Structural and Computational Insights into a Blebbistatin-Bound Myosin•ADP Complex with Characteristics of an ADP-Release Conformation along the Two-Step Myosin Power Stoke
Abstract
:1. Introduction
2. Results
2.1. Structural Features of the Blebbistatin-Bound Myosin-II ADP Conformation
2.1.1. Comparison with the Myosin-II Rigor and Pre-power Stroke States
2.1.2. Structural Features of the Active Site in the Myosin-II∙ADP∙Blebbistatin Complex
2.1.3. A Potential Communication Hub Centered on Arg232 Allosterically Mediates Changes in the Active Site to the Converter and Actin-Binding Region
2.2. Blebbistatin Affects the Myosin Conformation by Binding to the Known Allosteric Binding Pocket
2.2.1. Blebbistatin Increases the Affinity of Myosin-II for ADP in the Presence and Absence of Mg2+
2.2.2. Blebbistatin Stabilizes the Crystallographically Observed Myosin-II∙ADP Conformation
2.3. The ADP Release Pathway Reveals a Central Role of Arg131 for Guiding ADP Dissociation
2.3.1. Computational Generation of a Strong-ADP-Bound Myosin-II Conformation, and First Step of the Power Stroke
2.3.2. Computational Analysis of the Second Step of the Power Stroke
2.3.3. ADP Release from Myosin as Analyzed by Steered Molecular Dynamics Simulations
3. Discussion
4. Materials and Methods
4.1. Protein Preparation
4.2. Crystallization, Data Collection and Procession
4.3. Classical Molecular Dynamic Simulations
4.4. Targeted Molecular Dynamic Simulations
4.5. Steered Molecular Dynamic Simulations
4.6. Microscale Thermophoresis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADP | Adenosine diphosphate |
ATP | Adenosine triphosphate |
cMD | Classical molecular dynamics |
cryoEM | Cryo-electron microscopy |
MM/GBSA | Molecular mechanics/generalized-born surface area |
MST | Microscale thermophoresis |
Pi | Inorganic phosphate |
rmsd | Root mean square deviation |
SMD | Steered molecular dynamics |
TMD | Targeted molecular dynamics |
References
- Lymn, R.W.; Taylor, E.W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 1971, 10, 4617–4624. [Google Scholar] [CrossRef] [PubMed]
- Preller, M.; Manstein, D.J. Myosin Motors: Structural Aspects and Functionality. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780128096338. [Google Scholar]
- Robert-Paganin, J.; Pylypenko, O.; Kikuti, C.; Sweeney, H.L.; Houdusse, A. Force Generation by Myosin Motors: A Structural Perspective. Chem. Rev. 2020, 120, 5–35. [Google Scholar] [CrossRef] [PubMed]
- Preller, M.; Bauer, S.; Adamek, N.; Fujita-Becker, S.; Fedorov, R.; Geeves, M.A.; Manstein, D.J. Structural basis for the allosteric interference of myosin function by reactive thiol region mutations G680A and G680V. J. Biol. Chem. 2011, 286, 35051–35060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinthalapudi, K.; Heissler, S.M.; Preller, M.; Sellers, J.R.; Manstein, D.J. Mechanistic insights into the active site and allosteric communication pathways in human nonmuscle myosin-2C. Elife 2017, 6, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Nagy, N.T.; Sakamoto, T.; Takács, B.; Gyimesi, M.; Hazai, E.; Bikádi, Z.; Sellers, J.R.; Kovács, M. Functional adaptation of the switch-2 nucleotide sensor enables rapid processive translocation by myosin-5. FASEB J. 2010, 24, 4480–4490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunther, L.K.; Rohde, J.A.; Tang, W.; Walton, S.D.; Unrath, W.C.; Trivedi, D.V.; Muretta, J.M.; Thomas, D.D.; Yengo, C.M. Converter domain mutations in myosin alter structural kinetics and motor function. J. Biol. Chem. 2019, 294, 1554–1567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behrens, V.A.; Münnich, S.; Adler-Gunzelmann, G.; Thiel, C.; Henn, A.; Latham, S.L.; Taft, M.H. The Conserved Lysine-265 Allosterically Modulates Nucleotide- and Actin-binding Site Coupling in Myosin-2. Sci. Rep. 2017, 7, 7650. [Google Scholar] [CrossRef] [PubMed]
