Metabolomics in Sleep, Insomnia and Sleep Apnea
Abstract
1. Introduction
2. Insomnia Disorder
3. Obstructive Sleep Apnea
4. Sleep Deprivation
5. Sleep Restriction
6. Sleep Fragmentation
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AAA | Aromatic amino acid |
BCAA | Branched-chain amino acid |
CPAP | Continuous positive airwave pressure |
DSM | Diagnostic and statistical manual of mental disorders |
GABA | γ-aminobutyric acid |
GC-MS | Gas chromatography–mass spectrometry |
LAT1 | Large amino acid transporter 1 |
LC-MS | Liquid chromatography–mass spectrometry |
LC-MS/MS | Liquid chromatography–tandem mass spectrometry |
NMR | Nuclear magnetic resonance spectroscopy |
NREM | Non–rapid eye movement |
OSA | Obstructive sleep apnea |
PRISMA | Preferred reporting items for systematic reviews and meta-analyses |
REM | Rapid eye movement |
SWS | Slow wave sleep |
UPLC-HRMS | Ultra-performance liquid chromatography–high resolution mass spectrometry |
References
- Sengupta, A.; Weljie, A.M. Metabolism of sleep and aging: Bridging the gap using metabolomics. Nutr. Heal. Aging 2019, 5, 167–184. [Google Scholar] [CrossRef]
- Baglioni, C.; Nanovska, S.; Regen, W.; Spiegelhalder, K.; Feige, B.; Nissen, C.; Reynolds Iii, C.F.; Riemann, D.; Author, P.B. Sleep and Mental Disorders: A Meta-Analysis of Polysomnographic Research HHS Public Access Author manuscript. Psychol. Bull. 2017, 142, 969–990. [Google Scholar] [CrossRef] [PubMed]
- Aminoff, M.J.; Boller, F.; Swaab, D.F. We spend about one-third of our life either sleeping or attempting to do so. Handb. Clin. Neurol. 2011, 98, vii. [Google Scholar] [PubMed]
- Hombali, A.; Seow, E.; Yuan, Q.; Chang, S.H.S.; Satghare, P.; Kumar, S.; Verma, S.K.; Mok, Y.M.; Chong, S.A.; Subramaniam, M. Prevalence and correlates of sleep disorder symptoms in psychiatric disorders. Psychiatry Res. 2019, 279, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Emert, S.E.; Tutek, J.; Lichstein, K.L. Associations between sleep disturbances, personality, and trait emotional intelligence. Pers. Individ. Dif. 2017, 107, 195–200. [Google Scholar] [CrossRef]
- Datta, S. Cellular and chemical neuroscience of mammalian sleep. Sleep Med. 2010. [Google Scholar] [CrossRef]
- Bellesi, M.; Bushey, D.; Chini, M.; Tononi, G.; Cirelli, C. Contribution of sleep to the repair of neuronal DNA double-strand breaks: Evidence from flies and mice. Sci. Rep. 2016, 6, 36804. [Google Scholar] [CrossRef]
- Calhoun, D.A.; Harding, S.M. Sleep and Hypertension. Chest 2010, 138, 434–443. [Google Scholar] [CrossRef]
- Nagai, M.; Hoshide, S.; Kario, K. Sleep Duration as a Risk Factor for Cardiovascular Disease—A Review of the Recent Literature. Curr. Cardiol. Rev. 2010, 6, 54–61. [Google Scholar] [CrossRef]
- Cappuccio, F.P.; D’Elia, L.; Strazzullo, P.; Miller, M.A. Quantity and Quality of Sleep and Incidence of Type 2 Diabetes: A systematic review and meta-analysis. Diabetes Care 2010, 33, 414–420. [Google Scholar] [CrossRef]
- Romero-Corral, A.; Caples, S.M.; Lopez-Jimenez, F.; Somers, V.K. Interactions Between Obesity and Obstructive Sleep Apnea. Chest 2010, 137, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Moller-Levet, C.S.; Archer, S.N.; Bucca, G.; Laing, E.E.; Slak, A.; Kabiljo, R.; Lo, J.C.Y.; Santhi, N.; von Schantz, M.; Smith, C.P.; et al. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc. Natl. Acad. Sci. USA 2013, 110, E1132–E1141. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.E.; Cole, S.W.; Seeman, T.E.; Breen, E.C.; Witarama, T.; Arevalo, J.M.G.; Ma, J.; Irwin, M.R. Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans. Brain. Behav. Immun. 2016, 51, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Rasch, B.; Born, J. About Sleep’s Role in Memory. Physiol. Rev. 2013, 93, 681–766. [Google Scholar] [CrossRef]
- Dorffner, G.; Vitr, M.; Anderer, P. The effects of aging on sleep architecture in healthy subjects. Adv. Exp. Med. Biol. 2015. [Google Scholar] [CrossRef]
