Characterization of Asparagine Deamidation in Immunodominant Myelin Oligodendrocyte Glycoprotein Peptide Potential Immunotherapy for the Treatment of Multiple Sclerosis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design and Synthesis of Peptides Based on the Immunodominant MOG35–55 Epitope
2.2. HPLC Analysis
2.3. NMR Analysis
2.4. In Vivo Evaluation of Con-Pep 8 and Con-Pep 9 Conjugated to Mannan
3. Materials and Methods
3.1. Synthesis
Peptide Synthesis
3.2. NMR Spectroscopy
3.3. EAE Evaluation
3.3.1. Mice
3.3.2. Administration of Peptides to Mice
3.3.3. EAE Induction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MOG | Myelin Oligodendrocyte Glycoprotein |
MS | Multiple Sclerosis |
EAE | Experimental Autoimmune Encephalomyelitis |
SPPS | Solid Phase Peptide Synthesis |
RP-HPLC | Reverse Phase-High Performance Liquid Chromatography |
ESI-MS | Electron Spray Ionization-Mass Spectrometry |
DQF-COSY | Double Quantum-Filtered Correlated Spectroscopy |
TOCSY | Total Correlated Spectroscopy |
NOESY | Nuclear Overhauser Effect Correlation Spectroscopy |
ROESY | Rotating-Frame Nuclear Overhauser Effect Correlation Spectroscopy |
HSQC | Heteronuclear Single Quantum Coherence |
References
- Kaspar, A.A.; Reichert, J.M. Future directions for peptide therapeutics. Drug. Discov. Today 2013, 18, 807–817. [Google Scholar] [CrossRef]
- Lau, L.J.; Dunn, K.M. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 2017, 26, 2700–2707. [Google Scholar] [CrossRef]
- Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug. Discov. Today 2014, 20, 122–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: Science and market. Drug. Discov. Today 2010, 15, 40–56. [Google Scholar] [CrossRef] [PubMed]
- Currier, J.; Galley, L.; Wenschuh, H.; Morafo, V.; Ratto-Kim, S.; Gray, C.; Maboko, L.; Hoelscher, M.; Marovich, M.; Cox, J. Peptide impurities in commercial synthetic peptides and their implications for vaccine trial assessment. Clin. Vac. Immunol. 2008, 15, 267–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogt, W. Oxidation of methionyl residues in proteins: Tools, targets, and reversal. Free Radic. Biol. Med. 1995, 18, 93–105. [Google Scholar] [CrossRef]
- Posadaz, A.; Biasutti, A.; Casale, C.; Sanz, J.; Amat-Guerri, F.; García, N. A Rose Bengal-sensitized photooxidation of the dipeptides L-tryptophyl-L-phenylalanine, L-tryptophyl-L-tyrosine and L-tryptophyl-L-tryptophan: Kinetics, mechanism and photoproducts. Photochem. Photobiol. 2004, 80, 132–138. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Haase, D.N.; Johnson, J.V.; Chung, A. Benzotriazole-assisted solid-phase assembly of Leu-enkephalin, amyloid beta segment 34-42, and other “difficult” peptide sequences. J. Org. Chem. 2009, 74, 2028–2032. [Google Scholar] [CrossRef]
- Angell, Y.; Alsina, J.; Albericio, F.; Barany, G. Practical protocols for stepwise solid-phase synthesis of cysteine-containing peptides. J. Pept. Res. 2002, 60, 292–299. [Google Scholar] [CrossRef]
- Angeletti, R.H.; Bibbs, L.; Bonewald, L.F.; Fields, G.B.; Kelly, J.W.; McMurray, J.S.; Moore, W.T.; Weintraub, S.T. 1997. Analysis of racemization during “standard” solid phase peptide synthesis: A multicenter study. In Techniques in Protein Chemistry VIII; Marshak, D.R., Ed.; Academic Press, Inc.: San Diego, CA, USA, 1997; pp. 875–890. [Google Scholar]
- Han, Y.; Albericio, F.; Barany, G. Occurrence and Minimization of Cysteine Racemization during Stepwise Solid-Phase Peptide Synthesis. J. Org. Chem. 1997, 7, 4307–4312. [Google Scholar] [CrossRef]