- Forgacs, E.; Sakamoto, T.; Cartwright, S.; Belknap, B.; Kovács, M.; Tóth, J.; Webb, M.R.; Sellers, J.R.; White, H.D. Switch 1 mutation S217A converts myosin V into a low duty ratio motor. J. Biol. Chem. 2009, 284, 2138–2149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geeves, M.A.; Holmes, K.C. Structural Mechanism of Muscle Contraction. Annu. Rev. Biochem. 1999, 68, 687–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von der Ecken, J.; Müller, M.; Lehman, W.; Manstein, D.J.; Penczek, P.A.; Raunser, S. Structure of the F-actin–tropomyosin complex. Nature 2015, 519, 114–117. [Google Scholar] [CrossRef] [Green Version]
- Mentes, A.; Huehn, A.; Liu, X.; Zwolak, A.; Dominguez, R.; Shuman, H.; Ostap, E.M.; Sindelar, C.V. High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing. Proc. Natl. Acad. Sci. USA 2018, 115, 1292–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurel, P.S.; Kim, L.Y.; Ruijgrok, P.V.; Omabegho, T.; Bryant, Z.; Alushin, G.M. Cryo-EM structures reveal specialization at the myosin VI-actin interface and a mechanism of force sensitivity. Elife 2017, 6, e31125. [Google Scholar] [CrossRef] [PubMed]
- Allingham, J.S.; Smith, R.; Rayment, I. The structural basis of blebbistatin inhibition and specificity for myosin II. Nat. Struct. Mol. Biol. 2005, 12, 378–379. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, X.E.; Gong, Y.; Zhu, Y.; Cao, X.; Brunzelle, J.S.; Xu, H.E.; Zhou, M.; Melcher, K.; Zhang, F. Structural basis of Fusarium myosin I inhibition by phenamacril. PLoS Pathog. 2020, 16, e1008323. [Google Scholar] [CrossRef]
- Planelles-Herrero, V.J.; Hartman, J.J.; Robert-Paganin, J.; Malik, F.I.; Houdusse, A. Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil. Nat. Commun. 2017, 8, 190. [Google Scholar] [CrossRef] [Green Version]
- Preller, M.; Chinthalapudi, K.; Martin, R.; Knölker, H.J.; Manstein, D.J. Inhibition of myosin ATPase activity by halogenated pseudilins: A structure-activity study. J. Med. Chem. 2011, 54, 3675–3685. [Google Scholar] [CrossRef]
- Blanc, F.; Isabet, T.; Benisty, H.; Sweeney, H.L.; Cecchini, M.; Houdusse, A. An intermediate along the recovery stroke of myosin VI revealed by X-ray crystallography and molecular dynamics. Proc. Natl. Acad. Sci. USA 2018, 115, 6213–6218. [Google Scholar] [CrossRef] [Green Version]
- Fischer, S.; Windshügel, B.; Horak, D.; Holmes, K.C.; Smith, J.C. Structural mechanism of the recovery stroke in the myosin molecular motor. Proc. Natl. Acad. Sci. USA 2005, 102, 6873–6878. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Ma, L.; Yang, Y.; Cui, Q. Mechanochemical coupling in the myosin motor domain. II. Analysis of critical residues. PLoS Comput. Biol. 2007, 3, 0214–0230. [Google Scholar] [CrossRef] [Green Version]
- Koppole, S.; Smith, J.C.; Fischer, S. The Structural Coupling between ATPase Activation and Recovery Stroke in the Myosin II Motor. Structure 2007, 15, 825–837. [Google Scholar] [CrossRef] [Green Version]
- Kintses, B.; Yang, Z.; Málnási-Csizmadia, A. Experimental investigation of the seesaw mechanism of the relay region that moves the myosin lever arm. J. Biol. Chem. 2008, 283, 34121–34128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumketner, A.; Nesmelov, Y. Early stages of the recovery stroke in myosin II studied by molecular dynamics simulations. Protein Sci. 2011, 20, 2013–2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preller, M.; Holmes, K.C. The myosin start-of-power stroke state and how actin binding drives the power stroke. Cytoskeleton 2013, 70, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Llinas, P.; Isabet, T.; Song, L.; Ropars, V.; Zong, B.; Benisty, H.; Sirigu, S.; Morris, C.; Kikuti, C.; Safer, D.; et al. How Actin Initiates the Motor Activity of Myosin. Dev. Cell 2015, 33, 401–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Várkuti, B.H.; Yang, Z.; Malnasi-Csizmadia, A. Structural model of weak binding actomyosin in the prepowerstroke state. J. Biol. Chem. 2015, 290, 1679–1688. [Google Scholar] [CrossRef] [Green Version]
