Non-Muscle-Invasive Bladder Carcinoma with Respect to Basal Versus Luminal Keratin Expression
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Differentially Expressed Genes
2.3. Ingenuity Pathway Analysis and Gene Set Enrichment Analysis
2.4. Validation Using the Public Gene-Expression Dataset
3. Discussion
4. Materials and Methods
4.1. Specimen Selection for RNA Sequencing Using Immunohistochemical Staining for K5/6 and K20
4.2. RNA Sequencing
4.3. Differentially Expressed Genes and Functional Analyses
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
NMIBC | Non-muscle-invasive bladder cancer |
MIBC | Muscle-invasive bladder cancer |
IHC | Immunohistochemical |
NMIUTUC | Non-muscle-invasive upper tract urothelial carcinoma |
MAPK | Mitogen-activated protein kinase |
DEG | Differentially expressed gene |
GO | Gene ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
IPA | Ingenuity Pathway Analysis |
GSEA | Gene Set Enrichment Analysis |
FDR | False discovery rate |
References
- Antoni, S.; Ferlay, J.; Soerjomataram, I.; Znaor, A.; Jemal, A.; Bray, F. Bladder cancer incidence and mortality: A global overview and recent trends. Eur. Urol. 2017, 71, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Babjuk, M.; Burger, M.; Comperat, E.M.; Gontero, P.; Mostafid, A.H.; Palou, J.; Van Rhijn, B.W.G.; Roupret, M.; Shariat, S.F.; Sylvester, R.; et al. European Association of Urology guidelines on non-muscle-invasive bladder cancer (TaT1 and carcinoma in situ)—2019 update. Eur. Urol. 2019, 76, 639–657. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.S.; Boorjian, S.A.; Chou, R.; Clark, P.E.; Daneshmand, S.; Konety, B.R.; Pruthi, R.; Quale, D.Z.; Ritch, C.R.; Seigne, J.D.; et al. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO guideline. J. Urol. 2016, 196, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Sjodahl, G.; Eriksson, P.; Patschan, O.; Marzouka, N.A.; Jakobsson, L.; Bernardo, C.; Lovgren, K.; Chebil, G.; Zwarthoff, E.; Liedberg, F.; et al. Molecular changes during progression from nonmuscle invasive to advanced urothelial carcinoma. Int. J. Cancer 2020, 146, 2636–2647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjodahl, G.; Lauss, M.; Lovgren, K.; Chebil, G.; Gudjonsson, S.; Veerla, S.; Patschan, O.; Aine, M.; Ferno, M.; Ringner, M.; et al. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 2012, 18, 3377–3386. [Google Scholar] [CrossRef] [Green Version]
- Hedegaard, J.; Lamy, P.; Nordentoft, I.; Algaba, F.; Hoyer, S.; Ulhoi, B.P.; Vang, S.; Reinert, T.; Hermann, G.G.; Mogensen, K.; et al. Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell 2016, 30, 27–42. [Google Scholar] [CrossRef]
- Hurst, C.D.; Alder, O.; Platt, F.M.; Droop, A.; Stead, L.F.; Burns, J.E.; Burghel, G.J.; Jain, S.; Klimczak, L.J.; Lindsay, H.; et al. Genomic subtypes of non-invasive bladder cancer with distinct metabolic profile and female gender bias in KDM6A mutation frequency. Cancer Cell 2017, 32, 701–715.e7. [Google Scholar] [CrossRef]
