion by Staphylococcus aureus. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Thammavongsa, V.; Kim, H.K.; Missiakas, D.; Schneewind, O. Staphylococcal manipulation of host immune responses. Nat. Rev. Microbiol. 2015, 13, 529–543. [Google Scholar] [CrossRef] [Green Version]
- Parker, D. Humanized Mouse Models of Staphylococcus aureus Infection. Front. Immunol. 2017, 8, 512. [Google Scholar] [CrossRef]
- Perlman, R.L. Mouse models of human disease: An evolutionary perspective. Evol. Med. Public Health 2016, 2016, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Hickman, D.L.; Johnson, J.; Vemulapalli, T.H.; Crisler, J.R.; Shepherd, R. Commonly Used Animal Models. In Principles of Animal Research for Graduate and Undergraduate Students; Suckow, M.A., Stewart, K., Eds.; Elsevier Science: Saint Louis, MO, USA, 2016; pp. 117–175. ISBN 9780128021514. [Google Scholar]
- Justice, M.J.; Dhillon, P. Using the mouse to model human disease: Increasing validity and reproducibility. Dis. Model. Mech. 2016, 9, 101–103. [Google Scholar] [CrossRef] [Green Version]
- Waterston, R.H.; Lindblad-Toh, K.; Birney, E.; Rogers, J.; Abril, J.F.; Agarwal, P.; Agarwala, R.; Ainscough, R.; Alexandersson, M.; An, P.; et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002, 420, 520–562. [Google Scholar] [CrossRef]
- Seok, J.; Warren, H.S.; Cuenca, A.G.; Mindrinos, M.N.; Baker, H.V.; Xu, W.; Richards, D.R.; McDonald-Smith, G.P.; Gao, H.; Hennessy, L.; et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA. 2013, 110, 3507–3512. [Google Scholar] [CrossRef] [Green Version]
- Takao, K.; Miyakawa, T. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA 2015, 112, 1167–1172. [Google Scholar] [CrossRef] [Green Version]
- Shay, T.; Lederer, J.A.; Benoist, C. Genomic responses to inflammation in mouse models mimic humans: We concur, apples to oranges comparisons won’t do. Proc. Natl. Acad. Sci. USA 2015, 112, E346. [Google Scholar] [CrossRef] [Green Version]
- Warren, H.S.; Tompkins, R.G.; Moldawer, L.L.; Seok, J.; Xu, W.; Mindrinos, M.N.; Maier, R.V.; Xiao, W.; Davis, R.W. Mice are not men. Proc. Natl. Acad. Sci. USA 2015, 112, E345. [Google Scholar] [CrossRef] [Green Version]
- Takao, K.; Hagihara, H.; Miyakawa, T. Reply to Warren et al. and Shay et al.: Commonalities across species do exist and are potentially important. Proc. Natl. Acad. Sci. USA 2015, 112, E347–E348. [Google Scholar] [CrossRef] [Green Version]
- Laudanski, K.; Stentz, M.; DiMeglio, M.; Furey, W.; Steinberg, T.; Patel, A. Potential Pitfalls of the Humanized Mice in Modeling Sepsis. Int. J. Inflam. 2018, 2018, 6563454. [Google Scholar] [CrossRef]
- Rosshart, S.P.; Vassallo, B.G.; Angeletti, D.; Hutchinson, D.S.; Morgan, A.P.; Takeda, K.; Hickman, H.D.; McCulloch, J.A.; Badger, J.H.; Ajami, N.J.; et al. Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance. Cell 2017, 171, 1015–1028. [Google Scholar] [CrossRef] [Green Version]
- Sellers, R.S. Translating Mouse Models. Toxicol. Pathol. 2017, 45, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Zschaler, J.; Schlorke, D.; Arnhold, J. Differences in innate immune response between man and mouse. Crit. Rev. Immunol. 2014, 34, 433–454. [Google Scholar] [CrossRef] [Green Version]
- Bjornson-Hooper, Z.B.; Fragiadakis, G.K.; Spitzer, M.H.; Madhireddy, D.; McIlwain, D.; Nolan, G.P. A Comprehensive Atlas of Immunological Differences Between Humans, Mice and Non-Human Primates. biorxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Bailey, M.; Christoforidou, Z.; Lewis, M.C. The evolutionary basis for differences between the immune systems of man, mouse, pig and ruminants. Vet. Immunol. Immunopathol. 2013, 152, 13–19. [Google Scholar] [CrossRef]
- Anderson, L.S.; Reynolds, M.B.; Rivara, K.R.; Miller, L.S.; Simon, S.I. A Mouse Model to Assess Innate Immune Response to Staphylococcus aureus Infection. J. Vis. Exp. 2019, 144, e59015. [Google Scholar] [CrossRef]
- Feuerstein, R.; Forde, A.J.; Lohrmann, F.; Kolter, J.; Ramirez, N.J.; Zimmermann, J.; Gomez de Agüero, M.; Henneke, P. Resident macrophages acquire innate immune memory in staphylococcal skin infection. eLife 2020, 9, e55602. [Google Scholar] [CrossRef]
- Deppermann, C.; Peiseler, M.; Zindel, J.; Zbytnuik, L.; Lee, W.-Y.; Pasini, E.; Baciu, C.; Matelski, J.; Lee, Y.; Kumar, D.; et al. Tacrolimus impairs Kupffer cell capacity to control bacteremia: Why transplant recipients are susceptible to infection. Hepatology 2020. [Google Scholar] [CrossRef]
- Tam, K.; Lacey, K.A.; Devlin, J.C.; Coffre, M.; Sommerfield, A.; Chan, R.; O’Malley, A.; Koralov, S.B.; Torres, V.J. Targeting leukocidin-mediated immune evasion protects mice from Staphylococcus aureus bacteremia. J. Exp. Med. 2020, 217, e20190541. [Google Scholar] [CrossRef]
- Gaborit, B.J.; Roquilly, A.; Louvet, C.; Sadek, A.; Tessoulin, B.; Broquet, A.; Jacqueline, C.; Vourc’h, M.; Chaumette, T.; Chauveau, M.; et al. Regulatory T Cells Expressing Tumor Necrosis Factor Receptor Type 2 Play a Major Role in CD4+ T-Cell Impairment During Sepsis. J. Infect. Dis. 2020, 222, 1222–1234. [Google Scholar] [CrossRef]
- Carestia, A.; Davis, R.P.; Grosjean, H.; Lau, M.W.; Jenne, C.N. Acetylsalicylic acid inhibits intravascular coagulation during Staphylococcus aureus-induced sepsis in mice. Blood 2020, 135, 1281–1286. [Google Scholar] [CrossRef]
- Guo, L.-Y.; Yan, S.-Z.; Tao, X.; Yang, Q.; Li, Q.; Wang, T.-S.; Yu, S.-Q.; Chen, S.-L. Evaluation of hypocrellin A-loaded lipase sensitive polymer micelles for intervening methicillin-resistant Staphylococcus Aureus antibiotic-resistant bacterial infection. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 106, 110230. [Google Scholar] [CrossRef]
- Singh, K.V.; Arias, C.A.; Murray, B.E. Efficacy of Tedizolid against Enterococci and Staphylococci, Including cfr+ Strains, in a Mouse Peritonitis Model. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Luan, Y.; Jing, S.; Wang, Y.; Gao, Z.; Yang, P.; Ding, Y.; Wang, L.; Wang, D.; Wang, T. Baicalein mediates protection against Staphylococcus aureus-induced pneumonia by inhibiting the coagulase activity of vWbp. Biochem. Pharmacol. 2020, 178, 114024. [Google Scholar] [CrossRef]
- Ge, C.; Monk, I.R.; Monard, S.C.; Bedford, J.G.; Braverman, J.; Stinear, T.P.; Wakim, L.M. Neutrophils play an ongoing role in preventing bacterial pneumonia by blocking the dissemination of Staphylococcus aureus from the upper to the lower airways. Immunol. Cell Biol. 2020, 98, 577–594. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Y.; Cheng, C.; Chen, P.; Zhang, P.; Wu, H.; Li, K.; Deng, Y.; Qian, J.; Zhang, X.; et al. NF-κB/TWIST1 Mediates Migration and Phagocytosis of Macrophages in the Mice Model of Implant-Associated Staphylococcus aureus Osteomyelitis. Front. Microbiol. 2020, 11, 1301. [Google Scholar] [CrossRef]
- Isogai, N.; Shiono, Y.; Kuramoto, T.; Yoshioka, K.; Ishihama, H.; Funao, H.; Nakamura, M.; Matsumoto, M.; Ishii, K. Potential osteomyelitis biomarkers identified by plasma metabolome analysis in mice. Sci. Rep. 2020, 10, 839. [Google Scholar] [CrossRef]