- Wimmer, M.E.; Rising, J.; Galante, R.J.; Wyner, A.; Pack, A.I.; Abel, T. Aging in Mice Reduces the Ability to Sustain Sleep/Wake States. PLoS ONE 2013, 8, e81880. [Google Scholar] [CrossRef]
- Zdanys, K.F.; Steffens, D.C. Sleep Disturbances in the Elderly. Psychiatr. Clin. N. Am. 2015. [Google Scholar] [CrossRef]
- Mander, B.A.; Rao, V.; Lu, B.; Saletin, J.M.; Lindquist, J.R.; Ancoli-Israel, S.; Jagust, W.; Walker, M.P. Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat. Neurosci. 2013, 16, 357–364. [Google Scholar] [CrossRef]
- Lim, M.M.; Elkind, J.; Xiong, G.; Galante, R.; Zhu, J.; Zhang, L.; Lian, J.; Rodin, J.; Kuzma, N.N.; Pack, A.I.; et al. Dietary Therapy Mitigates Persistent Wake Deficits Caused by Mild Traumatic Brain Injury. Sci. Transl. Med. 2013, 5, 215ra173. [Google Scholar] [CrossRef]
- Roach, M.; Juday, T.; Tuly, R.; Chou, J.W.; Jena, A.B.; Doghramji, P.P. Challenges and opportunities in insomnia disorder. Int. J. Neurosci. 2020, 1–8. [Google Scholar] [CrossRef]
- Tefft, B.C. Acute sleep deprivation and culpable motor vehicle crash involvement. Sleep 2018, 41, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ohayon, M.M. Prevalence and comorbidity of sleep disorders in general population. Rev. Prat. 2007, 57, 1521–1528. [Google Scholar] [PubMed]
- Khurshid, A. A Review of Changes in DSM-5 Sleep-Wake Disorders. Psychiatr. Times 2015, 32, 16. [Google Scholar]
- APA. Sleep-Wake Disorders Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Am. Psychiatr. Assoc. Publ. 2013. [Google Scholar] [CrossRef]
- Association, A.P. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Arlington, VA, USA, 2013. [Google Scholar]
- Huang, W.; Ramsey, K.M.; Marcheva, B.; Bass, J. Circadian rhythms, sleep, and metabolism. J. Clin. Investig. 2011. [Google Scholar] [CrossRef]
- Khurshid, K.A. Comorbid insomnia and psychiatric disorders: An update. Innov. Clin. Neurosci. 2018, 15, 28–32. [Google Scholar]
- Gehrman, P.; Sengupta, A.; Harders, E.; Ubeydullah, E.; Pack, A.I.; Weljie, A. Altered diurnal states in insomnia reflect peripheral hyperarousal and metabolic desynchrony: A preliminary study. Sleep 2018, 41, 1–12. [Google Scholar] [CrossRef]
- Xiao, Q.; Derkach, A.; Moore, S.C.; Zheng, W.; Shu, X.-O.; Gu, F.; Caporaso, N.E.; Sampson, J.N.; Matthews, C.E. Habitual sleep and human plasma metabolomics. Metabolomics 2017, 13, 63. [Google Scholar] [CrossRef]
- Davies, S.K.; Ang, J.E.; Revell, V.L.; Holmes, B.; Mann, A.; Robertson, F.P.; Cui, N.; Middleton, B.; Ackermann, K.; Kayser, M.; et al. Effect of sleep deprivation on the human metabolome. Proc. Natl. Acad. Sci. USA 2014, 111, 10761–10766. [Google Scholar] [CrossRef]
- Bell, L.N.; Kilkus, J.M.; Booth, J.N.; Bromley, L.E.; Imperial, J.G.; Penev, P.D. Effects of sleep restriction on the human plasma metabolome. Physiol. Behav. 2013, 122, 25–31. [Google Scholar] [CrossRef]
- Nofzinger, E.A. Functional Neuroimaging Evidence for Hyperarousal in Insomnia. Am. J. Psychiatry 2004, 161, 2126–2128. [Google Scholar] [CrossRef] [PubMed]
- Skene, D.J.; Skornyakov, E.; Chowdhury, N.R.; Gajula, R.P.; Middleton, B.; Satterfield, B.C.; Porter, K.I.; Van Dongen, H.P.A.; Gaddameedhi, S. Separation of circadian- and behavior-driven metabolite rhythms in humans provides a window on peripheral oscillators and metabolism. Proc. Natl. Acad. Sci. USA 2018, 115, 7825–7830. [Google Scholar] [CrossRef] [PubMed]
- Senaratna, C.V.; Perret, J.L.; Lodge, C.J.; Lowe, A.J.; Campbell, B.E.; Matheson, M.C.; Hamilton, G.S.; Dharmage, S.C. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med. Rev. 2017, 34, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Sharafkhaneh, A.; Giray, N.; Richardson, P.; Young, T.; Hirshkowitz, M. Association of Psychiatric Disorders and Sleep Apnea in a Large Cohort. Sleep 2005, 28, 1405–1411. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, C.N.; Susukida, R.; Depp, C.A. Sleep apnea, psychopathology, and mental health care. Sleep Heal. 2017, 3, 244–249. [Google Scholar] [CrossRef]