- Lindgren, D.; Liedberg, F.; Andersson, A.; Chebil, G.; Gudjonsson, S.; Borg, A.; Mansson, W.; Fioretos, T.; Hoglund, M. Molecular characterization of early-stage bladder carcinomas by expression profiles, FGFR3 mutation status, and loss of 9q. Oncogene 2006, 25, 2685–2696. [Google Scholar] [CrossRef] [Green Version]
- Patschan, O.; Sjodahl, G.; Chebil, G.; Lovgren, K.; Lauss, M.; Gudjonsson, S.; Kollberg, P.; Eriksson, P.; Aine, M.; Mansson, W.; et al. A molecular pathologic framework for risk stratification of stage T1 urothelial carcinoma. Eur. Urol. 2015, 68, 824–832. [Google Scholar] [CrossRef]
- Breyer, J.; Wirtz, R.M.; Otto, W.; Erben, P.; Kriegmair, M.C.; Stoehr, R.; Eckstein, M.; Eidt, S.; Denzinger, S.; Burger, M.; et al. In stage pT1 non-muscle-invasive bladder cancer (NMIBC), high KRT20 and low KRT5 mRNA expression identify the luminal subtype and predict recurrence and survival. Virchows Arch. 2017, 470, 267–274. [Google Scholar] [CrossRef]
- Rebola, J.; Aguiar, P.; Blanca, A.; Montironi, R.; Cimadamore, A.; Cheng, L.; Henriques, V.; Lobato-Faria, P.; Lopez-Beltran, A. Predicting outcomes in non-muscle invasive (Ta/T1) bladder cancer: The role of molecular grade based on luminal/basal phenotype. Virchows Arch. 2019, 475, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Kim, B.; Moon, K.C. Immunohistochemistry of cytokeratin (CK) 5/6, CD44 and CK20 as prognostic biomarkers of non-muscle-invasive papillary upper tract urothelial carcinoma. Histopathology 2019, 74, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Lee, J.H.; Kim, B.; Park, J.H.; Moon, K.C. Transcriptional analysis of immunohistochemically defined subgroups of non-muscle-invasive papillary high-grade upper tract urothelial carcinoma. Int. J. Mol. Sci. 2019, 20, 570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerner, S.P.; McConkey, D.J.; Hoadley, K.A.; Chan, K.S.; Kim, W.Y.; Radvanyi, F.; Hoglund, M.; Real, F.X. Bladder cancer molecular taxonomy: Summary from a consensus meeting. Bladder Cancer 2016, 2, 37–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; Van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.; Balmanoukian, A.; Loriot, Y.; et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet 2016, 387, 1909–1920. [Google Scholar] [CrossRef] [Green Version]
- Seiler, R.; Ashab, H.A.D.; Erho, N.; Van Rhijn, B.W.G.; Winters, B.; Douglas, J.; Van Kessel, K.E.; Fransen van de Putte, E.E.; Sommerlad, M.; Wang, N.Q.; et al. Impact of molecular subtypes in muscle-invasive bladder cancer on predicting response and survival after neoadjuvant chemotherapy. Eur. Urol. 2017, 72, 544–554. [Google Scholar] [CrossRef]