- Preller, M.; Manstein, D.J. Myosin structure, allostery, and mechano-chemistry. Structure 2013, 21, 1911–1922. [Google Scholar] [CrossRef] [Green Version]
- Coureux, P.-D.; Sweeney, H.L.; Houdusse, A. Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J. 2004, 23, 4527–4537. [Google Scholar] [CrossRef] [Green Version]
- Gyimesi, M.; Kintses, B.; Bodor, A.; Perczel, A.; Fischer, S.; Bagshaw, C.R.; Málnási-Csizmadia, A. The mechanism of the reverse recovery step, phosphate release, and actin activation of Dictyostelium myosin II. J. Biol. Chem. 2008, 283, 8153–8163. [Google Scholar] [CrossRef] [Green Version]
- Yount, R.G.; Lawson, D.; Rayment, I.; Yu, L.; Berger, C.; White, H.; Reedy, M.; Ferenczi, M.; Ishiwata, S.; Kushmerick, M.; et al. Is myosin a “back door” enzyme? Biophys. J. 1995, 68, 44S–49S. [Google Scholar]
- Wulf, S.F.; Ropars, V.; Fujita-Becker, S.; Oster, M.; Hofhaus, G.; Trabuco, L.G.; Pylypenko, O.; Sweeney, H.L.; Houdusse, A.M.; Schröder, R.R.; et al. Force-producing ADP state of myosin bound to actin. Proc. Natl. Acad. Sci. USA 2016, 113, E1844–E1852. [Google Scholar] [CrossRef] [Green Version]
- Straight, A.F.; Cheung, A.; Limouze, J.; Chen, I.; Westwood, N.J.; Sellers, J.R.; Mitchison, T.J. Dissecting Temporal and Spatial Control of Cytokinesis with a Myosin II Inhibitor. Science 2003, 299, 1743–1747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramamurthy, B.; Yengo, C.M.; Straight, A.F.; Timothy, J.; Mitchison, A.; Sweeney, H.L. Kinetic Mechanism of Blebbistatin Inhibition of Nonmuscle Myosin IIB†. Biochemistry 2004, 43, 14832–14839. [Google Scholar] [CrossRef] [PubMed]
- Kovács, M.; Tóth, J.; Hetényi, C.; Málnási-Csizmadia, A.; Sellers, J.R. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 2004, 279, 35557–35563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.; White, H.D.; Offer, G.W.; Yu, L.C. Stabilization of helical order in the thick filaments by blebbistatin: Further evidence of coexisting multiple conformations of myosin. Biophys. J. 2009, 96, 3673–3681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, F.Q.; Padrón, R.; Craig, R. Blebbistatin stabilizes the helical order of myosin filaments by promoting the switch 2 closed state. Biophys. J. 2008, 95, 3322–3329. [Google Scholar] [CrossRef] [Green Version]
- Takács, B.; Billington, N.; Gyimesi, M.; Kintses, B.; Málnási-Csizmadia, A.; Knight, P.J.; Kovács, M. Myosin complexed with ADP and blebbistatin reversibly adopts a conformation resembling the start point of the working stroke. Proc. Natl. Acad. Sci. USA 2010, 107, 6799–6804. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Ušaj, M.; Rassier, D.E.; Månsson, A. Blebbistatin Effects Expose Hidden Secrets in the Force-Generating Cycle of Actin and Myosin. Biophys. J. 2018, 115, 386–397. [Google Scholar] [CrossRef] [Green Version]
- Reubold, T.F.; Eschenburg, S.; Becker, A.; Leonard, M.; Schmid, S.L.; Vallee, R.B.; Kull, F.J.; Manstein, D.J. Crystal structure of the GTPase domain of rat dynamin 1. Proc. Natl. Acad. Sci. USA 2005, 102, 13093–13098. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Gourinath, S.; Kovács, M.; Nyitray, L.; Reutzel, R.; Himmel, D.M.; O’Neall-Hennessey, E.; Reshetnikova, L.; Szent-Györgyi, A.G.; Brown, J.H.; et al. Rigor-like Structures from Muscle Myosins Reveal Key Mechanical Elements in the Transduction Pathways of This Allosteric Motor. Structure 2007, 15, 553–564. [Google Scholar] [CrossRef] [Green Version]