- Diallo, I.; Pak, V.M. Metabolomics, sleepiness, and sleep duration in sleep apnea. Sleep Breath. 2020. [Google Scholar] [CrossRef]
- Aoki, T.; Nagaoka, T.; Kobayashi, N.; Kurahashi, M.; Tsuji, C.; Takiguchi, H.; Tomomatsu, K.; Oguma, T.; Kobayashi, N.; Magatani, K.; et al. Prospective analyses of volatile organic compounds in obstructive sleep apnea patients. Toxicol. Sci. 2017, 156, 362–374. [Google Scholar] [CrossRef][Green Version]
- Dragonieri, S.; Porcelli, F.; Longobardi, F.; Carratù, P.; Aliani, M.; Ventura, V.A.; Tutino, M.; Quaranta, V.N.; Resta, O.; de Gennaro, G. An electronic nose in the discrimination of obese patients with and without obstructive sleep apnoea. J. Breath Res. 2015, 9, 026005. [Google Scholar] [CrossRef]
- Schwarz, E.I.; Engler, A.; Kohler, M. Exhaled breath analysis in obstructive sleep apnea. Expert Rev. Respir. Med. 2017. [Google Scholar] [CrossRef]
- Ferrarini, A.; Rupérez, F.J.; Earzo, M.; Martínez, M.P.; Villar-Álvarez, F.; Peces-Barba, G.; Nicolás González-Mangado, B.; Troncoso, M.F.; Ruiz-Cabello, J.; Barbas, C. Fingerprinting-based metabolomic approach with LC -MS to sleep apnea and hypopnea syndrome: A pilot study. Electrophoresis 2013, 34, 2873–2881. [Google Scholar] [CrossRef]
- Ząbek, A.; Stanimirova, I.; Deja, S.; Barg, W.; Kowal, A.; Korzeniewska, A.; Orczyk-Pawiłowicz, M.; Baranowski, D.; Gdaniec, Z.; Jankowska, R.; et al. Fusion of the 1H NMR data of serum, urine and exhaled breath condensate in order to discriminate chronic obstructive pulmonary disease and obstructive sleep apnea syndrome. Metabolomics 2015, 11, 1563–1574. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zheng, X.; Qian, Y.; Guan, J.; Yi, H.; Zou, J.; Wang, Y.; Meng, L.; Zhao, A.; Yin, S.; et al. Metabolomics Profiling for Obstructive Sleep Apnea and Simple Snorers. Sci. Rep. 2016, 6, 30958. [Google Scholar] [CrossRef]
- Xu, H.; Li, X.; Zheng, X.; Xia, Y.; Fu, Y.; Li, X.; Qian, Y.; Zou, J.; Zhao, A.; Guan, J.; et al. Pediatric obstructive sleep apnea is associated with changes in the oral microbiome and urinary metabolomics profile: A pilot study. J. Clin. Sleep Med. 2018, 14, 1559–1567. [Google Scholar] [CrossRef] [PubMed]
- Maniscalco, M.; Fuschillo, S.; Paris, D.; Cutignano, A.; Sanduzzi, A.; Motta, A. Clinical metabolomics of exhaled breath condensate in chronic respiratory diseases. Adv. Clin. Chem. 2019, 88, 121–149. [Google Scholar] [CrossRef] [PubMed]
- Horváth, I.; Hunt, J.; Barnes, P.J.; Alving, K.; Antczak, A.; Baraldi, E.; Becher, G.; van Beurden, W.J.C.; Corradi, M.; Dekhuijzen, R.; et al. Exhaled breath condensate: Methodological recommendations and unresolved questions. Eur. Respir. J. 2005. [Google Scholar] [CrossRef]
- Panaiotis, F.; Simone, S.; Vittorio, C.; Raffaele, A.I. Exhaled Breath Analysis in Obstructive Sleep Apnea Syndrome: A Review of the Literature. Medicina 2019, 55, 538. [Google Scholar] [CrossRef]
- Xu, H.; Zheng, X.; Jia, W.; Yin, S. Chromatography/Mass Spectrometry-Based Biomarkers in the Field of Obstructive Sleep Apnea. Medicine (Baltimore) 2015, 94, e1541. [Google Scholar] [CrossRef]
- Drager, L.F.; Polotsky, V.Y.; Lorenzi-Filho, G. Obstructive Sleep Apnea. Chest 2011, 140, 534–542. [Google Scholar] [CrossRef]
- Keenan, B.T.; Maislin, G.; Sunwoo, B.Y.; Arnardottir, E.S.; Jackson, N.; Olafsson, I.; Juliusson, S.; Schwab, R.J.; Gislason, T.; Benediktsdottir, B.; et al. Obstructive sleep apnoea treatment and fasting lipids: A comparative effectiveness study. Eur. Respir. J. 2014, 44, 405–414. [Google Scholar] [CrossRef]
- Phillips, C.L.; Yee, B.J.; Marshall, N.S.; Liu, P.Y.; Sullivan, D.R.; Grunstein, R.R. Continuous Positive Airway Pressure Reduces Postprandial Lipidemia in Obstructive Sleep Apnea. Am. J. Respir. Crit. Care Med. 2011, 184, 355–361. [Google Scholar] [CrossRef]