- Sjodahl, G.; Lovgren, K.; Lauss, M.; Patschan, O.; Gudjonsson, S.; Chebil, G.; Aine, M.; Eriksson, P.; Mansson, W.; Lindgren, D.; et al. Toward a molecular pathologic classification of urothelial carcinoma. Am. J. Pathol. 2013, 183, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Sjodahl, G.; Eriksson, P.; Liedberg, F.; Hoglund, M. Molecular classification of urothelial carcinoma: Global mRNA classification versus tumour-cell phenotype classification. J. Pathol. 2017, 242, 113–125. [Google Scholar] [CrossRef]
- Desai, S.; Lim, S.D.; Jimenez, R.E.; Chun, T.; Keane, T.E.; McKenney, J.K.; Zavala-Pompa, A.; Cohen, C.; Young, R.H.; Amin, M.B. Relationship of cytokeratin 20 and CD44 protein expression with WHO/ISUP grade in pTa and pT1 papillary urothelial neoplasia. Mod. Pathol. 2000, 13, 1315–1323. [Google Scholar] [CrossRef]
- Choi, W.; Porten, S.; Kim, S.; Willis, D.; Plimack, E.R.; Hoffman-Censits, J.; Roth, B.; Cheng, T.; Tran, M.; Lee, I.L.; et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 2014, 25, 152–165. [Google Scholar] [CrossRef] [Green Version]
- Tan, T.Z.; Rouanne, M.; Tan, K.T.; Huang, R.Y.; Thiery, J.P. Molecular Subtypes of Urothelial Bladder Cancer: Results from a Meta-cohort Analysis of 2411 Tumors. Eur. Urol. 2019, 75, 423–432. [Google Scholar] [CrossRef]
- Dyrskjot, L.; Reinert, T.; Novoradovsky, A.; Zuiverloon, T.C.; Beukers, W.; Zwarthoff, E.; Malats, N.; Real, F.X.; Segersten, U.; Malmstrom, P.U.; et al. Analysis of molecular intra-patient variation and delineation of a prognostic 12-gene signature in non-muscle invasive bladder cancer; technology transfer from microarrays to PCR. Br. J. Cancer 2012, 107, 1392–1398. [Google Scholar] [CrossRef] [PubMed]
- Tsantoulis, P.K.; Gorgoulis, V.G. Involvement of E2F transcription factor family in cancer. Eur. J. Cancer 2005, 41, 2403–2414. [Google Scholar] [CrossRef]
- Santos, M.; Martinez-Fernandez, M.; Duenas, M.; Garcia-Escudero, R.; Alfaya, B.; Villacampa, F.; Saiz-Ladera, C.; Costa, C.; Oteo, M.; Duarte, J.; et al. In vivo disruption of an Rb-E2F-Ezh2 signaling loop causes bladder cancer. Cancer Res. 2014, 74, 6565–6577. [Google Scholar] [CrossRef] [Green Version]
- Lindgren, D.; Sjodahl, G.; Lauss, M.; Staaf, J.; Chebil, G.; Lovgren, K.; Gudjonsson, S.; Liedberg, F.; Patschan, O.; Mansson, W.; et al. Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma. PLoS ONE 2012, 7, e38863. [Google Scholar] [CrossRef] [PubMed]
- Loriot, Y.; Necchi, A.; Park, S.H.; Garcia-Donas, J.; Huddart, R.; Burgess, E.; Fleming, M.; Rezazadeh, A.; Mellado, B.; Varlamov, S.; et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N. Engl. J. Med. 2019, 381, 338–348. [Google Scholar] [CrossRef]
- Stroggilos, R.; Mokou, M.; Latosinska, A.; Makridakis, M.; Lygirou, V.; Mavrogeorgis, E.; Drekolias, D.; Frantzi, M.; Mullen, W.; Fragkoulis, C.; et al. Proteome-based classification of nonmuscle invasive bladder cancer. Int. J. Cancer 2020, 146, 281–294. [Google Scholar] [CrossRef]