- Chizhov, I.; Hartmann, F.K.; Hundt, N.; Tsiavaliaris, G. Global Fit Analysis of Myosin-5b Motility Reveals Thermodynamics of Mg2+-Sensitive Acto-Myosin-ADP States. PLoS ONE 2013, 8, e64797. [Google Scholar] [CrossRef] [Green Version]
- Fujita-Becker, S.; Dürrwang, U.; Erent, M.; Clark, R.J.; Geeves, M.A.; Manstein, D.J. Changes in Mg2+ ion concentration and heavy chain phosphorylation regulate the motor activity of a class I myosin. J. Biol. Chem. 2005, 280, 6064–6071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenfeld, S.S.; Houdusse, A.; Sweeney, H.L. Magnesium regulates ADP dissociation from myosin V. J. Biol. Chem. 2005, 280, 6072–6079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Risal, D.; Gourinath, S.; Himmel, D.M.; Szent-Györgyi, A.G.; Cohen, C. Myosin subfragment 1 structures reveal a partially bound nucleotide and a complex salt bridge that helps couple nucleotide and actin binding. Proc. Natl. Acad. Sci. USA 2004, 101, 8930–8935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coureux, P.D.; Wells, A.L.; Ménétrey, J.; Yengo, C.M.; Morris, C.A.; Sweeney, H.L.; Houdusse, A. A structural state of the myosin V motor without bound nucleotide. Nature 2003, 425, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Swenson, A.M.; Trivedi, D.V.; Rauscher, A.A.; Wang, Y.; Takagi, Y.; Palmer, B.M.; Málnási-Csizmadia, A.; Debold, E.P.; Yengo, C.M. Magnesium modulates actin binding and ADP release in myosin motors. J. Biol. Chem. 2014, 289, 23977–23991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takagi, Y.; Homsher, E.E.; Goldman, Y.E.; Shuman, H. Force generation in single conventional actomyosin complexes under high dynamic load. Biophys. J. 2006, 90, 1295–1307. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, M.J.; Arpaǧ, G.; Tüzel, E.; Ostap, E.M. A Perspective on the Role of Myosins as Mechanosensors. Biophys. J. 2016, 110, 2568–2576. [Google Scholar] [CrossRef] [Green Version]
- Kovács, M.; Thirumurugan, K.; Knight, P.J.; Sellers, J.R. Load-dependent mechanism of nonmuscle myosin 2. Proc. Natl. Acad. Sci. USA 2007, 104, 9994–9999. [Google Scholar] [CrossRef] [Green Version]
- Musafia, B.; Buchner, V.; Arad, D. Complex salt bridges in proteins: Statistical analysis of structure and function. J. Mol. Biol. 1995, 254, 761–770. [Google Scholar] [CrossRef]
- Houdusse, A.; Sweeney, H.L. How Myosin Generates Force on Actin Filaments. Trends Biochem. Sci. 2016, 41, 989–997. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, R.; Witte, G.; Urbanke, C.; Manstein, D.J.; Curth, U. 3D structure of Thermus aquaticus single-stranded DNA–binding protein gives insight into the functioning of SSB proteins. Nucleic Acids Res. 2006, 34, 6708–6717. [Google Scholar] [CrossRef] [PubMed]
- Manstein, D.J.; Hunt, D.M. Overexpression of myosin motor domains in Dictyostelium: Screening of transformants and purification of the affinity tagged protein. J. Muscle Res. Cell Motil. 1995, 16, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Kabsch, W. XDS. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, P.R.; Murshudov, G.N. How good are my data and what is the resolution? Acta Crystallogr. Sect. D Biol. Crystallogr. 2013, 69, 1204–1214. [Google Scholar] [CrossRef] [PubMed]
- Winn, M.D.; Ballard, C.C.; Cowtan, K.D.; Dodson, E.J.; Emsley, P.; Evans, P.R.; Keegan, R.M.; Krissinel, E.B.; Leslie, A.G.W.; McCoy, A.; et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCoy, A.J.; Grosse-Kunstleve, R.W.; Adams, P.D.; Winn, M.D.; Storoni, L.C.; Read, R.J. Phaser crystallographic software. J. Appl. Crystallogr. 2007, 40, 658–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef] [Green Version]