- Marin, J.M.; Carrizo, S.J.; Vicente, E.; Agusti, A.G. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: An observational study. Lancet 2005, 365, 1046–1053. [Google Scholar] [CrossRef]
- Savransky, V.; Jun, J.; Li, J.; Nanayakkara, A.; Fonti, S.; Moser, A.B.; Steele, K.E.; Schweitzer, M.A.; Patil, S.P.; Bhanot, S.; et al. Dyslipidemia and Atherosclerosis Induced by Chronic Intermittent Hypoxia Are Attenuated by Deficiency of Stearoyl Coenzyme A Desaturase. Circ. Res. 2008, 103, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Savransky, V.; Nanayakkara, A.; Li, J.; Bevans, S.; Smith, P.L.; Rodriguez, A.; Polotsky, V.Y. Chronic Intermittent Hypoxia Induces Atherosclerosis. Am. J. Respir. Crit. Care Med. 2007, 175, 1290–1297. [Google Scholar] [CrossRef]
- Qiu, J.; Shen, B.; Zhao, M.; Wang, Z.; Xie, B.; Xu, Y. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: Implications and policy recommendations. Gen. Psychiatry 2020, 33, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Lebkuchen, A.; Carvalho, V.M.; Venturini, G.; Salgueiro, J.S.; Freitas, L.S.; Dellavance, A.; Martins, F.C.; Lorenzi-Filho, G.; Cardozo, K.H.M.; Drager, L.F. Metabolomic and lipidomic profile in men with obstructive sleep apnoea: Implications for diagnosis and biomarkers of cardiovascular risk. Sci. Rep. 2018, 8, 11270. [Google Scholar] [CrossRef] [PubMed]
- Engeli, S.; Blüher, M.; Jumperts, R.; Wiesner, T.; Wirtz, H.; Bosse-Henck, A.; Stumvoll, M.; Batkai, S.; Pacher, P.; Harvey-White, J.; et al. Circulating anandamide and blood pressure in patients with obstructive sleep apnea. J. Hypertens. 2012, 30, 2345–2351. [Google Scholar] [CrossRef]
- Cho, K.; Yoon, D.W.; Lee, M.; So, D.; Hong, I.-H.; Rhee, C.-S.; Park, J.-W.; Cho, J.-Y.; Shin, H.-W. Urinary Metabolomic Signatures in Obstructive Sleep Apnea through Targeted Metabolomic Analysis: A Pilot Study. Metabolomics 2017, 13, 88. [Google Scholar] [CrossRef]
- Barceló, A.; Bauça, J.M.; Peña-Zarza, J.A.; Morell-Garcia, D.; Yáñez, A.; Pérez, G.; Piérola, J.; Toledo, N.; de la Peña, M. Circulating branched-chain amino acids in children with obstructive sleep apnea. Pediatr. Pulmonol. 2017, 52, 1085–1091. [Google Scholar] [CrossRef]
- Campos-Rodriguez, F.; Gonzalez-Martinez, M.; Sanchez-Armengol, A.; Jurado-Gamez, B.; Cordero-Guevara, J.; Reyes-Nuñez, N.; Troncoso, M.F.; Abad-Fernandez, A.; Teran-Santos, J.; Caballero-Rodriguez, J.; et al. Effect of continuous positive airway pressure on blood pressure and metabolic profile in women with sleep apnoea. Eur. Respir. J. 2017, 50, 1700257. [Google Scholar] [CrossRef]
- Martínez-Cerón, E.; Barquiel, B.; Bezos, A.-M.; Casitas, R.; Galera, R.; García-Benito, C.; Hernanz, A.; Alonso-Fernández, A.; Garcia-Rio, F. Effect of Continuous Positive Airway Pressure on Glycemic Control in Patients with Obstructive Sleep Apnea and Type 2 Diabetes. A Randomized Clinical Trial. Am. J. Respir. Crit. Care Med. 2016, 194, 476–485. [Google Scholar] [CrossRef]
- Nadeem, R.; Singh, M.; Nida, M.; Kwon, S.; Sajid, H.; Witkowski, J.; Pahomov, E.; Shah, K.; Park, W.; Champeau, D. Effect of CPAP Treatment for Obstructive Sleep Apnea Hypopnea Syndrome on Lipid Profile: A Meta-Regression Analysis. J. Clin. Sleep Med. 2014, 10, 1295–1302. [Google Scholar] [CrossRef]
- Potter, G.D.M.; Skene, D.J.; Arendt, J.; Cade, J.E.; Grant, P.J.; Hardie, L.J. Circadian rhythm and sleep disruption: Causes, metabolic consequences, and countermeasures. Endocr. Rev. 2016. [Google Scholar] [CrossRef] [PubMed]
- Malik, D.M.; Paschos, G.K.; Sehgal, A.; Weljie, A.M. Circadian and Sleep Metabolomics Across Species. J. Mol. Biol. 2020, 432, 3578–3610. [Google Scholar] [CrossRef] [PubMed]