- Jung, M.; Jang, I.; Kim, K.; Moon, K.C. CK14 expression identifies a basal/squamous-like type of papillary non-muscle-invasive upper tract urothelial carcinoma. Front. Oncol. 2020, 10, 623. [Google Scholar] [CrossRef] [PubMed]
- Schnitzler, T.; Ortiz-Bruchle, N.; Schneider, U.; Lurje, I.; Guricova, K.; Buchner, A.; Schulz, G.B.; Heidenreich, A.; Gaisa, N.T.; Knuchel, R.; et al. Pure high-grade papillary urothelial bladder cancer: A luminal-like subgroup with potential for targeted therapy. Cell. Oncol. 2020. [Google Scholar] [CrossRef]
- Dadhania, V.; Zhang, M.; Zhang, L.; Bondaruk, J.; Majewski, T.; Siefker-Radtke, A.; Guo, C.C.; Dinney, C.; Cogdell, D.E.; Zhang, S.; et al. Meta-analysis of the luminal and basal subtypes of bladder cancer and the identification of signature immunohistochemical markers for clinical use. EBioMedicine 2016, 12, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Bankhead, P.; Loughrey, M.B.; Fernandez, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.C.; Siebold, A.P.; Livi, C.B.; Lucas, A.B. SureSelectXT RNA Direct: A technique for expression analysis through sequencing of target-enriched FFPE total RNA. Methods Mol. Biol. 2018, 1783, 81–104. [Google Scholar] [PubMed]
- Martin, J.A.; Wang, Z. Next-generation transcriptome assembly. Nat. Rev. Genet. 2011, 12, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supek, F.; Bosnjak, M.; Skunca, N.; Smuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 2011, 6, e21800. [Google Scholar] [CrossRef] [Green Version]
- Kramer, A.; Green, J.; Pollard, J., Jr.; Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014, 30, 523–530. [Google Scholar] [CrossRef]
- Chun, H.; Keles, S. Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J. R. Stat. Soc. Ser. B Stat. Methodol. 2010, 72, 3–25. [Google Scholar] [CrossRef] [Green Version]
- Cawley, G.C.; Talbot, N.L. Gene selection in cancer classification using sparse logistic regression with Bayesian regularization. Bioinformatics 2006, 22, 2348–2355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Hildebrandt, M.A.; Clague, J.; Kamat, A.M.; Picornell, A.; Chang, J.; Zhang, X.; Izzo, J.; Yang, H.; Lin, J.; et al. Genetic variations in the sonic hedgehog pathway affect clinical outcomes in non-muscle-invasive bladder cancer. Cancer Prev. Res. 2010, 3, 1235–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Category | Predicted Result | Upregulated Group | z-Score 1 | FDR 2 |
---|---|---|---|---|
K20-only vs. K5/6-only group | ||||
Upstream | RABL6 | K20-only | 2.530 | 5.9 × 10−4 |
Upstream | ID2 | K20-only | 2.208 | 5.5 × 10−3 |
Upstream | EFNA4 | K20-only | 2.449 | 1.9 × 10−2 |
Upstream | PPARGC1A | K20-only | 3.125 | 1.9 × 10−2 |
Upstream | EFNA3 | K20-only | 2.449 | 1.9 × 10−2 |
Upstream | EFNA5 | K20-only | 2.449 | 2.2 × 10−2 |
Upstream | TP53 | K5/6-only | 2.752 | 1.0 × 10−7 |
