Cannabinoid Receptor 2 Modulates Maturation of Dendritic Cells and Their Capacity to Induce Hapten-Induced Contact Hypersensitivity
Abstract
:1. Introduction
2. Results
2.1. Reduced Contact Hypersensitivity upon Adoptive Transfer of Haptenized Cnr2−/− Dendritic Cells
2.2. Reduced Expression of Chemokine Receptors on Cnr2−/− and WT BM-DCs
2.3. Reduced Expression of MHC Class II (MHC II) and Co-Stimulatory Molecules by Cnr2−/− BM-DCs upon TLR Stimulation
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Contact Hypersensitivity
4.3. Generation of BM-DCs
4.4. Transwell Migration Assays
4.5. FACS Analysis
4.6. Elisa
4.7. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
9-THC | 9-tetrahydrocannabinol |
ACD | Allergic contact dermatitis |
AF | Alexa Fluor |
APC | allophycocyanin |
BM-DCs | Bone marrow derived dendritic cells |
BV | Brilliant Violet |
CB/Cnr | Cannabinoid receptor |
CCL/CXCL | Chemokine ligands of the CC and CXC classes |
CCR/CXCR | Chemokine receptors of the CC and CXC classes |
CHS | contact hypersensitivity |
CpG | CpG Oligonucleotide 1668 |
DCs | dendritic cells |
DMEM | Dulbecco modified Eagle medium |
DNFB | 2,4-dinitro-1-fluorobenzene |
eCBS | Endocannabinoid system |
FCS | Fetal calf serum |
GM-CSF | granulocyte-macrophage colony-stimulating factor |
Ig | Immunoglobulin |
IL | interleukin |
KO | knock out |
LPS | lipopolysaccharide |
mAb | monoclonal antibody |
2-ME | 2-mercaptoethanol |
MEM/NEAA | Minimum essential medium/Non-essential amino acids |
MHC | Major histocompatibility complex |
PE | phycoerythrin |
s.c. | subcutaneously |
SEM | standard error of the mean |
TH | T helper |
9-THC | 9-tetrahydrocannabinol |
TLR | Toll-like receptor |
TSLP | thymic stromal lymphopoietin |
WT | wild type |
References
- Martin, S.; Esser, P.; Weber, F.; Jakob, T.; Freudenberg, M.; Schmidt, M.; Goebeler, M. Mechanisms of chemical-induced innate immunity in allergic contact dermatitis. Allergy 2011, 66, 1152–1163. [Google Scholar] [CrossRef]
- Peng, W.; Novak, N. Pathogenesis of atopic dermatitis. Clin. Exp. Allergy 2015, 45, 566–574. [Google Scholar] [CrossRef]
- Carrera, Y.I.L.; Al Hammadi, A.; Huang, Y.-H.; Llamado, L.J.; Mahgoub, E.; Tallman, A.M. Epidemiology, Diagnosis, and Treatment of Atopic Dermatitis in the Developing Countries of Asia, Africa, Latin America, and the Middle East: A Review. Dermatol. Ther. 2019, 9, 1–21. [Google Scholar]
- Martin, S.F. Allergic contact dermatitis: Xenoinflammation of the skin. Curr. Opin. Immunol. 2012, 24, 720–729. [Google Scholar] [CrossRef]
- Honda, T.; Egawa, G.; Grabbe, S.; Kabashima, K. Update of immune events in the murine contact hypersensitivity model: Toward the understanding of allergic contact dermatitis. J. Investig. Dermatol. 2013, 133, 303–315. [Google Scholar] [CrossRef] [Green Version]
- Kissenpfennig, A.; Malissen, B. Langerhans cells–revisiting the paradigm using genetically engineered mice. Trends Immunol. 2006, 27, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Clausen, B.E.; Stoitzner, P. Functional specialization of skin dendritic cell subsets in regulating T cell responses. Front. Immunol. 2015, 6, 534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehtimäki, S.; Savinko, T.; Lahl, K.; Sparwasser, T.; Wolff, H.; Lauerma, A.; Alenius, H.; Fyhrquist, N. The Temporal and Spatial Dynamics of Foxp3+ Treg Cell–Mediated Suppression during Contact Hypersensitivity Responses in a Murine Model. J. Investig. Dermatol. 2012, 132, 2744–2751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kogan, N.M.; Mechoulam, R. Cannabinoids in health and disease. Dialogues Clin. Neurosci. 2007, 9, 413. [Google Scholar] [PubMed]
- Galiègue, S.; Mary, S.; Marchand, J.; Dussossoy, D.; Carrière, D.; Carayon, P.; Bouaboula, M.; Shire, D.; LE Fur, G.; Casellas, P. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem. 1995, 232, 54–61. [Google Scholar] [CrossRef]