- Schwarz, C.; Hoerr, V.; Töre, Y.; Hösker, V.; Hansen, U.; van de Vyver, H.; Niemann, S.; Kuhlmann, M.T.; Jeibmann, A.; Wildgruber, M.; et al. Isolating Crucial Steps in Induction of Infective Endocarditis with Preclinical Modeling of Host Pathogen Interaction. Front. Microbiol. 2020, 11, 1325. [Google Scholar] [CrossRef]
- Liesenborghs, L.; Meyers, S.; Lox, M.; Criel, M.; Claes, J.; Peetermans, M.; Trenson, S.; Vande Velde, G.; Vanden Berghe, P.; Baatsen, P.; et al. Staphylococcus aureus endocarditis: Distinct mechanisms of bacterial adhesion to damaged and inflamed heart valves. Eur. Heart J. 2019, 40, 3248–3259. [Google Scholar] [CrossRef]
- Thammavongsa, V.; Missiakas, D.M.; Schneewind, O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 2013, 342, 863–866. [Google Scholar] [CrossRef] [Green Version]
- Athanasopoulos, A.N.; Economopoulou, M.; Orlova, V.V.; Sobke, A.; Schneider, D.; Weber, H.; Augustin, H.G.; Eming, S.A.; Schubert, U.; Linn, T.; et al. The extracellular adherence protein (Eap) of Staphylococcus aureus inhibits wound healing by interfering with host defense and repair mechanisms. Blood 2006, 107, 2720–2727. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.K.; Missiakas, D.; Schneewind, O. Mouse models for infectious diseases caused by Staphylococcus aureus. J. Immunol. Methods 2014, 410, 88–99. [Google Scholar] [CrossRef]
- Redi, D.; Raffaelli, C.S.; Rossetti, B.; De Luca, A.; Montagnani, F. Staphylococcus aureus vaccine preclinical and clinical development: Current state of the art. New Microbiol. 2018, 41, 208–213. [Google Scholar]
- Miller, L.S.; Fowler, V.G.; Shukla, S.K.; Rose, W.E.; Proctor, R.A. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol. Rev. 2020, 44, 123–153. [Google Scholar] [CrossRef] [Green Version]
- van Belkum, A.; Melles, D.C. Not all Staphylococcus aureus strains are equally pathogenic. Discov. Med. 2005, 5, 148–152. [Google Scholar]
- Trübe, P.; Hertlein, T.; Mrochen, D.M.; Schulz, D.; Jorde, I.; Krause, B.; Zeun, J.; Fischer, S.; Wolf, S.A.; Walther, B.; et al. Bringing together what belongs together: Optimizing murine infection models by using mouse-adapted Staphylococcus aureus strains. Int. J. Med. Microbiol. 2019, 309, 26–38. [Google Scholar] [CrossRef]
- Iqbal, Z.; Seleem, M.N.; Hussain, H.I.; Huang, L.; Hao, H.; Yuan, Z. Comparative virulence studies and transcriptome analysis of Staphylococcus aureus strains isolated from animals. Sci. Rep. 2016, 6, 35442. [Google Scholar] [CrossRef]
- Penadés, M.; Viana, D.; García-Quirós, A.; Muñoz-Silvestre, A.; Moreno-Grua, E.; Pérez-Fuentes, S.; Pascual, J.J.; Corpa, J.M.; Selva, L. Differences in virulence between the two more prevalent Staphylococcus aureus clonal complexes in rabbitries (CC121 and CC96) using an experimental model of mammary gland infection. Vet. Res. 2020, 51, 11. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Montarelo, D.; Viedma, E.; Murcia, M.; Muñoz-Gallego, I.; Larrosa, N.; Brañas, P.; Fernández-Hidalgo, N.; Gavaldà, J.; Almirante, B.; Chaves, F. Pathogenic Characteristics of Staphylococcus aureus Endovascular Infection Isolates from Different Clonal Complexes. Front. Microbiol. 2017, 8, 917. [Google Scholar] [CrossRef]
- Strobel, M.; Pförtner, H.; Tuchscherr, L.; Völker, U.; Schmidt, F.; Kramko, N.; Schnittler, H.-J.; Fraunholz, M.J.; Löffler, B.; Peters, G.; et al. Post-invasion events after infection with Staphylococcus aureus are strongly dependent on both the host cell type and the infecting S. aureus strain. Clin. Microbiol. Infect. 2016, 22, 799–809. [Google Scholar] [CrossRef] [Green Version]
- Balzli, C.L.; Bartell, J.; Dajcs, J.J.; McCormick, C.C.; Caballero, A.R.; Stroman, D.; O’Callaghan, R.J. A highly virulent Staphylococcus aureus: Rabbit anterior chamber infection, characterization, and genetic analysis. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5114–5120. [Google Scholar] [CrossRef] [Green Version]
- Santana, H.; Ferreira, L.F.A.A.; Pereira, Í.S.; Marques, L.M.; Fiqueiredo, T.B.; Silva, R.A.A.d. Distinct strains of Staphylococcus aureus lead to different inflammatory response patterns in a murine model of intradermal infection. Acta Sci. Biol. Sci. 2016, 38, 457. [Google Scholar] [CrossRef] [Green Version]
- Hume, E.B.H.; Cole, N.; Khan, S.; Garthwaite, L.L.; Aliwarga, Y.; Schubert, T.L.; Willcox, M.D.P. A Staphylococcus aureus mouse keratitis topical infection model: Cytokine balance in different strains of mice. Immunol. Cell Biol. 2005, 83, 294–300. [Google Scholar] [CrossRef]
- Bosi, E.; Monk, J.M.; Aziz, R.K.; Fondi, M.; Nizet, V.; Palsson, B.Ø. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proc. Natl. Acad. Sci. USA 2016, 113, E3801–E3809. [Google Scholar] [CrossRef] [Green Version]
- Acker, K.P.; Wong Fok Lung, T.; West, E.; Craft, J.; Narechania, A.; Smith, H.; O’Brien, K.; Moustafa, A.M.; Lauren, C.; Planet, P.J.; et al. Strains of Staphylococcus aureus that Colonize and Infect Skin Harbor Mutations in Metabolic Genes. iScience 2019, 19, 281–290. [Google Scholar] [CrossRef]
- Balasubramanian, D.; Harper, L.; Shopsin, B.; Torres, V.J. Staphylococcus aureus pathogenesis in diverse host environments. Pathog. Dis. 2017, 75, ftx005. [Google Scholar] [CrossRef] [Green Version]
- Machado, H.; Weng, L.L.; Dillon, N.; Seif, Y.; Holland, M.; Pekar, J.E.; Monk, J.M.; Nizet, V.; Palsson, B.O.; Feist, A.M. Strain-Specific Metabolic Requirements Revealed by a Defined Minimal Medium for Systems Analyses of Staphylococcus aureus. Appl. Environ. Microbiol. 2019, 85, e01773-19. [Google Scholar] [CrossRef] [Green Version]
- Tartaglia, N.R.; Nicolas, A.; de Rezende Rodovalho, V.; Da Luz, B.S.R.; Briard-Bion, V.; Krupova, Z.; Thierry, A.; Coste, F.; Burel, A.; Martin, P.; et al. Extracellular vesicles produced by human and animal Staphylococcus aureus strains share a highly conserved core proteome. Sci. Rep. 2020, 10, 8467. [Google Scholar] [CrossRef]
- Von Köckritz-Blickwede, M.; Rohde, M.; Oehmcke, S.; Miller, L.S.; Cheung, A.L.; Herwald, H.; Foster, S.; Medina, E. Immunological mechanisms underlying the genetic predisposition to severe Staphylococcus aureus infection in the mouse model. Am. J. Pathol. 2008, 173, 1657–1668. [Google Scholar] [CrossRef] [Green Version]
- Nippe, N.; Varga, G.; Holzinger, D.; Löffler, B.; Medina, E.; Becker, K.; Roth, J.; Ehrchen, J.M.; Sunderkötter, C. Subcutaneous infection with S. aureus in mice reveals association of resistance with influx of neutrophils and Th2 response. J. Investig. Dermatol. 2011, 131, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, H.; Numata, K.; Ito, T.; Takagi, K.; Matsukawa, A. Innate immune response in Th1- and Th2-dominant mouse strains. Shock 2004, 22, 460–466. [Google Scholar] [CrossRef]
- Bröker, B.M.; Mrochen, D.; Péton, V. The T Cell Response to Staphylococcus aureus. Pathogens 2016, 5, 31. [Google Scholar] [CrossRef]