- Giskeødegård, G.F.; Davies, S.K.; Revell, V.L.; Keun, H.; Skene, D.J. Diurnal rhythms in the human urine metabolome during sleep and total sleep deprivation. Sci. Rep. 2015, 5, 14843. [Google Scholar] [CrossRef] [PubMed]
- Boland, E.M.; Rao, H.; Dinges, D.F.; Smith, R.V.; Goel, N.; Detre, J.A.; Basner, M.; Sheline, Y.I.; Thase, M.E.; Gehrman, P.R. Meta-Analysis of the Antidepressant Effects of Acute Sleep Deprivation. J. Clin. Psychiatry 2017, 78, e1020–e1034. [Google Scholar] [CrossRef] [PubMed]
- Bourdon, A.K.; Spano, G.M.; Marshall, W.; Bellesi, M.; Tononi, G.; Serra, P.A.; Baghdoyan, H.A.; Lydic, R.; Campagna, S.R.; Cirelli, C. Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep. Sci. Rep. 2018, 8, 11225. [Google Scholar] [CrossRef]
- Gou, X.; Cen, F.; Fan, Z.; Xu, Y.; Shen, H.; Zhou, M. Serum and Brain Metabolomic Variations Reveal Perturbation of Sleep Deprivation on Rats and Ameliorate Effect of Total Ginsenoside Treatment. Int. J. Genom. 2017, 2017, 1–14. [Google Scholar] [CrossRef]
- Zhan, S.; Wu, Y.; Sun, P.; Lin, H.; Zhu, Y.; Han, X. Decrease in Circulating Fatty Acids Is Associated with Islet Dysfunction in Chronically Sleep-Restricted Rats. Int. J. Mol. Sci. 2016, 17, 2102. [Google Scholar] [CrossRef]
- Zhao, H.F.; Li, Q.; Li, Y. Long-term ginsenoside administration prevents memory loss in aged female C57BL/6J mice by modulating the redox status and up-regulating the plasticity-related proteins in hippocampus. Neuroscience 2011, 183, 189–202. [Google Scholar] [CrossRef]
- Provalova, N.V.; Skurikhin, E.G.; Pershina, O.V.; Suslov, N.I.; Minakova, M.Y.; Dygai, A.M.; Gol’dberg, E.D. Mechanisms underlying the effects of adaptogens on erythropoiesis during paradoxical sleep deprivation. Bull. Exp. Biol. Med. 2002. [Google Scholar] [CrossRef]
- Depner, C.M.; Cogswell, D.T.; Bisesi, P.J.; Markwald, R.R.; Cruickshank-Quinn, C.; Quinn, K.; Melanson, E.L.; Reisdorph, N.; Wright, K.P. Developing preliminary blood metabolomics-based biomarkers of insufficient sleep in humans. Sleep 2020, 43, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Weljie, A.M.; Meerlo, P.; Goel, N.; Sengupta, A.; Kayser, M.S.; Abel, T.; Birnbaum, M.J.; Dinges, D.F.; Sehgal, A. Oxalic acid and diacylglycerol 36:3 are cross-species markers of sleep debt. Proc. Natl. Acad. Sci. USA 2015, 112, 2569–2574. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, R.; Mook-Kanamori, D.O.; Donga, E.; van Dijk, M.; van Dijk, J.G.; Lammers, G.-J.; van Kralingen, K.W.; Prehn, C.; Adamski, J.; Romijn, J.A.; et al. A single night of sleep curtailment increases plasma acylcarnitines: Novel insights in the relationship between sleep and insulin resistance. Arch. Biochem. Biophys. 2016, 589, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Aho, V.; Ollila, H.M.; Kronholm, E.; Bondia-Pons, I.; Soininen, P.; Kangas, A.J.; Hilvo, M.; Seppälä, I.; Kettunen, J.; Oikonen, M.; et al. Prolonged sleep restriction induces changes in pathways involved in cholesterol metabolism and inflammatory responses. Sci. Rep. 2016, 6, 24828. [Google Scholar] [CrossRef]
- Sengupta, A.; Rhoades, S.D.; Kim, E.J.; Nayak, S.; Grant, G.R.; Meerlo, P.; Weljie, A.M. Sleep restriction induced energy, methylation and lipogenesis metabolic switches in rat liver. Int. J. Biochem. Cell Biol. 2017, 93, 129–135. [Google Scholar] [CrossRef]
- Yoon, D.W.; Kwon, H.N.; Jin, X.; Kim, J.K.; Lee, S.K.; Park, S.; Yun, C.H.; Shin, C. Untargeted metabolomics analysis of rat hippocampus subjected to sleep fragmentation. Brain Res. Bull. 2019, 153, 74–83. [Google Scholar] [CrossRef]
- Stepanski, E.; Lamphere, J.; Badia, P.; Zorick, F.; Roth, T. Sleep fragmentation and daytime sleepiness. Sleep 1984, 7, 18–26. [Google Scholar] [CrossRef]
- Stepanski, E.J. The effect of sleep fragmentation on daytime function. Sleep 2002, 25, 268–276. [Google Scholar] [CrossRef]
- Feng, L.; Wu, H.; Song, G.; Lu, C.; Li, Y.; Qu, L.; Chen, S.; Liu, X.; Chang, Q. Chronical sleep interruption-induced cognitive decline assessed by a metabolomics method. Behav. Brain Res. 2016, 302, 60–68. [Google Scholar] [CrossRef]