- Vommina, V.V.; Narendra, N. Protection Reactions. In Amino Acids, Peptides and Proteins in Organic Chemistry. In Protection Reactions, Medicinal Chemistry, Combinatorial Synthesis; Hughes, A.B., Ed.; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2011; Volume 4, pp. 1–97. [Google Scholar]
- Yang, Y. Peptide Oxidation/Reduction Side Reactions. In Side Reactions in Peptide Synthesis; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 217–233. [Google Scholar]
- Yang, H.; Zubarev, R. Mass spectrometric analysis of asparagine deamidation and aspartate isomerization in polypeptides. Electrophoresis 2010, 31, 1764–1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouellette, D.; Chumsae, C.; Clabbers, A.; Radziejewski, C.; Correia, I. Comparison of the in vitro and in vivo stability of a succinimide intermediate observed on a therapeutic IgG1 molecule. mAbs 2013, 5, 432–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Yip, H.; Katta, V. Identification of isomerization and racemization of aspartate in the Asp-Asp motifs of a therapeutic protein. Anal. Biochem. 2011, 410, 234–243. [Google Scholar] [CrossRef]
- Machado, Y.; Rabasa, Y.; Montesinos, R.; Cremata, J.; Besada, V.; Fuentes, D.; Castillo, A.; de la Luz, K.; Vázquez, A.; Himly, M. Physicochemical and biological characterization of 1E10 Anti-Idiotype vaccine. BMC Biotechnol. 2011, 11, 112. [Google Scholar]
- Cacia, J.; Keck, R.; Presta, L.G.; Frenz, J. Isomerization of an aspartic acid residue in thecomplementarity-determining regions of a recombinant antibody to human IgE: Identification and effect on binding affinity. Biochemistry 1996, 35, 1897–1903. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Shahrokh, Z.; Kadkhodayan, M.; Henzel, W.J.; Powell, M.F.; Borchardt, R.T.; Schowen, R.L. Asparagine deamidation in recombinant human lymphotoxin: Hindrance by three-dimensional structures. J. Pharm. Sci. 2003, 92, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, C.L.; Friedman, A.R.; Kubiak, T.M.; Donlan, M.E.; Borchardt, R.T. Effect of secondary structure on the rate of deamidation of several growth hormone releasing factor analogs. Int. J. Pept. Protein Res. 1993, 42, 497–503. [Google Scholar] [CrossRef]
- Di Salvo, M.L.; Delle Fratte, S.; Maras, B.; Bossa, F.; Wright, H.T.; Schirch, V. Deamidation of asparagine residues in a recombinant serine hydroxy methyltransferase. Arch. Biochem. Biophys. 1999, 372, 271–279. [Google Scholar] [CrossRef]
- Huang, L.; Lu, J.; Wroblewski, V.J.; Beals, J.M.; Riggin, R.M. In vivo deamidation characterization of monoclonal antibody by LC/MS/MS. Anal. Chem. 2005, 77, 1432–1439. [Google Scholar] [CrossRef]
- Kerlero de Rosbo, N.; Milo, R.; Lees, M.B.; Burger, D.; Bernard, C.C.; Ben-Nun, A. Reactivity to myelin antigens in multiple sclerosis. Peripheral blood lymphocytes respond predominantly to myelin oligodendrocyte glycoprotein. J. Clin. Investig. 1993, 92, 2602–2608. [Google Scholar] [CrossRef] [Green Version]
- Linington, C.; Berger, T.; Perry, L.; Werth, S.; Hinze-Selch, D.; Zhang, Y.; Lu, H.C.; Lassmann, H.; Wekerle, H. T cells specific for the myelin oligodendrocyte glycoprotein mediate an unusual autoimmune inflammatory response in the central nervous system. Eur. J. Immunol. 1993, 23, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Amor, S.; Groome, N.; Linington, C.; Morris, M.M.; Dornmair, K.; Gardinier, M.V.; Matthieu, J.M.; Baker, D. Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J. Immunol. 1994, 153, 4349–4356. [Google Scholar] [PubMed]