- Karauzum, H.; Datta, S.K. Adaptive Immunity Against Staphylococcus aureus. Curr. Top. Microbiol. Immunol. 2017, 409, 419–439. [Google Scholar] [CrossRef]
- Lan, F.; Zhang, N.; Holtappels, G.; De Ruyck, N.; Krysko, O.; van Crombruggen, K.; Braun, H.; Johnston, S.L.; Papadopoulos, N.G.; Zhang, L.; et al. Staphylococcus aureus Induces a Mucosal Type 2 Immune Response via Epithelial Cell-derived Cytokines. Am. J. Respir. Crit. Care Med. 2018, 198, 452–463. [Google Scholar] [CrossRef]
- de Vooght, V.; Vanoirbeek, J.A.J.; Luyts, K.; Haenen, S.; Nemery, B.; Hoet, P.H.M. Choice of mouse strain influences the outcome in a mouse model of chemical-induced asthma. PLoS ONE 2010, 5, e12581. [Google Scholar] [CrossRef] [Green Version]
- Vidlak, D.; Kielian, T. Infectious Dose Dictates the Host Response during Staphylococcus aureus Orthopedic-Implant Biofilm Infection. Infect. Immun. 2016, 84, 1957–1965. [Google Scholar] [CrossRef] [Green Version]
- Pollitt, E.J.G.; Szkuta, P.T.; Burns, N.; Foster, S.J. Staphylococcus aureus infection dynamics. PLoS Pathog. 2018, 14, e1007112. [Google Scholar] [CrossRef] [Green Version]
- Schmid-Hempel, P.; Frank, S.A. Pathogenesis, virulence, and infective dose. PLoS Pathog. 2007, 3, 1372–1373. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food and Drug Administration. Bad Bug Book. Handbook of Foodborne Pathogenic Microorganisms and Natural Toxins, 2nd ed.; CreateSpace: North Charleston, SC, USA, 2019; ISBN 0359793819.
- Singh, G.; Marples, R.R.; Kligman, A.M. Experimental Staphylococcus aureus infections in humans. J. Investig. Dermatol. 1971, 57, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Krezalek, M.A.; Hyoju, S.; Zaborin, A.; Okafor, E.; Chandrasekar, L.; Bindokas, V.; Guyton, K.; Montgomery, C.P.; Daum, R.S.; Zaborina, O.; et al. Can Methicillin-resistant Staphylococcus aureus Silently Travel from the Gut to the Wound and Cause Postoperative Infection? Modeling the “Trojan Horse Hypothesis”. Ann. Surg. 2018, 267, 749–758. [Google Scholar] [CrossRef]
- Horn, J.; Stelzner, K.; Rudel, T.; Fraunholz, M. Inside job: Staphylococcus aureus host-pathogen interactions. Int. J. Med. Microbiol. 2018, 308, 607–624. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Jin, H.; Zhang, C.; Yuan, T. Intestinal methicillin-resistant Staphylococcus aureus causes prosthetic infection via ‘Trojan Horse’ mechanism: Evidence from a rat model. Bone Joint Res. 2020, 9, 152–161. [Google Scholar] [CrossRef]
- Gresham, H.D.; Lowrance, J.H.; Caver, T.E.; Wilson, B.S.; Cheung, A.L.; Lindberg, F.P. Survival of Staphylococcus aureus inside neutrophils contributes to infection. J. Immunol. 2000, 164, 3713–3722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, K.Y.; Otto, M. Quorum-sensing regulation in staphylococci-an overview. Front. Microbiol. 2015, 6, 1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queck, S.Y.; Jameson-Lee, M.; Villaruz, A.E.; Bach, T.-H.L.; Khan, B.A.; Sturdevant, D.E.; Ricklefs, S.M.; Li, M.; Otto, M. RNAIII-independent target gene control by the agr quorum-sensing system: Insight into the evolution of virulence regulation in Staphylococcus aureus. Mol. Cell 2008, 32, 150–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.L.A.; Vieira-Silva, S.; Liston, A.; Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 2015, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bogatyrev, S.R.; Rolando, J.C.; Ismagilov, R.F. Self-reinoculation with fecal flora changes microbiota density and composition leading to an altered bile-acid profile in the mouse small intestine. Microbiome 2020, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Tao, L.; Reese, T.A. Making Mouse Models That Reflect Human Immune Responses. Trends Immunol. 2017, 38, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Gauguet, S.; D’Ortona, S.; Ahnger-Pier, K.; Duan, B.; Surana, N.K.; Lu, R.; Cywes-Bentley, C.; Gadjeva, M.; Shan, Q.; Priebe, G.P.; et al. Intestinal Microbiota of Mice Influences Resistance to Staphylococcus aureus Pneumonia. Infect. Immun. 2015, 83, 4003–4014. [Google Scholar] [CrossRef] [Green Version]
- Boldock, E.; Surewaard, B.G.J.; Shamarina, D.; Na, M.; Fei, Y.; Ali, A.; Williams, A.; Pollitt, E.J.G.; Szkuta, P.; Morris, P.; et al. Human skin commensals augment Staphylococcus aureus pathogenesis. Nat. Microbiol. 2018, 3, 881–890. [Google Scholar] [CrossRef] [Green Version]
- Iwase, T.; Uehara, Y.; Shinji, H.; Tajima, A.; Seo, H.; Takada, K.; Agata, T.; Mizunoe, Y. Staphylococcus epidermidis Esp inhibits Staphylococcus. aureus biofilm formation and nasal colonization. Nature 2010, 465, 346–349. [Google Scholar] [CrossRef]
- Bitschar, K.; Sauer, B.; Focken, J.; Dehmer, H.; Moos, S.; Konnerth, M.; Schilling, N.A.; Grond, S.; Kalbacher, H.; Kurschus, F.C.; et al. Lugdunin amplifies innate immune responses in the skin in synergy with host- and microbiota-derived factors. Nat. Commun. 2019, 10, 2730. [Google Scholar] [CrossRef]
- Piewngam, P.; Zheng, Y.; Nguyen, T.H.; Dickey, S.W.; Joo, H.-S.; Villaruz, A.E.; Glose, K.A.; Fisher, E.L.; Hunt, R.L.; Li, B.; et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature 2018, 562, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Liu, T.; Zhou, W.-Y.; Zhuang, Y.; Peng, L.-S.; Zhang, J.-Y.; Yin, Z.-N.; Mao, X.-H.; Guo, G.; Shi, Y.; et al. Role of gamma-delta T cells in host response against Staphylococcus aureus-induced pneumonia. BMC Immunol. 2012, 13, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudva, A.; Scheller, E.V.; Robinson, K.M.; Crowe, C.R.; Choi, S.M.; Slight, S.R.; Khader, S.A.; Dubin, P.J.; Enelow, R.I.; Kolls, J.K.; et al. Influenza A Inhibits Th17-Mediated Host Defense against Bacterial Pneumonia in Mice. J. Immunol. 2010, 186, 1666–1674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuffs, S.W.; Haeryfar, S.M.M.; McCormick, J.K. Manipulation of Innate and Adaptive Immunity by Staphylococcal Superantigens. Pathogens 2018, 7, 53. [Google Scholar] [CrossRef] [Green Version]
- Fraser, J.D. Clarifying the mechanism of superantigen toxicity. PLoS Biol. 2011, 9, e1001145. [Google Scholar] [CrossRef] [Green Version]
- Salgado-Pabón, W.; Schlievert, P.M. Models matter: The search for an effective Staphylococcus aureus vaccine. Nat. Rev. Microbiol. 2014, 12, 585–591. [Google Scholar] [CrossRef]
- Ulrich, R.G. Evolving superantigens of Staphylococcus aureus. FEMS Immunol. Med. Microbiol. 2000, 27, 1–7. [Google Scholar] [CrossRef]
- Spaan, A.N.; van Strijp, J.A.G.; Torres, V.J. Leukocidins: Staphylococcal bi-component pore-forming toxins find their receptors. Nat. Rev. Microbiol. 2017, 15, 435–447. [Google Scholar] [CrossRef]
- Tromp, A.T.; van Strijp, J.A.G. Studying Staphylococcal Leukocidins: A Challenging Endeavor. Front. Microbiol. 2020, 11, 611. [Google Scholar] [CrossRef] [Green Version]
- Boguslawski, K.M.; McKeown, A.N.; Day, C.J.; Lacey, K.A.; Tam, K.; Vozhilla, N.; Kim, S.Y.; Jennings, M.P.; Koralov, S.B.; Elde, N.C.; et al. Exploiting species specificity to understand the tropism of a human-specific toxin. Sci. Adv. 2020, 6, eaax7515. [Google Scholar] [CrossRef] [Green Version]