- Zimmer, A.; Zimmer, A.M.; Hohmann, A.G.; Herkenham, M.; Bonner, T.I. Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc. Natl. Acad. Sci. USA 1999, 96, 5780–5785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matias, I.; Pochard, P.; Orlando, P.; Salzet, M.; Pestel, J.; Di Marzo, V. Presence and regulation of the endocannabinoid system in human dendritic cells. Eur. J. Biochem. 2002, 269, 3771–3778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billings, S.D. Common and critical inflammatory dermatoses every pathologist should know. Mod. Pathol. 2019, 33, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-C. Neurogenesis and antidepressant action. Cell Tissue Res. 2019, 377, 95–106. [Google Scholar] [CrossRef]
- Yamamoto, W.; Mikami, T.; Iwamura, H. Involvement of central cannabinoid CB2 receptor in reducing mechanical allodynia in a mouse model of neuropathic pain. Eur. J. Pharmacol. 2008, 583, 56–61. [Google Scholar] [CrossRef]
- Tschöp, J.; Kasten, K.R.; Nogueiras, R.; Goetzman, H.S.; Cave, C.M.; England, L.G.; Dattilo, J.; Lentsch, A.B.; Tschöp, M.H.; Caldwell, C.C. The cannabinoid receptor 2 is critical for the host response to sepsis. J. Immunol. 2009, 183, 499–505. [Google Scholar] [CrossRef]
- Raborn, E.S.; Cabral, G.A. Cannabinoid inhibition of macrophage migration to the trans-activating (Tat) protein of HIV-1 is linked to the CB2 cannabinoid receptor. J. Pharmacol. Exp. Ther. 2010, 333, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Trebicka, J.; Racz, I.; Siegmund, S.V.; Cara, E.; Granzow, M.; Schierwagen, R.; Klein, S.; Wojtalla, A.; Hennenberg, M.; Huss, S. Role of cannabinoid receptors in alcoholic hepatic injury: Steatosis and fibrogenesis are increased in CB2 receptor-deficient mice and decreased in CB1 receptor knockouts. Liver Int. 2011, 31, 860–870. [Google Scholar] [CrossRef]
- Alferink, J.; Specht, S.; Arends, H.; Schumak, B.; Schmidt, K.; Ruland, C.; Lundt, R.; Kemter, A.; Dlugos, A.; Kuepper, J.M. Cannabinoid receptor 2 modulates susceptibility to experimental cerebral malaria through a CCL17-dependent mechanism. J. Biol. Chem. 2016, 291, 19517–19531. [Google Scholar] [CrossRef] [Green Version]
- Maccarrone, M.; Di Rienzo, M.; Battista, N.; Gasperi, V.; Guerrieri, P.; Rossi, A.; Finazzi-Agrò, A. The Endocannabinoid System in Human Keratinocytes Evidence That Anandamide Inhibits Epidermal Differentiation through Cb1 Receptor-Dependent Inhibition of Protein Kinase C, Activating Protein-1, and Transglutaminase. J. Biol. Chem. 2003, 278, 33896–33903. [Google Scholar] [CrossRef] [Green Version]
- Karsak, M.; Gaffal, E.; Date, R.; Wang-Eckhardt, L.; Rehnelt, J.; Petrosino, S.; Starowicz, K.; Steuder, R.; Schlicker, E.; Cravatt, B. Attenuation of allergic contact dermatitis through the endocannabinoid system. Science 2007, 316, 1494–1497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oláh, A.; Ambrus, L.; Nicolussi, S.; Gertsch, J.; Tubak, V.; Kemény, L.; Soeberdt, M.; Abels, C.; Bíró, T. Inhibition of fatty acid amide hydrolase exerts cutaneousanti-inflammatory effects both in vitro and in vivo. Exp. Dermatol. 2016, 25, 328–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueda, Y.; Miyagawa, N.; Matsui, T.; Kaya, T.; Iwamura, H. Involvement of cannabinoid CB2 receptor-mediated response and efficacy of cannabinoid CB2 receptor inverse agonist, JTE-907, in cutaneous inflammation in mice. Eur. J. Pharmacol. 2005, 520, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Koyama, S.; Purk, A.; Kaur, M.; Soini, H.A.; Novotny, M.V.; Davis, K.; Kao, C.C.; Matsunami, H.; Mescher, A. Beta-caryophyllene enhances wound healing through multiple routes. PLoS ONE 2019, 14, e0216104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhikary, S.; Kocieda, V.P.; Yen, J.