- Navarro-Sanchis, C.; Brock, O.; Winsky-Sommerer, R.; Thuret, S. Modulation of Adult Hippocampal Neurogenesis by Sleep: Impact on Mental Health. Front. Neural Circuits 2017, 11, 1–14. [Google Scholar] [CrossRef]
- Maki, K.A.; Burke, L.A.; Calik, M.W.; Watanabe-Chailland, M.; Sweeney, D.; Romick-Rosendale, L.E.; Green, S.J.; Fink, A.M. Sleep fragmentation increases blood pressure and is associated with alterations in the gut microbiome and fecal metabolome in rats. Physiol. Genom. 2020, 52, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Bowers, S.J.; Vargas, F.; González, A.; He, S.; Jiang, P.; Dorrestein, P.C.; Knight, R.; Wright, K.P.; Lowry, C.A.; Fleshner, M.; et al. Repeated sleep disruption in mice leads to persistent shifts in the fecal microbiome and metabolome. PLoS ONE 2020, 15, e0229001. [Google Scholar] [CrossRef]
- Lucas, G. Gut thinking: The gut microbiome and mental health beyond the head. Microb. Ecol. Health Dis. 2018, 29, 1548250. [Google Scholar] [CrossRef] [PubMed]
- D’Argenio, V.; Salvatore, F. The role of the gut microbiome in the healthy adult status. Clin. Chim. Acta 2015, 451, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-T.; Chen, C.-Y.; Kuo, T.B.J.; Chern, C.-M.; Yang, C.C.H. Sympathetic Hyperactivity, Sleep Fragmentation, and Wake-Related Blood Pressure Surge During Late-Light Sleep in Spontaneously Hypertensive Rats. Am. J. Hypertens. 2016, 29, 590–597. [Google Scholar] [CrossRef]
- Wolfe, R.R. Branched-chain amino acids and muscle protein synthesis in humans: Myth or reality? J. Int. Soc. Sports Nutr. 2017. [Google Scholar] [CrossRef]
- White, P.J.; Lapworth, A.L.; An, J.; Wang, L.; McGarrah, R.W.; Stevens, R.D.; Ilkayeva, O.; George, T.; Muehlbauer, M.J.; Bain, J.R.; et al. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol. Metab. 2016, 5, 538–551. [Google Scholar] [CrossRef] [PubMed]
- Batch, B.C.; Hyland, K.; Svetkey, L.P. Branch chain amino acids. Curr. Opin. Clin. Nutr. Metab. Care 2013, 1. [Google Scholar] [CrossRef]
- Scalise, M.; Galluccio, M.; Console, L.; Pochini, L.; Indiveri, C. The human SLC7A5 (LAT1): The intriguing histidine/large neutral amino acid transporter and its relevance to human health. Front. Chem. 2018. [Google Scholar] [CrossRef]
- Fernstrom, J.D. Branched-Chain Amino Acids and Brain Function. J. Nutr. 2005, 135, 1539S–1546S. [Google Scholar] [CrossRef]
- St-Jean, A.; Meziou, S.; Roy, C.; Ayotte, P.; Muckle, G.; Lucas, M. Branched-chain and aromatic amino acids in relation to behavioral problems among young Inuit from Nunavik, Canada: A cohort study. Pediatr. Res. 2017, 82, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Yudkoff, M. Interactions in the Metabolism of Glutamate and the Branched-Chain Amino Acids and Ketoacids in the CNS. Neurochem. Res. 2017, 42, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.E.; Seeman, T.E.; Olmstead, R.; Melendez, G.; Sadakane, R.; Bootzin, R.; Nicassio, P.; Irwin, M.R. Improved sleep quality in older adults with insomnia reduces biomarkers of disease risk: Pilot results from a randomized controlled comparative efficacy trial. Psychoneuroendocrinology 2015, 55, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Oishi, Y.; Lazarus, M. The control of sleep and wakefulness by mesolimbic dopamine systems. Neurosci. Res. 2017, 118, 66–73. [Google Scholar] [CrossRef]
- Sandsmark, D.K.; Elliott, J.E.; Lim, M.M. Sleep-Wake Disturbances After Traumatic Brain Injury: Synthesis of Human and Animal Studies. Sleep 2017. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.T.; Mitala, C.M.; Kundu, S.; Verma, A.; Elkind, J.A.; Nissim, I.; Cohen, A.S. Dietary branched chain amino acids ameliorate injury-induced cognitive impairment. Proc. Natl. Acad. Sci. USA 2010, 107, 366–371. [Google Scholar] [CrossRef]