Upstream | TP63 | K5/6-only | 2.213 | 3.3 × 10−6 |
Upstream | TGFB1 | K5/6-only | 4.169 | 2.3 × 10−5 |
Upstream | PGR | K5/6-only | 2.288 | 8.8 × 10−5 |
Upstream | CDKN2A | K5/6-only | 2.701 | 2.8 × 10−4 |
Upstream | KDM5B | K5/6-only | 3.143 | 3.3 × 10−4 |
Upstream | BRCA1 | K5/6-only | 2.063 | 3.7 × 10−4 |
Upstream | RAF1 | K5/6-only | 3.385 | 3.7 × 10−4 |
Upstream | CDKN1A | K5/6-only | 2.408 | 4.6 × 10−4 |
Upstream | RB1 | K5/6-only | 2.134 | 6.8 × 10−4 |
Upstream | SMARCA4 | K5/6-only | 2.959 | 7.6 × 10−4 |
Upstream | NUPR1 | K5/6-only | 3.413 | 8.5 × 10−4 |
Upstream | IKBKB | K5/6-only | 2.016 | 1.7 × 10−3 |
Upstream | EGF | K5/6-only | 2.089 | 2.0 × 10−3 |
Upstream | HIF1A | K5/6-only | 2.059 | 3.2 × 10−3 |
Upstream | TGF beta | K5/6-only | 2.288 | 3.4 × 10−3 |
Upstream | FSHB | K5/6-only | 2.190 | 6.4 × 10−3 |
Upstream | FGF2 | K5/6-only | 3.083 | 8.0 × 10−3 |
Upstream | JAG1 | K5/6-only | 2.646 | 8.1 × 10−3 |
Upstream | PDGF BB | K5/6-only | 2.652 | 8.9 × 10−3 |
Upstream | IGF1 | K5/6-only | 2.083 | 9.8 × 10−3 |
Upstream | CG | K5/6-only | 2.332 | 1.2 × 10−2 |
Upstream | JUN | K5/6-only | 2.502 | 1.3 × 10−2 |
Upstream | BNIP3L | K5/6-only | 2.630 | 1.9 × 10−2 |
Upstream | CTNNB1 | K5/6-only | 2.630 | 2.3 × 10−2 |
Upstream | Calcineurin A | K5/6-only | 2.200 | 2.9 × 10−2 |
Upstream | EDN1 | K5/6-only | 2.439 | 3.6 × 10−2 |
Upstream | ERK1/2 | K5/6-only | 2.163 | 3.7 × 10−2 |
Upstream | TGFB3 | K5/6-only | 2.926 | 3.8 × 10−2 |
Upstream | STAT3 | K5/6-only | 2.209 | 3.8 × 10−2 |
Disease/function | Endocrine gland tumor | K20-only | 2.213 | 3.1 × 10−8 |
Disease/function | Congenital anomaly of digit | K20-only | 2.000 | 7.3 × 10−3 |
Disease/function | Invasion of tumor cell lines | K5/6-only | 2.069 | 1.3 × 10−5 |
Disease/function | Migration of cells | K5/6-only | 2.102 | 3.4 × 10−5 |
Disease/function | Cell movement | K5/6-only | 2.591 | 4.5 × 10−5 |
Disease/function | Adhesion of tumor cell lines | K5/6-only | 2.481 | 7.4 × 10−4 |
Disease/function | Binding of tumor cell lines | K5/6-only | 2.444 | 8.7 × 10−4 |
Disease/function | Attachment of cells | K5/6-only | 2.040 | 1.5 × 10−3 |
Disease/function | Invasion of breast cancer cell lines | K5/6-only | 2.015 | 1.5 × 10−3 |
Disease/function | Cell movement of breast cancer cell lines | K5/6-only | 2.014 | 4.1 × 10−3 |
Disease/function | Apoptosis of prostate cancer cell lines | K5/6-only | 3.467 | 5.9 × 10−3 |
Disease/function | Formation of gamma H2AX nuclear focus | K5/6-only | 2.345 | 6.1 × 10−3 |
Disease/function | Cell movement of endothelial cells | K5/6-only | 2.190 | 6.3 × 10−3 |
Disease/function | Apoptosis of cancer cells | K5/6-only | 2.420 | 7.0 × 10−3 |
Disease/function | Necrosis of tumor | K5/6-only | 2.495 | 7.7 × 10−3 |
Disease/function | Necrosis of prostate cancer cell lines | K5/6-only | 3.223 | 8.2 × 10−3 |
K20-only vs. double-high group | ||||