- McGuinness, W.A.; Kobayashi, S.D.; DeLeo, F.R. Evasion of Neutrophil Killing by Staphylococcus aureus. Pathogens 2016, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Koymans, K.J.; Vrieling, M.; Gorham, R.D.; van Strijp, J.A.G. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation. Curr. Top. Microbiol. Immunol. 2017, 409, 441–489. [Google Scholar] [CrossRef]
- McCarthy, A.J.; Lindsay, J.A. Staphylococcus aureus innate immune evasion is lineage-specific: A bioinfomatics study. Infect. Genet. Evol. 2013, 19, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Powers, M.E.; Bubeck Wardenburg, J. Igniting the fire: Staphylococcus aureus virulence factors in the pathogenesis of sepsis. PLoS Pathog. 2014, 10, e1003871. [Google Scholar] [CrossRef] [PubMed]
- Katayama, Y.; Baba, T.; Sekine, M.; Fukuda, M.; Hiramatsu, K. Beta-hemolysin promotes skin colonization by Staphylococcus aureus. J. Bacteriol. 2013, 195, 1194–1203. [Google Scholar] [CrossRef]
- Vrieling, M.; Koymans, K.J.; Heesterbeek, D.A.C.; Aerts, P.C.; Rutten, V.P.M.G.; De Haas, C.J.C.; Van Kessel, K.P.M.; Koets, A.P.; Nijland, R.; van Strijp, J.A.G. Bovine Staphylococcus aureus Secretes the Leukocidin LukMF’ To Kill Migrating Neutrophils through CCR1. mBio 2015, 6, e00335. [Google Scholar] [CrossRef] [Green Version]
- van Dalen, R.; Jacinto, S.; Rumpret, M.; Fuchsberger, F.F.; van Teijlingen, N.H.; Hanske, J.; Rademacher, C.; Geijtenbeek, T.B.H.; van Strijp, J.A.G.; Weidenmaier, C.; et al. Langerhans Cells Sense Staphylococcus aureus Wall Teichoic Acid through Langerin To Induce Inflammatory Responses. mBio 2019, 10, e00330. [Google Scholar] [CrossRef] [Green Version]
- Pishchany, G.; McCoy, A.L.; Torres, V.J.; Krause, J.C.; Crowe, J.E.; Fabry, M.E.; Skaar, E.P. Specificity for human hemoglobin enhances Staphylococcus aureus infection. Cell Host Microbe 2010, 8, 544–550. [Google Scholar] [CrossRef] [Green Version]
- Reizner, W.; Hunter, J.G.; O’Malley, N.T.; Southgate, R.D.; Schwarz, E.M.; Kates, S.L. A systematic review of animal models for Staphylococcus aureus osteomyelitis. Eur. Cell. Mater. 2014, 27, 196–212. [Google Scholar] [CrossRef]
- García-Lara, J.; Needham, A.J.; Foster, S.J. Invertebrates as animal models for Staphylococcus aureus pathogenesis: A window into host-pathogen interaction. FEMS Immunol. Med. Microbiol. 2005, 43, 311–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maslova, E.; Shi, Y.; Sjöberg, F.; Azevedo, H.S.; Wareham, D.W.; McCarthy, R.R. An Invertebrate Burn Wound Model That Recapitulates the Hallmarks of Burn Trauma and Infection Seen in Mammalian Models. Front. Microbiol. 2020, 11, 998. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.-H.; Ebner, P.; Reichert, S.; Hertlein, T.; Zabel, S.; Lankapalli, A.K.; Nieselt, K.; Ohlsen, K.; Götz, F. MpsAB is important for Staphylococcus aureus virulence and growth at atmospheric CO2 levels. Nat. Commun. 2019, 10, 3627. [Google Scholar] [CrossRef] [PubMed]
- Chertow, D.S.; Kindrachuk, J.; Sheng, Z.M.; Pujanauski, L.M.; Cooper, K.; Nogee, D.; Claire, M.S.; Solomon, J.; Perry, D.; Sayre, P.; et al. Influenza A and methicillin-resistant Staphylococcus aureus co-infection in rhesus macaques—A model of severe pneumonia. Antivir. Res. 2016, 129, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.J.; Hu, B. Establishment of multi-site infection model in zebrafish larvae for studying Staphylococcus aureus infectious disease. J. Genet. Genom. 2012, 39, 521–534. [Google Scholar] [CrossRef]
- Milutinović, B.; Kurtz, J. Immune memory in invertebrates. Semin. Immunol. 2016, 28, 328–342. [Google Scholar] [CrossRef]
- Gourbal, B.; Pinaud, S.; Beckers, G.J.M.; van der Meer, J.W.M.; Conrath, U.; Netea, M.G. Innate immune memory: An evolutionary perspective. Immunol. Rev. 2018, 283, 21–40. [Google Scholar] [CrossRef]
- Trstenjak, N.; Stulik, L.; Rouha, H.; Zmajkovic, J.; Zerbs, M.; Nagy, E.; Badarau, A. Adaptation of the Staphylococcus aureus leukocidin LukGH for the rabbit host by protein engineering. Biochem. J. 2019, 476, 275–292. [Google Scholar] [CrossRef]
- Messaoudi, I.; Estep, R.; Robinson, B.; Wong, S.W. Nonhuman Primate Models of Human Immunology. Antioxid. Redox Signal. 2011, 14, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Welty-Wolf, K.E.; Kraft, B.D. Nonhuman primate species as models of human bacterial sepsis. Lab Anim. 2019, 48, 57–65. [Google Scholar] [CrossRef]
- van den Berg, S.; van Wamel, W.J.B.; Snijders, S.V.; Ouwerling, B.; de Vogel, C.P.; Boelens, H.A.; Willems, R.J.L.; Huijsdens, X.W.; Verreck, F.A.W.; Kondova, I.; et al. Rhesus macaques (Macaca mulatta) are natural hosts of specific Staphylococcus aureus lineages. PLoS ONE 2011, 6, e26170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.; O’Rourke, J.; De Ungria, M.C.; Robertson, B.; Daskalopoulos, G.; Dixon, M.F. A standardized mouse model of Helicobacter pylori infection: Introducing the Sydney strain. Gastroenterology 1997, 112, 1386–1397. [Google Scholar] [CrossRef]
- Marchetti, M.; Aricò, B.; Burroni, D.; Figura, N.; Rappuoli, R.; Ghiara, P. Development of a mouse model of Helicobacter pylori infection that mimics human disease. Science 1995, 267, 1655–1658. [Google Scholar] [CrossRef] [PubMed]
- Bouladoux, N.; Harrison, O.J.; Belkaid, Y. The Mouse Model of Infection with Citrobacter rodentium. Curr. Protoc. Immunol. 2017, 119, 19.15.1–19.15.25. [Google Scholar] [CrossRef]
- Mullineaux-Sanders, C.; Sanchez-Garrido, J.; Hopkins, E.G.D.; Shenoy, A.R.; Barry, R.; Frankel, G. Citrobacter rodentium-host-microbiota interactions: Immunity, bioenergetics and metabolism. Nat. Rev. Microbiol. 2019, 17, 701–715. [Google Scholar] [CrossRef]
- Mrochen, D.M.; Schulz, D.; Fischer, S.; Jeske, K.; El Gohary, H.; Reil, D.; Imholt, C.; Trübe, P.; Suchomel, J.; Tricaud, E.; et al. Wild rodents and shrews are natural hosts of Staphylococcus aureus. Int. J. Med. Microbiol. 2018, 308, 590–597. [Google Scholar] [CrossRef]
- Holtfreter, S.; Radcliff, F.J.; Grumann, D.; Read, H.; Johnson, S.; Monecke, S.; Ritchie, S.; Clow, F.; Goerke, C.; Bröker, B.M.; et al. Characterization of a mouse-adapted Staphylococcus aureus strain. PLoS ONE 2013, 8, e71142. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Emolo, C.; Holtfreter, S.; Wiles, S.; Kreiswirth, B.; Missiakas, D.; Schneewind, O. Staphylococcal Protein A Contributes to Persistent Colonization of Mice with Staphylococcus aureus. J. Bacteriol. 2018, 200. [Google Scholar] [CrossRef] [Green Version]
- Flaxman, A.; van Diemen, P.M.; Yamaguchi, Y.; Allen, E.; Lindemann, C.; Rollier, C.S.; Milicic, A.; Wyllie, D.H. Development of persistent gastrointestinal S. aureus carriage in mice. Sci. Rep. 2017, 7, 12415. [Google Scholar] [CrossRef]