- Karnani, M.M.; Apergis-Schoute, J.; Adamantidis, A.; Jensen, L.T.; de Lecea, L.; Fugger, L.; Burdakov, D. Activation of central orexin/hypocretin neurons by dietary amino acids. Neuron 2011, 72, 616–629. [Google Scholar] [CrossRef]
- Wood, P.L. Mass Spectrometry Strategies for Clinical Metabolomics and Lipidomics in Psychiatry, Neurology, and Neuro-Oncology. Neuropsychopharmacology 2014, 39, 24–33. [Google Scholar] [CrossRef]
- Adamski, J. Key elements of metabolomics in the study of biomarkers of diabetes. Diabetologia 2016. [Google Scholar] [CrossRef]
- Guest, P.C.; Guest, F.L.; Martins-de Souza, D. Making Sense of Blood-Based Proteomics and Metabolomics in Psychiatric Research. Int. J. Neuropsychopharmacol. 2015, pyv138. [Google Scholar] [CrossRef]
- Humer, E.; Probst, T.; Pieh, C. Metabolomics in psychiatric disorders: What we learn from animal models. Metabolites 2020, 72. [Google Scholar] [CrossRef] [PubMed]
Subject | Sample | Analytical Platform | Metabolites | Pathways/Functions | Reference |
---|---|---|---|---|---|
Humans | Serum | NMR 1 | Isoleucine, valine, lysine, alanine, serine, proline, phenylalanine, tyrosine, acetate, 3-hydroxybutyrate, citrate, dimethylamine, dimethylglycine, ornithine, creatinine, 2-hydroxyvalerate, 2-oxoisocaproate, 3-methyl-2-oxovalerate, propylene glycol, N-acetyl metabolites, methylhistidine, lactate, succinate | Amino acid metabolism, energy (glucose) metabolism | [28] |
Humans | Plasma | LC-MS 2 | Isoleucine, leucine, proline, arginine, ornithine, octadecanoylcarnitine, glycerophospholipids, lysophosphoatidylcholines, sphingolipids | Amino acid metabolism, lipid metabolism | [33] |
Humans | Plasma | LC-MS/MS 3, GC-MS 4 | Isoleucine, leucine, valine, gamma glutamyl, bile acids, carnitines, fatty acids | Amino acid metabolism, lipid metabolism, energy metabolism | [29] |
Subject | Sample | Analytical Platform | Metabolites | Pathways/Functions | Reference |
---|---|---|---|---|---|
Humans | Plasma | LC-MS 1 | Serotonin, tryptophan, taurine, acylcarnitines, glycerophospholipids, sphingolipids | Amino acid metabolism, lipid metabolism, neurotransmitter metabolism | [30] |
Humans | Urine | NMR 2 | Taurine, formate, citrate, 3-indoxyl sulfate, carnitine, 3-hydroxyisobutyrate, trimethylamine-N-oxide, acetate, dimethylamine, 4-deoxythreonic acid, creatinine, ascorbate, 2-hydroxyisobutyrate, allantoin, 4-deoxyeryhtronic acid, 4-hydroxyphenylacetate | Neurotransmitter metabolism, fatty acid metabolism, energy metabolism, amino acid metabolism | [65] |
Mice | Brain | UPLC-HRMS 3 | Glutamate, tryptophan, lactate, pyruvate, glucose metabolism, orotate, uridine, succinate | Amino acid metabolism, energy metabolism, glucose metabolism, pyrimidine pathway, tricarboxylic acid cycle | [67] |
Rats | Brain | GC-MS 4 | Valine, leucine, isoleucine, tyrosine, cysteine, threonine, serine, methionine, 4-hydroxyproline, glycerol 3-phosphate, 3-hydroxybutyric acid, glutamic acid, aspartic acid, adenosine, cytidine monophosphate, uracil, inosine, hypoxanthine, xanthine, lactic acid, fructose, palmitoleic acid | Energy metabolism, adenosine metabolism, amino acid metabolism, neurotransmitter metabolism, oxidative stress | [68] |
Rats | Serum | GC-MS | Valine, leucine, alanine, cysteine, glycine, threonine, methionine, serine, 4-hydroxyproline, glycerol 3-phosphate, 3-hydroxybutyric acid, glutamic acid, aspartic acid, stearic acid, fructose, glutamic acid, ethanolamine, serotonin, cholesterol, inositol phosphate | Energy metabolism, adenosine metabolism, amino acid metabolism, neurotransmitter metabolism, oxidative stress | [68] |
Rats | Serum | NMR | Lipoproteins, triglycerides, isoleucine, valine, choline, phosphorylcholine, total fatty acids, saturated fatty acids, unsaturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, components, glucose, insulin | Fatty acid metabolism, glucose metabolism | [69] |