- Ichikawa, M.; Johns, T.G.; Liu, J.; Bernard, C.C. Analysis of the fine B cell specificity during the chronic/relapsing course of a multiple sclerosis-like disease in Lewis rats injected with the encephalitogenic myelin oligodendrocyte glycoprotein peptide 35–55. J. Immunol. 1996, 157, 919–926. [Google Scholar] [PubMed]
- Constantinescu, C.S.; Farooqi, N.; O’Brien, K.; Gran, B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br. J. Pharmacol. 2011, 164, 1079–1106. [Google Scholar] [CrossRef] [PubMed]
- Bittner, S.; Afzali, A.M.; Wiendl, H.; Meuth, S.G. Myelin oligodendrocyte glycoprotein (MOG35–55) induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. J. Vis. Exp. 2014, 86, e51275. [Google Scholar]
- Stromnes, I.M.; Goverman, J.M. Active induction of experimental allergic encephalomyelitis. Nat. Protoc. 2006, 1, 1810–1819. [Google Scholar] [CrossRef]
- Tselios, T.; Aggelidakis, M.; Tapeinou, A.; Tseveleki, V.; Kanistras, I.; Gatos, D.; Matsoukas, J. Rational design and synthesis of altered peptide ligands based on Human myelin oligodendrocyte glycoprotein 35-55 epitope: Inhibition of chronic experimental autoimmune encephalomyelitis in mice. Molecules 2014, 19, 17968–17984. [Google Scholar] [CrossRef]
- Tseveleki, V.; Tselios, T.; Kanistras, I.; Koutsoni, O.; Karamita, M.; Vamvakas, S.S.; Apostolopoulos, V.; Dotsika, E.; Matsoukas, J.; Lassmann, H.; et al. Mannan-conjugated myelin peptides prime non-pathogenic Th1 and Th17 cells and ameliorate experimental autoimmune encephalomyelitis. Exp. Neurol. 2014, 267, 254–267. [Google Scholar] [CrossRef] [Green Version]
- Tapeinou, A.; Matsoukas, M.T.; Simal, C.; Tselios, T. Review cyclic peptides on a merry-go-round; towards drug design. Biopolymers 2015, 104, 453–461. [Google Scholar] [CrossRef]
- Day, S.; Tselios, T.; Androutsou, M.E.; Tapeinou, A.; Frilligou, I.; Stojanovska, L.; Matsoukas, J.; Apostolopoulos, V. Mannosylated Linear and Cyclic Single Amino Acid Mutant Peptides Using a Small 10 Amino Acid Linker Constitute Promising Candidates Against Multiple Sclerosis. Front. Immunol. 2015, 6, 136. [Google Scholar] [CrossRef]
- Tapeinou, A.; Androutsou, M.E.; Kyrtata, K.; Vlamis-Gardikas, A.; Apostolopoulos, V.; Matsoukas, J.; Tselios, T. Conjugation of a peptide to mannan and its confirmation by tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal. Biochem. 2015, 485, 43–45. [Google Scholar] [CrossRef] [PubMed]
- Tapeinou, A.; Giannopoulou, E.; Simal, C.; Hansen, B.E.; Kalofonos, H.; Apostolopoulos, V.; Vlamis-Gardikas, A.; Tselios, T. Design, synthesis and evaluation of an anthraquinone derivative conjugated to myelin basic protein immunodominant (MBP85-99) epitope: Towards selective immunosuppression. Eur. J. Med. Chem. 2018, 143, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Androutsou, M.E.; Tapeinou, A.; Vlamis-Gardikas, A.; Tselios, T. Myelin Oligodendrocyte Glycoprotein and Multiple Sclerosis. Med. Chem. 2018, 14, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Yannakakis, M.P.; Simal, C.; Tzoupis, H.; Rodi, M.; Dargahi, N.; Prakash, M.; Mouzaki, A.; Platts, J.A.; Apostolopoulos, V.; Tselios, T. Design and Synthesis of Non-Peptide Mimetics Mapping the Immunodominant Myelin Basic Protein (MBP83-96) Epitope to Function as T-Cell Receptor Antagonists. Int. J. Mol. Sci. 2017, 18, 1215. [Google Scholar] [CrossRef] [PubMed]