- Langley, R.J.; Ting, Y.T.; Clow, F.; Young, P.G.; Radcliff, F.J.; Choi, J.M.; Sequeira, R.P.; Holtfreter, S.; Baker, H.; Fraser, J.D. Staphylococcal enterotoxin-like X (SElX) is a unique superantigen with functional features of two major families of staphylococcal virulence factors. PLoS Pathog. 2017, 13, e1006549. [Google Scholar] [CrossRef]
- Bremell, T.; Lange, S.; Svensson, L.; Jennische, E.; Gröndahl, K.; Carlsten, H.; Tarkowski, A. Outbreak of spontaneous staphylococcal arthritis and osteitis in mice. Arthritis Rheum. 1990, 33, 1739–1744. [Google Scholar] [CrossRef] [PubMed]
- Bremell, T.; Abdelnour, A.; Tarkowski, A. Histopathological and serological progression of experimental Staphylococcus aureus arthritis. Infect. Immun. 1992, 60, 2976–2985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuchscherr, L.; Bischoff, M.; Lattar, S.M.; Noto Llana, M.; Pförtner, H.; Niemann, S.; Geraci, J.; van de Vyver, H.; Fraunholz, M.J.; Cheung, A.L.; et al. Sigma Factor SigB Is Crucial to Mediate Staphylococcus aureus Adaptation during Chronic Infections. PLoS Pathog. 2015, 11, e1004870. [Google Scholar] [CrossRef]
- Tuchscherr, L.; Geraci, J.; Löffler, B. Staphylococcus aureus Regulator Sigma B is Important to Develop Chronic Infections in Hematogenous Murine Osteomyelitis Model. Pathogens 2017, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Meghji, S.; Williams, R.J.; Henderson, B.; Brock, J.H.; Nair, S.P. Staphylococcus aureus fibronectin binding proteins are essential for internalization by osteoblasts but do not account for differences in intracellular levels of bacteria. Infect. Immun. 2001, 69, 2872–2877. [Google Scholar] [CrossRef] [Green Version]
- Kiser, K.B.; Cantey-Kiser, J.M.; Lee, J.C. Development and characterization of a Staphylococcus aureus nasal colonization model in mice. Infect. Immun. 1999, 67, 5001–5006. [Google Scholar] [CrossRef] [Green Version]
- Bray, M.; Davis, K.; Geisbert, T.; Schmaljohn, C.; Huggins, J. A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J. Infect. Dis. 1999, 179 (Suppl. 1), S248–S258. [Google Scholar] [CrossRef]
- Connolly, B.M.; Steele, K.E.; Davis, K.J.; Geisbert, T. Pathogenesis of Experimental Ebola Virus Infection in Guinea Pigs. J. Infect. Dis 1999, 179, S203–S217. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Peng, O.; Shen, X.; Gong, L.; Xue, C.; Cao, Y. Multiple amino acid substitutions involved in the adaption of three avian-origin H7N9 influenza viruses in mice. Virol. J. 2019, 16, 3. [Google Scholar] [CrossRef] [Green Version]
- Prokopyeva, E.; Kurskaya, O.; Sobolev, I.; Solomatina, M.; Murashkina, T.; Suvorova, A.; Alekseev, A.; Danilenko, D.; Komissarov, A.; Fadeev, A.; et al. Experimental Infection Using Mouse-Adapted Influenza B Virus in a Mouse Model. Viruses 2020, 12, 470. [Google Scholar] [CrossRef] [Green Version]
- Drake, J.W.; Charlesworth, B.; Charlesworth, D.; Crow, J.F. Rates of spontaneous mutation. Genetics 1998, 148, 1667–1686. [Google Scholar] [PubMed]
- Søndberg, E.; Jelsbak, L. Salmonella Typhimurium undergoes distinct genetic adaption during chronic infections of mice. BMC Microbiol. 2016, 16, 30. [Google Scholar] [CrossRef] [Green Version]
- McAdam, P.R.; Holmes, A.; Templeton, K.E.; Fitzgerald, J.R. Adaptive evolution of Staphylococcus aureus during chronic endobronchial infection of a cystic fibrosis patient. PLoS ONE 2011, 6, e24301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prunier, A.-L.; Malbruny, B.; Laurans, M.; Brouard, J.; Duhamel, J.-F.; Leclercq, R. High rate of macrolide resistance in Staphylococcus aureus strains from patients with cystic fibrosis reveals high proportions of hypermutable strains. J. Infect. Dis. 2003, 187, 1709–1716. [Google Scholar] [CrossRef] [Green Version]
- Denamur, E.; Matic, I. Evolution of mutation rates in bacteria. Mol. Microbiol. 2006, 60, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Clow, F.; Peterken, K.; Pearson, V.; Proft, T.; Radcliff, F.J. PilVax, a novel Lactococcus lactis-based mucosal vaccine platform, stimulates systemic and mucosal immune responses to Staphylococcus aureus. Immunol. Cell Biol. 2020, 98, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Viana, D.; Comos, M.; McAdam, P.R.; Ward, M.J.; Selva, L.; Guinane, C.M.; González-Muñoz, B.M.; Tristan, A.; Foster, S.J.; Fitzgerald, J.R.; et al. A single natural nucleotide mutation alters bacterial pathogen host tropism. Nat. Genet. 2015, 47, 361–366. [Google Scholar] [CrossRef]
- Meulemans, L.; Hermans, K.; Duchateau, L.; Haesebrouck, F. High and low virulence Staphylococcus aureus strains in a rabbit skin infection model. Vet. Microbiol. 2007, 125, 333–340. [Google Scholar] [CrossRef]
- Hermans, K.; De Herdt, P.; Devriese, L.A.; Godard, C.; Haesebrouck, F. Colonisation of rabbits with Staphylococcus aureus after experimental infection with high and low virulence strains. Vet. Microbiol. 2000, 72, 277–284. [Google Scholar] [CrossRef]
- Hermans, K.; De Herdt, P.; Devriese, L.A.; Hendrickx, W.; Godard, C.; Haesebrouck, F. Colonization of rabbits with Staphylococcus aureus in flocks with and without chronic staphylococcosis. Vet. Microbiol. 1999, 67, 37–46. [Google Scholar] [CrossRef]
- Tang, A.; Balzli, C.L.; Caballero, A.R.; McCormick, C.C.; Taylor, S.D.; O’Callaghan, R.J. Staphylococcus aureus infection of the rabbit cornea following topical administration. Curr. Eye Res. 2012, 37, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- McCormick, C.C.; Caballero, A.R.; Balzli, C.L.; Tang, A.; Weeks, A.; O’Callaghan, R.J. Diverse virulence of Staphylococcus aureus strains for the conjunctiva. Curr. Eye Res. 2011, 36, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Moodley, A.; Latronico, F.; Guardabassi, L. Experimental colonization of pigs with methicillin-resistant Staphylococcus aureus (MRSA): Insights into the colonization and transmission of livestock-associated MRSA. Epidemiol. Infect. 2011, 139, 1594–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrieling, M.; Boerhout, E.M.; van Wigcheren, G.F.; Koymans, K.J.; Mols-Vorstermans, T.G.; De Haas, C.J.C.; Aerts, P.C.; Daemen, I.J.J.M.; van Kessel, K.P.M.; Koets, A.P.; et al. LukMF’ is the major secreted leukocidin of bovine Staphylococcus aureus and is produced in vivo during bovine mastitis. Sci. Rep. 2016, 6, 37759. [Google Scholar] [CrossRef] [PubMed]
- Stripecke, R.; Münz, C.; Schuringa, J.J.; Bissig, K.-D.; Soper, B.; Meeham, T.; Yao, L.-C.; Di Santo, J.P.; Brehm, M.; Rodriguez, E.; et al. Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Mol. Med. 2020, 12, e8662. [Google Scholar] [CrossRef]
- Mosier, D.E.; Gulizia, R.J.; Baird, S.M.; Wilson, D.B. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988, 335, 256–259. [Google Scholar] [CrossRef]
- Yong, K.S.M.; Her, Z.; Chen, Q. Humanized Mice as Unique Tools for Human-Specific Studies. Arch. Immunol. Ther. Exp. 2018, 66, 245–266. [Google Scholar] [CrossRef] [Green Version]
- Alves da Costa, T.; Lang, J.; Torres, R.M.; Pelanda, R. The development of human immune system mice and their use to study tolerance and autoimmunity. J. Transl. Autoimmun. 2019, 2, 100021. [Google Scholar] [CrossRef]