Upstream | ERBB2 | K20-only | 3.284 | 7.2 × 10−4 |
Upstream | EP400 | K20-only | 2.449 | 1.8 × 10−3 |
Upstream | E2f | K20-only | 2.199 | 2.8 × 10−3 |
Upstream | RABL6 | K20-only | 3.000 | 5.6 × 10−3 |
Upstream | ID2 | K20-only | 2.563 | 5.6 × 10−3 |
Upstream | ID3 | K20-only | 2.157 | 2.1 × 10−2 |
Upstream | E2F3 | K20-only | 2.534 | 2.1 × 10−2 |
Upstream | MITF | K20-only | 2.575 | 3.0 × 10−2 |
Upstream | SREBF2 | K20-only | 2.557 | 4.7 × 10−2 |
Upstream | TP53 | Double-high | 3.069 | 2.8 × 10−8 |
Upstream | CDKN2A | Double-high | 4.097 | 3.7 × 10−4 |
Upstream | CDKN1A | Double-high | 2.729 | 4.5 × 10−4 |
Upstream | MLXIPL | Double-high | 3.592 | 1.4 × 10−3 |
Upstream | OGA | Double-high | 3.272 | 2.5 × 10−3 |
Upstream | MYCN | Double-high | 2.385 | 8.1 × 10−3 |
Disease/function | DNA replication | K20-only | 2.159 | 8.8 × 10−5 |
Disease/function | Genitourinary adenocarcinoma | K20-only | 2.177 | 1.0 × 10−4 |
Disease/function | Proliferation of connective tissue cells | K20-only | 3.115 | 4.2 × 10−4 |
Disease/function | Growth of connective tissue | K20-only | 2.790 | 5.5 × 10−4 |
Disease/function | Cell proliferation of breast cancer cell lines | K20-only | 2.032 | 2.6 × 10−3 |
Disease/function | Advanced malignant solid tumor | K20-only | 2.228 | 3.6 × 10−3 |
Disease/function | Growth of organism | K20-only | 2.299 | 6.0 × 10−3 |
Disease/function | Advanced lung cancer | K20-only | 2.578 | 6.4 × 10−3 |
Disease/function | Cell cycle progression of tumor cell lines | K20-only | 2.395 | 1.1 × 10−2 |
Disease/function | Visceral metastasis | K20-only | 2.594 | 1.3 × 10−2 |
Disease/function | Metastatic solid tumor | K20-only | 2.228 | 1.3 × 10−2 |
Disease/function | Advanced extracranial solid tumor | K20-only | 2.576 | 1.8 × 10−2 |
Disease/function | Cell death of breast cancer cell lines | Double-high | 2.359 | 2.7 × 10−5 |
Disease/function | Cell death of tumor cell lines | Double-high | 3.092 | 4.4 × 10−5 |
Disease/function | Apoptosis | Double-high | 2.128 | 2.1 × 10−4 |
Disease/function | Gastrointestinal tract cancer | Double-high | 2.000 | 1.1 × 10−3 |
Disease/function | Senescence of cells | Double-high | 2.104 | 1.1 × 10−3 |
Disease/function | Cell death of lung cancer cell lines | Double-high | 2.444 | 3.7× 10−3 |
Disease/function | Colon tumor | Double-high | 2.364 | 7.1 × 10−3 |
Disease/function | Proliferation of hematopoietic progenitor cells | Double-high | 2.005 | 1.6 × 10−2 |
Disease/function | Colorectal tumor | Double-high | 2.078 | 1.6 × 10−2 |
Disease/function | Cytostasis of tumor cell lines | Double-high | 2.145 | 1.8 × 10−2 |
K5/6-only vs. double-high group | ||||
Upstream | EPAS1 | K5/6-only | 2.000 | 3.9 × 10−2 |
Disease/function | NA | NA | NA | NA |
K20-only vs. double-low group | ||||
Upstream | ID3 | K20-only | 2.213 | 1.2 × 10−2 |
Upstream | MYC | K20-only | 2.299 | 1.3 × 10−2 |
