A Simple and Efficient Genetic Immunization Protocol for the Production of Highly Specific Polyclonal and Monoclonal Antibodies against the Native Form of Mammalian Proteins
Abstract
:1. Introduction
2. Results
2.1. Polyclonal Antibodies
2.1.1. Analysis of the Antibodies Produced
2.1.2. Administration Routes and Electroporation
2.1.3. Immunization of Different Species
2.2. Mouse Monoclonal Antibodies
2.3. Protocol Proposed
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Animals
4.3. Immunization
4.4. Electroporation
4.5. Blood Collection
4.6. Monoclonal Antibodies Raised in Mice
4.7. ELISA
4.8. Isotyping
4.9. Western Blot
4.10. Immunocytochemistry and Immunohistochemistry
4.11. Flow Cytometry
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
cDNA | Complementary DNA |
COS-7 | African green monkey kidney cells |
DAB | 3, 3′ diaminobenzidine |
ELISA | Enzyme-linked immunosorbent assay |
FBS | Fetal bovine serum |
FRQS | Fonds de Recherche du Québec – Santé |
HEK 293T | Human embryonic kidney 293T cells |
HRP | Horseradish peroxidase |
ID | Intradermal |
IM | Intramuscular |
PBS | Phosphate-buffered saline |
PBS-T | PBS-Tween |
Pi | Pre-immune serum |
RT | Room temperature |
NSERC | Natural Sciences and Engineering Research Council of Canada |
References
- Tang, D.C.; DeVit, M.; Johnston, S.A. Genetic immunization is a simple method for eliciting an immune response. Nature 1992, 356, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Kamata, K.; Yamanaka, N.; Takeuchi, Y.; Higashihara, M.; Kato, S. Characteristics of polyclonal anti-human nephrin antibodies induced by genetic immunization using nephrin cDNA. Nephrol. Dial. Transplant. 2006, 21, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Morel, P.A.; Falkner, D.; Plowey, J.; Larregina, A.T.; Falo, L.D. DNA immunisation: Altering the cellular localisation of expressed protein and the immunisation route allows manipulation of the immune response. Vaccine 2004, 22, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.J.; Friedman, A.; Martinez, D.; Montgomery, D.L.; Shiver, J.W.; Motzel, S.L.; Ulmer, J.B.; Liu, M.A. Preclinical efficacy of a prototype DNA vaccine: Enhanced protection against antigenic drift in influenza virus. Nat. Med. 1995, 1, 583–587. [Google Scholar] [CrossRef]
- Diestre, C.; Martínez-Lorenzo, M.; Bosque, A.; Naval, J.; Larrad, L.; Anel, A. Generation of rabbit antibodies against death ligands by cDNA immunization. J. Immunol. Methods 2006, 317, 12–20. [Google Scholar] [CrossRef]
- Schultheis, K.; Schaefer, H.; Yung, B.S.; Oh, J.; Muthumani, K.; Humeau, L.; Broderick, K.E.; Smith, T.R. Characterization of guinea pig T cell responses elicited after EP-assisted delivery of DNA vaccines to the skin. Vaccine 2016, 35, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Cashman, K.A.; Wilkinson, E.R.; Wollen-Roberts, S.E.; Shamblin, J.D.; Zelko, J.M.; Bearss, J.J.; Zeng, X.; Broderick, K.E.; Schmaljohn, C.S. DNA vaccines elicit durable protective immunity against individual or simultaneous infections with Lassa and Ebola viruses in guinea pigs. Hum. Vaccines Immunother. 2017, 13, 3010–3019. [Google Scholar] [CrossRef]
- Maloy, K.J.; Erdmann, I.; Basch, V.; Sierro, S.; Kramps, T.A.; Zinkernagel, R.M.; Oehen, S.; Kündig, T.M. Intralymphatic immunization enhances DNA vaccination. Proc. Natl. Acad. Sci. USA 2001, 98, 3299–3303. [Google Scholar] [CrossRef] [Green Version]