- Lutterotti, A.; Yousef, S.; Sputtek, A.; Stürner, K.; Stellmann, J.P.; Breiden, P.; Reinhardt, S.; Schulze, C.; Bester, M.; Heesen, C.; et al. Antigen-Specific Tolerance by Autologous Myelin Peptide-Coupled Cells: A Phase 1 Trial in Multiple Sclerosis. Sci. Transl. Med. 2013, 5, 188ra75. [Google Scholar] [CrossRef] [Green Version]
- Emmanouil, M.; Tseveleki, V.; Triantafyllakou, I.; Nteli, A.; Tselios, T.; Probert, L. A Cyclic Altered Peptide Analogue Based on Myelin Basic Protein 87–99 Provides Lasting Prophylactic and Therapeutic Protection Against Acute Experimental Autoimmune Encephalomyelitis. Molecules 2018, 2, 304. [Google Scholar] [CrossRef] [Green Version]
- Tselios, T.; Daliani, I.; Deraos, S.; Thymianou, S.; Matsoukas, E.; Troganis, A.; Gerothanassis, I.; Mouzaki, A.; Mavromoustakos, T.; Probert, L.; et al. Treatment of experimental allergic encephalomyelitis (eae) by a rationally designed cyclic analogue of myelin basic protein (mbp) epitope 72–85. Bioorg. Med. Chem. Lett. 2000, 10, 2713–2717. [Google Scholar] [CrossRef]
- Tselios, T.; Apostolopoulos, V.; Daliani, I.; Deraos, S.; Grdadolnik, S.; Mavromoustakos, T.; Melachrinou, M.; Thymianou, S.; Probert, L.; Mouzaki, A.; et al. Antagonistic effects of human cyclic MBP(87–99) altered peptide ligands in experimental allergic encephalomyelitis and human t-cell proliferation. J. Med. Chem. 2002, 45, 275–283. [Google Scholar] [CrossRef]
- Matsoukas, J.; Apostolopoulos, V.; Kalbacher, H.; Papini, A.M.; Tselios, T.; Chatzantoni, K.; Biagioli, T.; Lolli, F.; Deraos, S.; Papathanassopoulos, P.; et al. Design and synthesis of a novel potent myelin basic protein epitope 87-99 cyclic analogue: Enhanced stability and biological properties of mimics render them a potentially new class of immunomodulators. J. Med. Chem. 2005, 48, 1470–1480. [Google Scholar] [CrossRef] [Green Version]
- Mantzourani, E.D.; Platts, J.A.; Brancale, A.; Mavromoustakos, T.M.; Tselios, T.V. Molecular dynamics at the receptor level of immunodominant myelin basic protein epitope 87–99 implicated in multiple sclerosis and its antagonists altered peptide ligands: Triggering of immune response. J. Mol. Graph. Model. 2007, 26, 471–481. [Google Scholar] [CrossRef]
- Mantzourani, E.D.; Mavromoustakos, T.M.; Platts, J.A.; Matsoukas, J.M.; Tselios, T.V. Structural requirements for binding of myelin basic protein (mbp) peptides to mhc ii: Effects on immune regulation. Curr. Med. Chem. 2005, 12, 1521–1535. [Google Scholar] [CrossRef] [PubMed]
- Friligou, I.; Rizzolo, F.; Nuti, F.; Tselios, T.; Evangelidou, M.; Emmanouil, M.; Karamita, M.; Matsoukas, J.; Chelli, M.; Rovero, P.; et al. Divergent and convergent synthesis of polymannosylated dibranched antigenic peptide of the immunodominant epitope mbp(83–99). Bioorg. Med. Chem. 2013, 21, 6718–6725. [Google Scholar] [CrossRef] [PubMed]
- Ieronymaki, M.; Androutsou, M.E.; Pantelia, A.; Friligou, I.; Crisp, M.; High, K.; Penkman, K.; Gatos, D.; Tselios, T. Use of the 2-chlorotrityl chloride resin for microwave-assisted solid phase peptide synthesis. Biopolymers 2015, 104, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Dagkonaki, A.; Avloniti, M.; Evangelidou, M.; Papazian, I.; Kanistras, I.; Tseveleki, V.; Lampros, F.; Tselios, T.; Jensen, L.T.; Möbius, W.; et al. Mannan-MOG35–55 reverses experimental autoimmune encephalomyelitis, inducing a peripheral type 2 myeloid response, reducing CNS inflammation and preserving axons in spinal cord lesions. Front. Immunol. 2020. accepted for publication. [Google Scholar]