- Afonine, P.V.; Poon, B.K.; Read, R.J.; Sobolev, O.V.; Terwilliger, T.C.; Urzhumtsev, A.; Adams, P.D. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. Sect. D Struct. Biol. 2018, 74, 531–544. [Google Scholar] [CrossRef] [Green Version]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [Green Version]
- Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.M.; Mittal, J.; Feig, M.; MacKerell, A.D. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-Chain χ 1 and χ 2 Dihedral Angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Schlitter, J.; Engels, M.; Krüger, P.; Jacoby, E.; Wollmer, A. Targeted Molecular Dynamics Simulation of Conformational Change-Application to the T ↔ R Transition in Insulin. Mol. Simul. 1993, 10, 291–308. [Google Scholar] [CrossRef]
- Isralewitz, B.; Izrailev, S.; Schulten, K. Binding pathway of retinal to bacterio-opsin: A prediction by molecular dynamics simulations. Biophys. J. 1997, 73, 2972–2979. [Google Scholar] [CrossRef] [Green Version]
- Isralewitz, B.; Baudry, J.; Gullingsrud, J.; Kosztin, D.; Schulten, K. Steered molecular dynamics investigations of protein function. J. Mol. Graph. Model. 2001, 19, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Wienken, C.J.; Baaske, P.; Rothbauer, U.; Braun, D.; Duhr, S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat. Commun. 2010, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Duhr, S.; Braun, D. Why molecules move along a temperature gradient. Proc. Natl. Acad. Sci. USA 2006, 103, 19678–19682. [Google Scholar] [CrossRef] [Green Version]
Dd Myosion-II (apo) | Dd Myosin-II·ADP·Blebbistatin | |
---|---|---|
Data collection | ||
Space group | P1211 | P212121 |
Cell dimensions | ||
a, b, c (Å) | 56.68, 174.40, 100.25 | 47.37, 88.70, 199.89 |
α, β, γ (°) | 90.00, 106.38, 90.00 | 90.00, 90.00, 90.00 |
Resolution (Å) | 46.36–1.88 (1.95–1.88) * | 46.10–2.58 (2.67–2.58) |
Rmerge [%] | 0.12 (0.88) | 0.17 (1.37) |
I / σI | 9.46 (1.81) | 14.41 (1.88) |
CC1/2 | 0.99 (0.76) | 0.99 (0.72) |
Completeness (%) | 98.70 (97.04) | 99.92 (99.96) |
Redundancy | 5.9 | 13.2 |
Refinement | ||
Resolution (Å) | 46.36–1.88 | 46.10–2.58 |
No. reflections | 148,800 (14582) | 27,410 (2668) |
Rwork / Rfree | 19.10 / 21.92 | 20.02 / 23.09 |
No. atoms | 12958 | 6089 |
Protein | 11662 | 5945 |
Ligand/ion | 161 | 85 |
Water | 1135 | 59 |
B-factors | ||
Protein | 39.96 | 52.36 |
Ligand/ion | 46.09 | 50.86 |
Water | 39.27 | 40.13 |
R.m.s. deviations | ||
Bond lengths (Å) | 0.011 | 0.005 |
Bond angles (°) | 1.21 | 0.79 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ewert, W.; Franz, P.; Tsiavaliaris, G.; Preller, M. Structural and Computational Insights into a Blebbistatin-Bound Myosin•ADP Complex with Characteristics of an ADP-Release Conformation along the Two-Step Myosin Power Stoke. Int. J. Mol. Sci. 2020, 21, 7417. https://doi.org/10.3390/ijms21197417
Ewert W, Franz P, Tsiavaliaris G, Preller M. Structural and Computational Insights into a Blebbistatin-Bound Myosin•ADP Complex with Characteristics of an ADP-Release Conformation along the Two-Step Myosin Power Stoke. International Journal of Molecular Sciences. 2020; 21(19):7417. https://doi.org/10.3390/ijms21197417
Chicago/Turabian StyleEwert, Wiebke, Peter Franz, Georgios Tsiavaliaris, and Matthias Preller. 2020. "Structural and Computational Insights into a Blebbistatin-Bound Myosin•ADP Complex with Characteristics of an ADP-Release Conformation along the Two-Step Myosin Power Stoke" International Journal of Molecular Sciences 21, no. 19: 7417. https://doi.org/10.3390/ijms21197417
APA StyleEwert, W., Franz, P., Tsiavaliaris, G., & Preller, M. (2020). Structural and Computational Insights into a Blebbistatin-Bound Myosin•ADP Complex with Characteristics of an ADP-Release Conformation along the Two-Step Myosin Power Stoke. International Journal of Molecular Sciences, 21(19), 7417. https://doi.org/10.3390/ijms21197417