- Widera, G.; Austin, M.; Rabussay, D.; Goldbeck, C.; Barnett, S.W.; Chen, M.; Leung, L.; Otten, G.R.; Thudium, K.; Selby, M.J.; et al. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J. Immunol. 2000, 164, 4635–4640. [Google Scholar] [CrossRef]
- Sardesai, N.Y.; Weiner, D.B. Electroporation delivery of DNA vaccines: Prospects for success. Curr. Opin. Immunol. 2011, 23, 421–429. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Cheong, N.; Wang, D.Y.; Lee, B.W.; Kuo, I.C.; Huang, C.H.; Chua, K.Y. Generation of monoclonal antibodies against Blot 3 using DNA immunization with in vivo electroporation. Clin. Exp. Allergy 2003, 33, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, J.; Agonsanou, H.; Delvalle, N.; Fausther, M.; Salem, M.; Gulbransen, B.; Sévigny, J. Generation and characterization of polyclonal and monoclonal antibodies to human NTPDase2 including a blocking antibody. Purinergic Signal. 2017, 13, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Munkonda, M.N.; Pelletier, J.; Ivanenkov, V.V.; Fausther, M.; Tremblay, A.; Kunzli, B.; Kirley, T.L.; Sévigny, J. Characterization of a monoclonal antibody as the first specific inhibitor of human NTP diphosphohydrolase-3: Partial characterization of the inhibitory epitope and potential applications. FEBS J. 2009, 276, 479–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, D.C.; Brissova, M.; Phillips, N.; Shrestha, S.; Walker, J.T.; Aramandla, R.; Poffenberger, G.; Flaherty, D.K.; Weller, K.P.; Pelletier, J.; et al. Ectonucleoside triphosphate diphosphohydrolase-3 antibody targets adult human pancreatic beta cells for in vitro and in vivo analysis. Cell Metab. 2018, 29, 745–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelletier, J.; Salem, M.; Lecka, J.; Fausther, M.; Bigonnesse, F.; Sévigny, J. Generation and characterization of specific antibodies to the murine and human ectonucleotidase NTPDase8. Front. Pharmacol. 2017, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Nagata, S.; Salvatore, G.; Pastan, I. DNA immunization followed by a single boost with cells: A protein-free immunization protocol for production of monoclonal antibodies against the native form of membrane proteins. J. Immunol. Methods 2003, 280, 59–72. [Google Scholar] [CrossRef]
- Chu, T.T.; Halverson, G.R.; Yazdanbakhsh, K.; Øyen, R.; Reid, M. A DNA-based immunization protocol to produce monoclonal antibodies to blood group antigens. Br. J. Haematol. 2001, 113, 32–36. [Google Scholar] [CrossRef]
- André, S.; Seed, B.; Eberle, J.; Schraut, W.; Bültmann, A.; Haas, J. Increased immune response elicited by DNA vaccination with a synthetic gp120 sequence with optimized codon usage. J. Virol. 1998, 72, 1497–1503. [Google Scholar] [CrossRef] [Green Version]
- Deml, L.; Bojak, A.; Steck, S.; Graf, M.; Wild, J.; Schirmbeck, R.; Wolf, H.; Wagner, R. Multiple effects of codon usage optimization on expression and immunogenicity of DNA candidate vaccines encoding the human immunodeficiency virus type 1 gag protein. J. Virol. 2001, 75, 10991–11001. [Google Scholar] [CrossRef] [Green Version]