- Mendel, I.; de Rosbo, N.K.; Ben-Nun, A. A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: Fine specificity and T cell receptor V beta expression of encephalitogenic T cells. Eur. J. Immunol. 2015, 25, 1951–1959. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Peptide | Peptide Sequence | Abbreviation |
---|---|---|
Pep 1 | H-Arg41-Pro-Pro-Phe-Ser-Arg-Val-Val-His-Leu-Tyr-Arg-Asn53-Gly-Lys55-OH | MOG41–55 |
Pep 2 | H-Arg41-Pro-Pro-Phe-Ser-Arg-Val-Val-His-Leu-Tyr-Arg-Ala53-Gly-Lys55-OH | MOG41–55(Ala53) |
Pep 3 | H-Arg41-Pro-Pro-Phe-Ser-Arg-Val-Val-His-Leu-Tyr-Arg-Asp53-Gly-Lys55-OH | MOG41–55(Asp53) |
Pep 4 | H-Arg41-Pro-Pro-Phe-Ser-Arg-Val-Val-His-Leu-Tyr-Arg-isoAsp53-Gly-Lys55-OH | MOG41–55(isoAsp53) |
Pep 5 | H-Lys-Gly-Lys-Gly-Lys-Gly-Lys-Gly-Lys-Gly-Met35-Glu-Val-Gly-Trp-Tyr-Arg-Pro-Pro-Phe-Ser-Arg-Val-Val-His-Leu-Tyr-Arg-Asn53-Gly-Lys55-OH | (KG)5MOG35–55 |
Pep 6 | H-Lys-Gly-Lys-Gly-Lys-Gly-Lys-Gly-Lys-Gly-Met35-Glu-Val-Gly-Trp-Tyr-Arg-Pro-Pro-Phe-Ser-Arg-Val-Val-His-Leu-Tyr-Arg-Asp53-Gly-Lys55-OH | (KG)5MOG35–55(Asp53) |
Pep 7 | H-Lys-Gly-Lys-Gly-Lys-Gly-Lys-Gly-Lys-Gly-Met35-Glu-Val-Gly-Trp-Tyr-Arg-Pro-Pro-Phe-Ser-Arg-Val-Val-His-Leu-Tyr-Arg-isoAsp53-Gly-Lys55-OH | (KG)5MOG35–55(isoAsp53) |
Pep 8 | H-Lys-Gly-Lys-Gly-Lys-Gly-Lys-Gly-Lys-Gly-Met35-Glu-Val-Gly-Trp-Tyr-Arg-Ser42-Pro-Phe-Ser-Arg-Val-Val-His-Leu-Tyr-Arg-Asn53-Gly-Lys55-OH | (KG)5MOG35–55 (Ser42) |
Pep 9 | H-Lys-Gly-Lys-Gly-Lys-Gly-Lys-Gly-Lys-Gly-Met35-Glu-Val-Gly-Trp-Tyr-Arg-Ser42-Pro-Phe-Ser-Arg-Val-Val-His-Leu-Tyr-Arg-Asp53-Gly-Lys55-OH | (KG)5MOG35–55 (Ser42, Asp53) |
Con-Pep 8 | OM-(KG)5MOG35–55 (Ser42) | |
Con-Pep 9 | OM-(KG)5MOG35–55 (Ser42, Asp53) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Androutsou, M.-E.; Nteli, A.; Gkika, A.; Avloniti, M.; Dagkonaki, A.; Probert, L.; Tselios, T.; Golič Grdadolnik, S. Characterization of Asparagine Deamidation in Immunodominant Myelin Oligodendrocyte Glycoprotein Peptide Potential Immunotherapy for the Treatment of Multiple Sclerosis. Int. J. Mol. Sci. 2020, 21, 7566. https://doi.org/10.3390/ijms21207566
Androutsou M-E, Nteli A, Gkika A, Avloniti M, Dagkonaki A, Probert L, Tselios T, Golič Grdadolnik S. Characterization of Asparagine Deamidation in Immunodominant Myelin Oligodendrocyte Glycoprotein Peptide Potential Immunotherapy for the Treatment of Multiple Sclerosis. International Journal of Molecular Sciences. 2020; 21(20):7566. https://doi.org/10.3390/ijms21207566
Chicago/Turabian StyleAndroutsou, Maria-Eleni, Agathi Nteli, Areti Gkika, Maria Avloniti, Anastasia Dagkonaki, Lesley Probert, Theodore Tselios, and Simona Golič Grdadolnik. 2020. "Characterization of Asparagine Deamidation in Immunodominant Myelin Oligodendrocyte Glycoprotein Peptide Potential Immunotherapy for the Treatment of Multiple Sclerosis" International Journal of Molecular Sciences 21, no. 20: 7566. https://doi.org/10.3390/ijms21207566
APA StyleAndroutsou, M. -E., Nteli, A., Gkika, A., Avloniti, M., Dagkonaki, A., Probert, L., Tselios, T., & Golič Grdadolnik, S. (2020). Characterization of Asparagine Deamidation in Immunodominant Myelin Oligodendrocyte Glycoprotein Peptide Potential Immunotherapy for the Treatment of Multiple Sclerosis. International Journal of Molecular Sciences, 21(20), 7566. https://doi.org/10.3390/ijms21207566