-H.; Tuma, R.F.; Ganea, D. Signaling through cannabinoid receptor 2 suppresses murine dendritic cell migration by inhibiting matrix metalloproteinase 9 expression. Blood 2012, 120, 3741–3749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemter, A.M.; Scheu, S.; Hüser, N.; Ruland, C.; Schumak, B.; Findeiß, M.; Cheng, Z.; Assfalg, V.; Arolt, V.; Zimmer, A. The cannabinoid receptor 2 is involved in acute rejection of cardiac allografts. Life Sci. 2015, 138, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Gaffal, E.; Cron, M.; Glodde, N.; Bald, T.; Kuner, R.; Zimmer, A.; Lutz, B.; Tüting, T. Cannabinoid 1 receptors in keratinocytes modulate proinflammatory chemokine secretion and attenuate contact allergic inflammation. J. Immunol. 2013, 190, 4929–4936. [Google Scholar] [CrossRef] [Green Version]
- Gaffal, E.; Glodde, N.; Jakobs, M.; Bald, T.; Tüting, T. Cannabinoid 1 receptors in keratinocytes attenuate fluorescein isothiocyanate-induced mouse atopic-like dermatitis. Exp. Dermatol. 2014, 23, 401–406. [Google Scholar] [CrossRef]
- Ohl, L.; Mohaupt, M.; Czeloth, N.; Hintzen, G.; Kiafard, Z.; Zwirner, J.; Blankenstein, T.; Henning, G.; Förster, R. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 2004, 21, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Kabashima, K.; Shiraishi, N.; Sugita, K.; Mori, T.; Onoue, A.; Kobayashi, M.; Sakabe, J.-i.; Yoshiki, R.; Tamamura, H.; Fujii, N. CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am. J. Pathol. 2007, 171, 1249–1257. [Google Scholar] [CrossRef] [Green Version]
- Hitzler, M.; Majdic, O.; Heine, G.; Worm, M.; Ebert, G.; Luch, A.; Peiser, M. Human Langerhans cells control Th cells via programmed death-ligand 1 in response to bacterial stimuli and nickel-induced contact allergy. PLoS ONE 2012, 7, e46776. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, E.; Ohno, T.; Nagai, S.; Noda, T.; Komiyama, T.; Kobayashi, K.; Hamamoto, H.; Miyashin, M.; Yokozeki, H.; Azuma, M. Silencing of PD-L2/B7-DC by Topical Application of Small Interfering RNA Inhibits Elicitation of Contact Hypersensitivity. J. Investig. Dermatol. 2019, 139, 2164–2173.e1. [Google Scholar] [CrossRef] [PubMed]
- Besche, V.; Wiechmann, N.; Castor, T.; Trojandt, S.; Hohn, Y.; Kunkel, H.; Grez, M.; Grabbe, S.; Reske-Kunz, A.B.; Bros, M. Dendritic cells lentivirally engineered to overexpress interleukin-10 inhibit contact hypersensitivity responses, despite their partial activation induced by transduction-associated physical stress. J. Gene Med. 2010, 12, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Castan, L.; Magnan, A.; Bouchaud, G. Chemokine receptors in allergic diseases. Allergy 2017, 72, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Moschovakis, G.L.; Förster, R. Multifaceted activities of CCR7 regulate T-cell homeostasis in health and disease. Eur. J. Immunol. 2012, 42, 1949–1955. [Google Scholar] [CrossRef]
- Sallusto, F.; Lanzavecchia, A. Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression. Immunol. Rev. 2000, 177, 134–140. [Google Scholar] [CrossRef]
- Averbeck, M.; Kuhn, S.; Bühligen, J.; Götte, M.; Simon, J.C.; Polte, T. Syndecan-1 regulates dendritic cell migration in cutaneous hypersensitivity to haptens. Exp. Dermatol. 2017, 26, 1060–1067. [Google Scholar] [CrossRef]
- Stutte, S.; Quast, T.; Gerbitzki, N.; Savinko, T.; Novak, N.; Reifenberger, J.; Homey, B.; Kolanus, W.; Alenius, H.; Förster, I. Requirement of CCL17 for CCR7-and CXCR4-dependent migration of cutaneous dendritic cells. Proc. Natl. Acad. Sci. USA 2010, 107, 8736–8741. [Google Scholar] [CrossRef] [Green Version]
- Piao, W.; Xiong, Y.; Famulski, K.; Brinkman, C.C.; Li, L.; Toney, N.; Wagner, C.; Saxena, V.; Simon, T.; Bromberg, J.S. Regulation of T cell afferent lymphatic migration by targeting LTβR-mediated non-classical NFκB signaling. Nat. Commun. 2018, 9, 3020. [Google Scholar] [CrossRef]