- Megede, J.Z.; Chen, M.-C.; Doe, B.; Schaefer, M.; Greer, C.E.; Selby, M.; Otten, G.R.; Barnett, S.W. Increased expression and immunogenicity of sequence-modified human immunodeficiency virus type 1 gag gene. J. Virol. 2000, 74, 2628–2635. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Farfan-Arribas, D.J.; Shen, S.; Chou, T.H.W.; Hirsch, A.; He, F.; Lu, S. Relative contributions of codon usage, promoter efficiency and leader sequence to the antigen expression and immunogenicity of HIV-1 Env DNA vaccine. Vaccine 2006, 24, 4531–4540. [Google Scholar] [CrossRef] [PubMed]
- García, J.F.; García, J.F.; Maestre, L.; Lucas, E.; Sánchez-Verde, L.; Romero-Chala, S.; Piris, M.Á.; Roncador, G. Genetic immunization: A new monoclonal antibody for the detection of BCL-6 protein in paraffin sections. J. Histochem. Cytochem. 2006, 54, 31–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maestre, L.; Fontán, L.; Martinez-Climent, J.A.; Garcia, J.F.; Cigudosa, J.C.; Roncador, G. Generation of a new monoclonal antibody against MALT1 by genetic immunization. Hybridoma 2007, 26, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, J.; Niemelä, P.; Lövgren, J.; Bocchi, L.; Pettersson, K.; Nevanlinna, H.; Stenman, U.-H. Characterization of monoclonal antibodies against prostate specific antigen produced by genetic immunization. J. Immunol. Methods 2004, 289, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, T.; Li, T.; Han, W.; Zhang, Y.; Ma, D. Preparation and characterization of a monoclonal antibody against CKLF1 using DNA immunization with in vivo electroporation. Hybridoma 2005, 24, 305–308. [Google Scholar] [CrossRef]
- Daftarian, P.; Chowdhury, R.; Ames, P.; Wei, C.; King, A.D.; Vaccari, J.P.D.R.; Dillon, L.; Price, J.; Leung, H.; Ashlock, B.; et al. In vivo electroporation and non-protein based screening assays to identify antibodies against native protein conformations. Hybridoma 2011, 30, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Haddad, D.; Liljeqvist, S.; Stahl, S.; Andersson, I.; Perlmann, P.; Berzins, K.; Ahlborg, N. Comparative study of DNA-based immunization vectors: Effect of secretion signals on the antibody responses in mice. FEMS Immunol. Med. Microbiol. 1997, 18, 193–202. [Google Scholar]
- Svanholm, C.; Bandholtz, L.; Lobell, A.; Wigzell, H. Enhancement of antibody responses by DNA immunization using expression vectors mediating efficient antigen secretion. J. Immunol. Methods 1999, 228, 121–130. [Google Scholar] [CrossRef]
- Inchauspé, G.; Vitvitski, L.; Major, M.E.; Jung, G.; Spengler, U.; Maisonnas, M.; Trepo, C. Plasmid DNA expressing a secreted or a nonsecreted form of hepatitis C virus nucleocapsid: Comparative studies of antibody and T-helper responses following genetic immunization. DNA Cell Biol. 1997, 16, 185–195. [Google Scholar] [CrossRef]
- Kukulski, F.; Lévesque, S.A.; Lavoie, É.G.; Lecka, J.; Bigonnesse, F.; Knowles, A.F.; Robson, S.C.; Kirley, T.L.; Sévigny, J. Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8. Purinergic Signal. 2005, 1, 193–204. [Google Scholar] [CrossRef] [Green Version]
Species | Number of Animals | Number of Antigens Tested | Administration Route | Number of Site × Volume per Site | DNA Injected per Immunization (µg) | Injection Intervals (Weeks Between Each Injection) | |
---|---|---|---|---|---|---|---|
Injection 1 to 3 | Injection 3 to 6 | ||||||
Rabbit | 64 | 25 | ID IM | 6−10 × 50 µL 2−4 × 125−250 µL | 300–800 | 2–4 | 8–17a |