- Li, Y.; Di Santo, J.P. Modeling Infectious Diseases in Mice with a “Humanized” Immune System. Microbiol. Spectr. 2019, 18, 299–313. [Google Scholar] [CrossRef]
- Allen, T.M.; Brehm, M.A.; Bridges, S.; Ferguson, S.; Kumar, P.; Mirochnitchenko, O.; Palucka, K.; Pelanda, R.; Sanders-Beer, B.; Shultz, L.D.; et al. Humanized immune system mouse models: Progress, challenges and opportunities. Nat. Immunol. 2019, 20, 770–774. [Google Scholar] [CrossRef]
- Skelton, J.K.; Ortega-Prieto, A.M.; Dorner, M. A Hitchhiker’s guide to humanized mice: New pathways to studying viral infections. Immunology 2018, 154, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, S. Humanized mice: A brief overview on their diverse applications in biomedical research. J. Cell. Physiol. 2018, 233, 2889–2901. [Google Scholar] [CrossRef] [PubMed]
- Tromp, A.T.; van Gent, M.; Abrial, P.; Martin, A.; Jansen, J.P.; De Haas, C.J.C.; van Kessel, K.P.M.; Bardoel, B.W.; Kruse, E.; Bourdonnay, E.; et al. Human CD45 is an F-component-specific receptor for the staphylococcal toxin Panton-Valentine leukocidin. Nat. Microbiol. 2018, 3, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Schulz, A.; Jiang, L.; de Vor, L.; Ehrström, M.; Wermeling, F.; Eidsmo, L.; Melican, K. Neutrophil Recruitment to Noninvasive MRSA at the Stratum Corneum of Human Skin Mediates Transient Colonization. Cell Rep. 2019, 29, 1074–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.X.; Gilmore, K.J.; Szabo, P.A.; Zeppa, J.J.; Baroja, M.L.; Haeryfar, S.M.M.; McCormick, J.K. Superantigens subvert the neutrophil response to promote abscess formation and enhance Staphylococcus aureus survival in vivo. Infect. Immun. 2014, 82, 3588–3598. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.X.; Kasper, K.J.; Zeppa, J.J.; McCormick, J.K. Superantigens Modulate Bacterial Density during Staphylococcus aureus Nasal Colonization. Toxins 2015, 7, 1821–1836. [Google Scholar] [CrossRef] [Green Version]
- Soong, G.; Paulino, F.; Wachtel, S.; Parker, D.; Wickersham, M.; Zhang, D.; Brown, A.; Lauren, C.; Dowd, M.; West, E.; et al. Methicillin-resistant Staphylococcus aureus adaptation to human keratinocytes. mBio 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Tseng, C.W.; Biancotti, J.C.; Berg, B.L.; Gate, D.; Kolar, S.L.; Müller, S.; Rodriguez, M.D.; Rezai-Zadeh, K.; Fan, X.; Beenhouwer, D.O.; et al. Increased Susceptibility of Humanized NSG Mice to Panton-Valentine Leukocidin and Staphylococcus aureus Skin Infection. PLoS Pathog. 2015, 11, e1005292. [Google Scholar] [CrossRef]
- Knop, J.; Hanses, F.; Leist, T.; Archin, N.M.; Buchholz, S.; Gläsner, J.; Gessner, A.; Wege, A.K. Staphylococcus aureus Infection in Humanized Mice: A New Model to Study Pathogenicity Associated with Human Immune Response. J. Infect. Dis. 2015, 212, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Ge, L.; Abdel-Razek, O.; Jain, S.; Liu, Z.; Hong, Y.; Nieman, G.; Johnson, F.; Golub, L.M.; Cooney, R.N.; et al. Differential susceptibility of human SP-B Genetic Variants on Lung Injury Caused by Bacterial Pneumonia and the Effect Of A Chemically Modified Curcumin. Shock 2016, 45, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Prince, A.; Wang, H.; Kitur, K.; Parker, D. Humanized Mice Exhibit Increased Susceptibility to Staphylococcus aureus Pneumonia. J. Infect. Dis. 2017, 215, 1386–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tromp, A.T.; Zhao, Y.; Jongerius, I.; Heezius, E.C.J.M.; Abrial, P.; Ruyken, M.; van Strijp, J.A.G.; de Haas, C.J.C.; Spaan, A.N.; van Kessel, K.P.M.; et al. Pre-existing antibody-mediated adverse effects prevent the clinical development of a bacterial anti-inflammatory protein. Dis. Model. Mech. 2020. [Google Scholar] [CrossRef] [PubMed]
- Fournier, B.; Philpott, D.J. Recognition of Staphylococcus aureus by the innate immune system. Clin. Microbiol. Rev. 2005, 18, 521–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, J.; Kelly, M.; Freed, B.M.; McCarter, M.D.; Kedl, R.M.; Torres, R.M.; Pelanda, R. Studies of lymphocyte reconstitution in a humanized mouse model reveal a requirement of T cells for human B cell maturation. J. Immunol. 2013, 190, 2090–2101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dusséaux, M.; Masse-Ranson, G.; Darche, S.; Ahodantin, J.; Li, Y.; Fiquet, O.; Beaumont, E.; Moreau, P.; Rivière, L.; Neuveut, C.; et al. Viral Load Affects the Immune Response to HBV in Mice with Humanized Immune System and Liver. Gastroenterology 2017, 153, 1647–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klicznik, M.M.; Benedetti, A.; Gail, L.M.; Varkhande, S.R.; Holly, R.; Laimer, M.; Stoecklinger, A.; Sir, A.; Reitsamer, R.; Neuper, T.; et al. A novel humanized mouse model to study the function of human cutaneous memory T cells in vivo in human skin. Sci. Rep. 2020, 10, 11164. [Google Scholar] [CrossRef]
- Sommer, F.; Bäckhed, F. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef]
- Gianchecchi, E.; Fierabracci, A. Recent Advances on Microbiota Involvement in the Pathogenesis of Autoimmunity. Int. J. Mol. Sci. 2019, 20, 283. [Google Scholar] [CrossRef] [Green Version]
- Pascal, M.; Perez-Gordo, M.; Caballero, T.; Escribese, M.M.; Lopez Longo, M.N.; Luengo, O.; Manso, L.; Matheu, V.; Seoane, E.; Zamorano, M.; et al. Microbiome and Allergic Diseases. Front. Immunol. 2018, 9, 1584. [Google Scholar] [CrossRef]
- Lazar, V.; Ditu, L.-M.; Pircalabioru, G.G.; Gheorghe, I.; Curutiu, C.; Holban, A.M.; Picu, A.; Petcu, L.; Chifiriuc, M.C. Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Front. Immunol. 2018, 9, 1830. [Google Scholar] [CrossRef] [Green Version]
- Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krych, L.; Hansen, C.H.F.; Hansen, A.K.; van den Berg, F.W.J.; Nielsen, D.S. Quantitatively different, yet qualitatively alike: A meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome. PLoS ONE 2013, 8, e62578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abolins, S.; King, E.C.; Lazarou, L.; Weldon, L.; Hughes, L.; Drescher, P.; Raynes, J.G.; Hafalla, J.C.R.; Viney, M.E.; Riley, E.M. The comparative immunology of wild and laboratory mice, Mus musculus domesticus. Nat. Commun. 2017, 8, 14811. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.K.; Hollander, G.A.; McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 2015, 282, 20143085. [Google Scholar] [CrossRef]
- Reese, T.A.; Bi, K.; Kambal, A.; Filali-Mouhim, A.; Beura, L.K.; Bürger, M.C.; Pulendran, B.; Sekaly, R.-P.; Jameson, S.C.; Masopust, D.; et al. Sequential Infection with Common Pathogens Promotes Human-like Immune Gene Expression and Altered Vaccine Response. Cell Host Microbe 2016, 19, 713–719. [Google Scholar] [CrossRef] [Green Version]
- Beura, L.K.; Hamilton, S.E.; Bi, K.; Schenkel, J.M.; Odumade, O.A.; Casey, K.A.; Thompson, E.A.; Fraser, K.A.; Rosato, P.C.; Filali-Mouhim, A.; et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 2016, 532, 512–516. [Google Scholar] [CrossRef]