- Castiello, L.; Sabatino, M.; Jin, P.; Clayberger, C.; Marincola, F.M.; Krensky, A.M.; Stroncek, D.F. Monocyte-derived DC maturation strategies and related pathways: A transcriptional view. Cancer Immunol. Immunother. CII 2011, 60, 457–466. [Google Scholar] [CrossRef] [Green Version]
- Tang, A.; Judge, T.A.; Turka, L.A. Blockade of CD40-CD40 ligand pathway induces tolerance in murine contact hypersensitivity. Eur. J. Immunol. 1997, 27, 3143–3150. [Google Scholar] [CrossRef] [PubMed]
- Moodycliffe, A.M.; Shreedhar, V.; Ullrich, S.E.; Walterscheid, J.; Bucana, C.; Kripke, M.L.; Flores-Romo, L. CD40–CD40 ligand interactions in vivo regulate migration of antigen-bearing dendritic cells from the skin to draining lymph nodes. J. Exp. Med. 2000, 191, 2011–2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuriya, S.; Yagita, H.; Okumura, K.; Azuma, M. The differential role of CD86 and CD80 co-stimulatory molecules in the induction and the effector phases of contact hypersensitivity. Int. Immunol. 1996, 8, 917–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiser, H.; Schneeberger, E.E. Expression and function of B7-1 and B7-2 in hapten-induced contact sensitivity. Eur. J. Immunol. 1996, 26, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Ritprajak, P.; Hashiguchi, M.; Azuma, M. Topical application of cream-emulsified CD86 siRNA ameliorates allergic skin disease by targeting cutaneous dendritic cells. Mol. Ther. 2008, 16, 1323–1330. [Google Scholar] [CrossRef]
- Buckley, N.E.; McCoy, K.L.; Mezey, É.; Bonner, T.; Zimmer, A.; Felder, C.C.; Glass, M.; Zimmer, A. Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB2 receptor. Eur. J. Pharmacol. 2000, 396, 141–149. [Google Scholar] [CrossRef]
- Ruland, C.; Renken, H.; Kuzmanov, I.; Fattahi Mehr, A.; Schwarte, K.; Cerina, M.; Herrmann, A.; Otte, D.-M.; Zimmer, A.; Schwab, N.; et al. Chemokine CCL17 is expressed by dendritic cells in the CNS during experimental autoimmune encephalomyelitis and promotes pathogenesis of disease. Brain Behav. Immun. 2017, 66, 382–393. [Google Scholar] [CrossRef]
- Alferink, J.; Lieberam, I.; Reindl, W.; Behrens, A.; Weiß, S.; Hüser, N.; Gerauer, K.; Ross, R.; Reske-Kunz, A.B.; Ahmad-Nejad, P. Compartmentalized production of CCL17 in vivo: Strong inducibility in peripheral dendritic cells contrasts selective absence from the spleen. J. Exp. Med. 2003, 197, 585–599. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaffal, E.; Kemter, A.M.; Scheu, S.; Leite Dantas, R.; Vogt, J.; Baune, B.; Tüting, T.; Zimmer, A.; Alferink, J. Cannabinoid Receptor 2 Modulates Maturation of Dendritic Cells and Their Capacity to Induce Hapten-Induced Contact Hypersensitivity. Int. J. Mol. Sci. 2020, 21, 475. https://doi.org/10.3390/ijms21020475
Gaffal E, Kemter AM, Scheu S, Leite Dantas R, Vogt J, Baune B, Tüting T, Zimmer A, Alferink J. Cannabinoid Receptor 2 Modulates Maturation of Dendritic Cells and Their Capacity to Induce Hapten-Induced Contact Hypersensitivity. International Journal of Molecular Sciences. 2020; 21(2):475. https://doi.org/10.3390/ijms21020475
Chicago/Turabian StyleGaffal, Evelyn, Andrea M. Kemter, Stefanie Scheu, Rafael Leite Dantas, Jens Vogt, Bernhard Baune, Thomas Tüting, Andreas Zimmer, and Judith Alferink. 2020. "Cannabinoid Receptor 2 Modulates Maturation of Dendritic Cells and Their Capacity to Induce Hapten-Induced Contact Hypersensitivity" International Journal of Molecular Sciences 21, no. 2: 475. https://doi.org/10.3390/ijms21020475
APA StyleGaffal, E., Kemter, A. M., Scheu, S., Leite Dantas, R., Vogt, J., Baune, B., Tüting, T., Zimmer, A., & Alferink, J. (2020). Cannabinoid Receptor 2 Modulates Maturation of Dendritic Cells and Their Capacity to Induce Hapten-Induced Contact Hypersensitivity. International Journal of Molecular Sciences, 21(2), 475. https://doi.org/10.3390/ijms21020475