7 | 7 | ID IM SS | 6−8 × 50 µL 2 × 150−175 µL 1 × 350 µL | 625–1000 | |||
3 | 2 | ID Pop ± IM | 6−8 × 50 µL 1−2 × 150 µl 1 × 250 µl | 800 | |||
Guinea pig | 50 | 17 | ID IM | 2 × 50 µl 1 × 100 µl | 125–200 | 1.5–4 | 7–16 |
2 | 1 | ID | 4 × 50 µL | ||||
2 | 1 | IM | 2 × 100 µL | ||||
3 | 1 | IM + EP | 1 × 100 µL | 100–400 | 5–7 | 8 | |
Mouse | 20 | 6 | ID IM | 2 × 25 µL 1 × 50 µL | 100 | 2–3 | 8–12 |
4 | 1 | IM | 2 × 50 µL | ||||
4 | 1 | IM + EP | 1 × 30 µL | 60 | 3–8 | 7–11 | |
Rat | 2 | 1 | ID IM | 2 × 50 µL 1 × 100 µL | 200 | 2 | 8–16 |
2 | 1 | ID | 4 × 50 µL | ||||
2 | 1 | IM | 2 × 100 µL | 125–200 | |||
Hamster | 2 | 1 | ID IM | 2 × 25 µL 1 × 50 µL | 100 | 2 | 10 |
2 | 1 | ID | 4 × 25 µL | ||||
2 | 1 | IM | 2 × 50 µL |
Species | Number of Plasmids Tested | Number of Animals Immunized | Responding Animals (number, %) |
---|---|---|---|
Rabbit | 25 | 74 | 35, 47% |
Guinea pig | 17 | 54 | 41, 76% |
Mouse | 5 | 28 | 16, 57% |
Rat | 1 | 6 | 2, 33% * |
Hamster | 1 | 6 | 0 |
Species | Route | Number of Sites × Volume per Site | DNA Concentration (mg/mL) | DNA Injected per Immunization (µg) | Injection Intervals (Weeks between Each Injection) | Blood Collection (Days after Injection) | Spleen Collection (Days after Transfected Cell Injection *) | Number of Animals per Antigen | |
---|---|---|---|---|---|---|---|---|---|
Injection 1 to 3 | Injection 3 to 5 # | ||||||||
Rabbit | ID IM | 6–10 × 50 µL 2–4 × 125–250 µL | 0.5–0.8 | 500–800 & | 2–3 | 8 ¶ | 13–14 | N/A | 3–5 |
Guinea pig | ID IM | 2 × 50 µL 1 × 100 µL | 1 | 200 | 2–3 | 8 ¶ | 12–13 | N/A | 2–3 |
Mouse | ID IM | 2 × 25 µL 1 × 50 µL | 1 | 100 | 2–3 | 7¶ | 12–13 | 3 | 5–10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelletier, J.; Agonsanou, H.; Manica, F.; G. Lavoie, E.; Salem, M.; Luyindula, P.; Babou Kammoe, R.B.; Sévigny, J. A Simple and Efficient Genetic Immunization Protocol for the Production of Highly Specific Polyclonal and Monoclonal Antibodies against the Native Form of Mammalian Proteins. Int. J. Mol. Sci. 2020, 21, 7074. https://doi.org/10.3390/ijms21197074
Pelletier J, Agonsanou H, Manica F, G. Lavoie E, Salem M, Luyindula P, Babou Kammoe RB, Sévigny J. A Simple and Efficient Genetic Immunization Protocol for the Production of Highly Specific Polyclonal and Monoclonal Antibodies against the Native Form of Mammalian Proteins. International Journal of Molecular Sciences. 2020; 21(19):7074. https://doi.org/10.3390/ijms21197074
Chicago/Turabian StylePelletier, Julie, Hervé Agonsanou, Fabiana Manica, Elise G. Lavoie, Mabrouka Salem, Patrick Luyindula, Romuald Brice Babou Kammoe, and Jean Sévigny. 2020. "A Simple and Efficient Genetic Immunization Protocol for the Production of Highly Specific Polyclonal and Monoclonal Antibodies against the Native Form of Mammalian Proteins" International Journal of Molecular Sciences 21, no. 19: 7074. https://doi.org/10.3390/ijms21197074
APA StylePelletier, J., Agonsanou, H., Manica, F., G. Lavoie, E., Salem, M., Luyindula, P., Babou Kammoe, R. B., & Sévigny, J. (2020). A Simple and Efficient Genetic Immunization Protocol for the Production of Highly Specific Polyclonal and Monoclonal Antibodies against the Native Form of Mammalian Proteins. International Journal of Molecular Sciences, 21(19), 7074. https://doi.org/10.3390/ijms21197074