Subject | Sample | Analytical Platform | Metabolites | Pathways/Functions | Reference |
---|---|---|---|---|---|
Humans | Plasma | LC-MS/MS 1 | Sphingolipids (ceramide 40:2, ceramide d41:2, sphingomyelin 43:2, sphingomyelin d33:2), lysophosphatidylcholine 18:3, phosphatidylcholine 40:5 | ATP-binding cassette transporters in lipid homeostasis, phospholipid metabolic process, plasma lipoprotein remodeling, sphingolipid metabolism | [72] |
Humans | Plasma | GC-MS 2 | Lysophosphatidylcholines (14:0, 16:1, 17:0), phosphatidylcholines (32:1, 36:6, 38:4, 38:2, 38:3), acylcarnitines (C5:0, C10:0, C12:0), ceramides, diacylglycerol 36:3, oxalic acid | Lipid metabolism, fatty-acid metabolism, amino acid metabolism | [73] |
Rats | Plasma | GC-MS | Lysophosphatidylcholines, phosphatidylcholines, diacylglycerol 36:3, leucine, valine, oxalic acid, sucrose | Lipid metabolism, fatty-acid metabolism, amino acid metabolism | [73] |
Humans | Plasma | LC-MS/MS | N-acetylthreonine, histidine, glutaroyl carnitine, phenyllactate, C-glycosyltryptophan, serotonin, isoleucine, mannose, 1,6-anhydroglucose, glycocholenate sulfate, cholesterol, beta-sitosterol, 7-alpha-hydroxy-3-oxo-4-cholestenoate, pantothenate, gamma-CEHC, benzoate, piperine | Lipid metabolism, amino acid metabolism, carbohydrate metabolism | [31] |
Humans | Plasma | LC-MS/MS | Tetradecenoyl-L-carnitine (C14:1), octadecanoyl-L-carnitine (C18:1), octadecadienyl-L-carnitine (C18:2) | Energy metabolism (mitochondrial fatty-acid oxidation) | [74] |
Rats | Liver | LC-MS 3 | Nicotinamide adenine dinucleotide, Nicotinamide adenine dinucleotide phosphate, N-methylnicotinamide, nicotinamide riboside, histidine, glutamine, adenine, adenosine, AMP, guanosine, glutamine, methionine, S-adenosyl homocysteine, S-adenosyl methionine, methionine sulfoxide N1-methyl-2-pyridone-5-carboxamide, N1-methyl-3-pyridone-4-carboxamide, serine, aspartate, adenosine triphosphate, urea, xanthine, xanthosine, aconitate, citrate, isocitrate, serine | Energy metabolism (tricarboxylic acid cycle), nicotinate and nicotinamide metabolism, ammonia recycling, urea cycle, methionine metabolism | [76] |
Subject | Sample | Analytical Platform | Metabolites | Pathways/Functions | Reference |
---|---|---|---|---|---|
Rats | Brain | LC-MS 1 | Alanine, aspartate, and glutamate, methionine, tryptophan, myristoylcarnitine, palmitoylcarnitine, glycerophosphocholine, adenosine monophosphate, hypoxanthine | Amino acid metabolism | [77] |
Mice | Serum | LC-MS | Valine, choline, uric acid, allantoic acid, carnitines, retinoids | Amino acid metabolism, purine metabolism, lipid metabolism | [80] |
Mice | Brain | LC-MS | Malondialdehyde, superoxide dismutase, decreased | Oxidative stress | [80] |
Rats | Feces | NMR 2 | UDP-glucose, 3-hydroxyisovalerate, glutamine, inosine | Glucose metabolism | [82] |
Mice | Feces | LC-MS/MS 3 | Bile acids, urobilin, cholic acid, alanine, glutamine, lysine, valine, cysteine, lysine, asparagine, isoleucine | Lipid metabolism, glucose metabolism, bile acid metabolism | [83] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Humer, E.; Pieh, C.; Brandmayr, G. Metabolomics in Sleep, Insomnia and Sleep Apnea. Int. J. Mol. Sci. 2020, 21, 7244. https://doi.org/10.3390/ijms21197244
Humer E, Pieh C, Brandmayr G. Metabolomics in Sleep, Insomnia and Sleep Apnea. International Journal of Molecular Sciences. 2020; 21(19):7244. https://doi.org/10.3390/ijms21197244
Chicago/Turabian StyleHumer, Elke, Christoph Pieh, and Georg Brandmayr. 2020. "Metabolomics in Sleep, Insomnia and Sleep Apnea" International Journal of Molecular Sciences 21, no. 19: 7244. https://doi.org/10.3390/ijms21197244
APA StyleHumer, E., Pieh, C., & Brandmayr, G. (2020). Metabolomics in Sleep, Insomnia and Sleep Apnea. International Journal of Molecular Sciences, 21(19), 7244. https://doi.org/10.3390/ijms21197244