- Leung, J.M.; Budischak, S.A.; Chung The, H.; Hansen, C.; Bowcutt, R.; Neill, R.; Shellman, M.; Loke, P.N.; Graham, A.L. Rapid environmental effects on gut nematode susceptibility in rewilded mice. PLoS Biol. 2018, 16, e2004108. [Google Scholar] [CrossRef] [Green Version]
- Yeung, F.; Chen, Y.-H.; Lin, J.-D.; Leung, J.M.; McCauley, C.; Devlin, J.C.; Hansen, C.; Cronkite, A.; Stephens, Z.; Drake-Dunn, C.; et al. Altered Immunity of Laboratory Mice in the Natural Environment Is Associated with Fungal Colonization. Cell Host Microbe 2020, 27, 809–822. [Google Scholar] [CrossRef]
- Helbig, L.; Guehring, T.; Titze, N.; Nurjadi, D.; Sonntag, R.; Armbruster, J.; Wildemann, B.; Schmidmaier, G.; Gruetzner, A.P.; Freischmidt, H. A new sequential animal model for infection-related non-unions with segmental bone defect. BMC Musculoskelet. Disord. 2020, 21, 329. [Google Scholar] [CrossRef]
- Ghasemzadeh-Moghaddam, H.; van Wamel, W.; van Belkum, A.; Hamat, R.A.; Neela, V.K. Differences in humoral immune response between patients with or without nasal carriage of Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 451–458. [Google Scholar] [CrossRef]
- Verkaik, N.J.; de Vogel, C.P.; Boelens, H.A.; Grumann, D.; Hoogenboezem, T.; Vink, C.; Hooijkaas, H.; Foster, T.J.; Verbrugh, H.A.; van Belkum, A.; et al. Anti-staphylococcal humoral immune response in persistent nasal carriers and noncarriers of Staphylococcus aureus. J. Infect. Dis. 2009, 199, 625–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verkaik, N.J.; Lebon, A.; de Vogel, C.P.; Hooijkaas, H.; Verbrugh, H.A.; Jaddoe, V.W.V.; Hofman, A.; Moll, H.A.; van Belkum, A.; van Wamel, W.J.B. Induction of antibodies by Staphylococcus aureus nasal colonization in young children. Clin. Microbiol. Infect. 2010, 16, 1312–1317. [Google Scholar] [CrossRef] [Green Version]
- Romero Pastrana, F.; Neef, J.; Koedijk, D.G.A.M.; de Graaf, D.; Duipmans, J.; Jonkman, M.F.; Engelmann, S.; van Dijl, J.M.; Buist, G. Human antibody responses against non-covalently cell wall-bound Staphylococcus aureus proteins. Sci. Rep. 2018, 8, 3234. [Google Scholar] [CrossRef] [PubMed]
- Rosshart, S.P.; Herz, J.; Vassallo, B.G.; Hunter, A.; Wall, M.K.; Badger, J.H.; McCulloch, J.A.; Anastasakis, D.G.; Sarshad, A.A.; Leonardi, I.; et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 2019, 365, eaaw4361. [Google Scholar] [CrossRef] [PubMed]
- Suntharalingam, G.; Perry, M.R.; Ward, S.; Brett, S.J.; Castello-Cortes, A.; Brunner, M.D.; Panoskaltsis, N. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 2006, 355, 1018–1028. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.J.; Agosti, J.M.; Opal, S.M.; Lowry, S.F.; Balk, R.A.; Sadoff, J.C.; Abraham, E.; Schein, R.M.; Benjamin, E. Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group. N. Engl. J. Med. 1996, 334, 1697–1702. [Google Scholar] [CrossRef]
- Lundberg, R.; Toft, M.F.; Metzdorff, S.B.; Hansen, C.H.F.; Licht, T.R.; Bahl, M.I.; Hansen, A.K. Human microbiota-transplanted C57BL/6 mice and offspring display reduced establishment of key bacteria and reduced immune stimulation compared to mouse microbiota-transplantation. Sci. Rep. 2020, 10, 7805. [Google Scholar] [CrossRef]
S. aureus Strains | Animal Model | Infection Model | Main Findings | Ref. |
---|---|---|---|---|
Newman, N315, COL, JKD6159, NRS384, 512, LAC, Cowan | C57BL/6 mice | colonization/infection (i.n.) | - Differences in provoked weight loss, nasal bacterial load and persistence of colonization - Newman: short-term colonization; JKD6159: long term colonization - JKD6159: reduced nasal inflammation, less neutrophil egress into the airways, and reduced neutrophil–bacteria association compared to Newman | [86] |
8325-4, Staph 38 | C57BL/6, BALB/c mice | keratitis | - Staph 38: higher virulence (higher slit-lamp examination scores, higher bacterial burden in the eyes, and a higher recruitment of neutrophils) | [104] |
muCC8c, muCC88d, DIP, JSNZ, Newman | BALB/c mice | pneumonia (i.n.) and bacteremia (i.p.) | - Survival of mice in both models is strain-dependent - DIP: highest; Newman: intermediate virulence - DIP infection dose can be reduced 10-fold | [97] |
478, 586, 1611a, 1679a, ATCC29213 | BALB/c mice | sepsis | - Differences in the lethal dose | [98] |
ATCC 25923, CA-MRSA strain | BALB/c mice | intradermal infection | - CA-MRSA strain: higher recruitment of cells to the infection site and the draining lymph nodes - ATCC 25923: higher production of pro-inflammatory cytokines in the draining lymph nodes | [103] |
ST121, ST96 | rabbit (Oryctolagus cuniculus) | intramammary infection | - ST121: more severe mastitis as shown by a higher bacterial counts, higher cell recruitment, and larger abscesses | [99] |
8325-4, Newman, UMCR1, MW2, five clinical ocular isolates: 91-717, 3161-06, 30103, 177, T1 | New Zealand White rabbits | eye infection | - UMCR1 is the only S. aureus strain that grows within the anterior chamber after topic application to the rabbit eye | [102] |
diverse strains causing endovascular complications and belonging to CC5, CC8, CC15, CC30 or CC45 | honeycomb moth (Galleria mellonella) | survival model | - Survival of larvae is strain-dependent - MRSA strains cause a higher mortality than MSSA strains | [100] |
6850, USA300, LS1, SH1000, Cowan1 | human epithelial and endothelial cells, keratinocytes, fibroblasts, osteoblasts | in vitro infection | - Strain-dependent variations of host cell infection rate, cytokine production and cell death | [101] |
Strain * | Original Host | Adaptive Features ** | Experimental Findings | Refs. |
---|---|---|---|---|
JSNZ (CC88-MSSA) | laboratory mice (C57BL/6) | - Lack of superantigen genes, pvl genes, antibiotic resistance genes, and hlb-integrating Sa3int prophage (IEC) - Agglutinates mouse plasma more readily than human plasma | - Better colonizer of mice and more virulent in an intraperitoneal infection model than the human-derived strain Newman - No requirement of antibiotic pre-treatment to induce persistent colonization - Clinically relevant model to test vaccines and S. aureus decolonization drugs | [30,97,136,171,172,174,190] |
WU1 (CC88-MSSA) | laboratory mice (C57BL/6) | - Lack of superantigen genes and hlb-integrating Sa3int prophage (IEC) - Allelic variant of vwb that appears to promote enhanced agglutination of mouse plasma | - Persistent colonization of the nasopharynx in mice - Colonization triggers serum IgG response in mice | [172] |
DIP (CC49-MSSA) | bank vole (Myodes glareolus) | - Lack of superantigen genes, pvl genes, antibiotic resistance genes, and hlb-integrating Sa3int prophage (IEC) | - Increased virulence compared to S. aureus Newman in BALB/c bacteremia and pneumonia models - Significant reduction of the inoculation dose | [97] |
SaF_1 (CC15-MSSA) | laboratory mice (BALB/c) | - Lack of superantigen genes, pvl genes, and IEC genes | - Short-term exposure to SaF_1 can result in persistent gastrointestinal colonization, but only in a fraction of animals - Vertical and horizontal transfer of SaF_1 between mice | [173] |
DAK | laboratory mice | ND | - Colonization efficiency is similar to S. aureus Reynolds and Newman | [180] |
LS-1 | laboratory mice (NZB/W) | ND | - Induces rapid joint destruction with visible synovial hypertrophy within 24 h | [176,177,178,179] |
ST121 (CC121) | rabbit | - Lack of IEC genes - Species-specific dltB mutation | -Causes skin abscesses in rabbits at very low inoculum levels | [99,191] |
KH 171 | rabbit | ND | - Colonizes rabbit epithelia and spreads to different body sites - Development of large abscesses with acute onset and slow involution | [192,193,194] |
UMCR1 | rabbit | ND | - Reproducibly induces conjunctivitis after injection into the intact anterior chamber without the use of spermidin - Development of extensive disease and tissue damage in the eyes and hemorrhaging of the iris - Resistance to the ocular host defenses | [102,195,196] |
PIL69, PIL74, PIL77, B40 | pig | ND | - Natural colonization of newborn piglets following artificial colonization of the sow’s vagina - Colonization is stable for at least 28 days | [197] |
Mouse Strain | Modification | S. aureus Strain | Model | Main Findings Regarding Humanized Mice | Ref. |
---|---|---|---|---|---|
C57BL/6J | Hemizygous for human hemoglobin (hHb) | Newman | Bacteremia (i.v.) | - S. aureus binds hHb more efficiently than murine hemoglobin - Enhanced IsdB-mediated disease severity in hHb expressing mice - Increased susceptibility of hHb-expressing mice to systemic staphylococcal infection | [153] |
C57BL/6 | - Humanized MHCII: HLA-DR4-IE (DRB1*0401) - No endogenous murine MHCII | Newman | Bacteremia (i.v.) | - SEA-dependent Vβ skewing of T cells and enhanced bacterial loads in liver and heart - Increased production of pro-inflammatory cytokines in liver and blood - Increased SEA-dependent CD11b+ Ly6G+ neutrophil recruitment to the liver - Increased SEA-dependent formation of hepatic abscesses | [209] |
C57BL/6 | - Humanized MHCII: HLA-DR4-IE (DRB1*0401) - No endogenous murine MHCII | Newman, COL | Colonization (i.n.) | - Newman: deletion of sea leads to transiently higher nasal loads - COL: deletion of seb leads to higher nasal loads - S. aureus superantigens may be involved in regulating bacterial densities during nasal colonization | [210] |
NOD-scid-IL2Rγnull (NSG) | Human neonatal foreskin skin (1 cm2) | USA300 FPR3757 (LAC) | - Human skin infection (topical application) | - S. aureus infects the grafted human epidermis without major disruption of the epithelial barrier - Hyperkeratosis of the stratum corneum after infection - Infiltration of the skin by neutrophils - S. aureus infection induces autophagy in the human skin | [211] |
NOD-scid-IL2Rγnull (NSG) | - Human CD34+ umbilical cord blood cells or - Human polymorphonuclear leukocytes (hPMN) | CST5 | - Skin and soft tissue infection (s.c.) | - Enhanced susceptibility to S. aureus skin and soft tissue infection - 10–100-fold lower infection dose required - PVL induces dermonecrosis in NSG mice adoptively transferred with hPMN - PMX53, a human C5aR inhibitor, reduces the size difference of lesions induced by the PVL+ and PVL− S. aureus but also reduces recruitment of neutrophils and exacerbates the infection | [212] |
NOD-scid-IL2Rγnull (NSG) | Human CD34+ hematopoietic stem cells | PS80 | Bacteremia (i.p.) | - More severe infection reflected by a reduced survival percentage, increased weight loss, and a more rapid increase in bacterial burden - Higher rate of T cell activation and apoptosis | [213] |
FVB/N | - Humanized surfactant protein B (SP-B) C or T allele - Lack of murine SP-B gene | Xen36 | Pneumonia (i.t.) | - Mice with human SP-B C allele are more susceptible to S. aureus pneumonia than mice with SP-B T allele, presenting increased mortality, lung injury, apoptosis and NF-κB expression | [214] |
NOD-scid-IL2Rγnull (NSG) | Human CD34+ stem cells isolated from fetal liver tissue | USA300 LAC | Pneumonia (i.n.) | - More severe infection shown by higher bacterial loads in airways and lungs - Knockin of human IL3 and human GM-CSF leads to improved myeloid cell reconstitution and the development of human alveolar macrophages in humanized mice and further increased the bacterial burden - Increased number of human immune cells correlates with increased severity of S. aureus infection - PVL targets the human macrophage population and thereby contributes to the pathogenesis of the infection | [215] |
C57BL/6 N | Humanized C5aR1 | - USA300 SF8300 - ST80 | Bacteremia (i.p.) | - HlgCB-mediated increase in bacterial loads in spleen and kidney - Identification of human CD45 as a co-receptor for PVL | [207] |
SCID/Beige | Human skin graft (1.5–2 cm2) | USA300 SF8300 | - Transient human skin colonization (topical application) | - S. aureus transiently colonizes the outer stratum corneum of xenotransplanted healthy human skin - Colonization induces a local inflammatory response shown by production of human IL8 - Human IL8 can recruit murine neutrophils - Neutrophil depletion leads to a higher bacterial burden on the surface of the human skin | [208] |
huLangerin-DTR mice | Human langerin on Langerhans cells | USA300 | Epicutaneous infection | - Human langerin on murine Langerhans cells interacts with S. aureus via langerin-WTA interaction - High transcript levels of Cxcl1, Il6, and Il17 after infection are dependent on β-GlcNAc modifications on S. aureus WTA | [152] |
C57BL/6N | Humanized C5aR1 | N.A. | Neutrophil recruitment assay | - Improved binding of CHIPS to humanized C5aR1 - Administration of CHIPS dampens C5a mediated neutrophil migration | [216] |
C57BL/6J | Humanized CD11b | USA300 strain LAC | Bacteremia (i.v.) | - Improved binding of LukAB to humanized CD11b - Enhanced susceptibility to MRSA bloodstream infection shown by increased bacterial burden in the liver | [145] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrochen, D.M.; Fernandes de Oliveira, L.M.; Raafat, D.; Holtfreter, S. Staphylococcus aureus Host Tropism and Its Implications for Murine Infection Models. Int. J. Mol. Sci. 2020, 21, 7061. https://doi.org/10.3390/ijms21197061
Mrochen DM, Fernandes de Oliveira LM, Raafat D, Holtfreter S. Staphylococcus aureus Host Tropism and Its Implications for Murine Infection Models. International Journal of Molecular Sciences. 2020; 21(19):7061. https://doi.org/10.3390/ijms21197061
Chicago/Turabian StyleMrochen, Daniel M., Liliane M. Fernandes de Oliveira, Dina Raafat, and Silva Holtfreter. 2020. "Staphylococcus aureus Host Tropism and Its Implications for Murine Infection Models" International Journal of Molecular Sciences 21, no. 19: 7061. https://doi.org/10.3390/ijms21197061
APA StyleMrochen, D. M., Fernandes de Oliveira, L. M., Raafat, D., & Holtfreter, S. (2020). Staphylococcus aureus Host Tropism and Its Implications for Murine Infection Models. International Journal of Molecular Sciences, 21(19), 7061. https://doi.org/10.3390/ijms21197061