Upstream | LLGL2 | K20-only | 2.000 | 4.4 × 10−2 |
Upstream | ERBB3 | K20-only | 2.588 | 4.7 × 10−2 |
Disease/function | Genitourinary tumor | K20-only | 2.017 | 2.1 × 10−3 |
Disease/function | Malignant genitourinary solid tumor | K20-only | 2.139 | 2.1 × 10−3 |
Disease/function | Adenocarcinoma | K20-only | 2.204 | 3.2 × 10−3 |
Disease/function | Anogenital cancer | K20-only | 2.144 | 3.9 × 10−3 |
Disease/function | Incidence of tumor | K20-only | 2.257 | 7.0 × 10−3 |
Disease/function | Carcinoma | K20-only | 2.292 | 7.8 × 10−3 |
Disease/function | Extracranial solid tumor | K20-only | 2.697 | 1.4 × 10−2 |
Disease/function | Malignant solid tumor | K20-only | 2.026 | 2.3 × 10−2 |
Disease/function | Epithelial–mesenchymal transition of breast cell lines | K20-only | 2.108 | 2.8 × 10−2 |
K5/6-only vs. double-low group | ||||
Upstream | TP53 | K5/6-only | 2.086 | 1.8 × 10−4 |
Disease/function | NA | NA | NA | NA |
Category | Predicted Result | Upregulated Group | z-Score 1 | FDR 2 |
---|---|---|---|---|
K20-only_Lund vs. K5/6-only_Lund group | ||||
Upstream | RABL6 | K20-only | 5.014 | 2.4 × 10−27 |
Upstream | ERBB2 | K20-only | 4.092 | 5.9 × 10−24 |
Upstream | FOXM1 | K20-only | 3.818 | 1.7 × 10−16 |
Upstream | MITF | K20-only | 3.962 | 7.6 × 10−15 |
Upstream | FOXO1 | K20-only | 2.493 | 6.7 × 10−12 |
Upstream | LIN9 | K20-only | 3.130 | 3.6 × 10−11 |
Upstream | AREG | K20-only | 3.195 | 1.3 × 10−9 |
Upstream | E2F3 | K20-only | 3.592 | 6.1 × 10−8 |
Upstream | E2f | K20-only | 2.449 | 1.4 × 10−7 |
Upstream | MYBL2 | K20-only | 2.607 | 3.1 × 10−7 |
Upstream | ELAVL1 | K20-only | 3.278 | 2.3 × 10−5 |
Upstream | HSPB1 | K20-only | 2.429 | 3.1 × 10−5 |
Upstream | RARA | K20-only | 4.000 | 5.4 × 10−5 |
Upstream | TAL1 | K20-only | 3.000 | 5.6 × 10−5 |
Upstream | KDM1A | K20-only | 3.434 | 7.1 × 10−5 |
Upstream | ESR1 | K20-only | 3.601 | 1.0 × 10−4 |
Upstream | 26s Proteasome | K20-only | 2.357 | 3.5 × 10−4 |
Upstream | BRD4 | K20-only | 2.603 | 3.9 × 10−4 |
Upstream | TRAF2 | K20-only | 2.224 | 6.7 × 10−4 |
Upstream | NSUN6 | K20-only | 2.449 | 4.3 × 10−3 |
Upstream | S100A6 | K20-only | 2.236 | 6.9 × 10−3 |
Upstream | CREB1 | K20-only | 2.219 | 1.5 × 10−2 |
Upstream | TP53 | K5/6-only | 5.972 | 1.4 × 10−14 |
Upstream | TRPS1 | K5/6-only | 3.742 | 3.4 × 10−14 |
Upstream | NUPR1 | K5/6-only | 2.592 | 6.7 × 10−12 |
Upstream | CDKN1A | K5/6-only | 2.783 | 1.4 × 10−7 |
Upstream | KDM5B | K5/6-only | 3.487 | 1.5 × 10−7 |
Upstream | E2F6 | K5/6-only | 2.236 | 4.3 × 10−4 |
Upstream | ATF3 | K5/6-only | 2.369 | 6.0 × 10−4 |
Upstream | CTLA4 | K5/6-only | 2.236 | 5.1 × 10−3 |
Upstream | CDKN2A | K5/6-only | 2.433 | 3.4 × 10−2 |
Disease/function | M phase | K20-only | 2.142 | 1.2x10−12 |
Disease/function | Alignment of chromosomes | K20-only | 2.324 | 7.2 × 10−12 |
Disease/function | M phase of tumor cell lines | K20-only | 2.613 | 5.2 × 10−10 |
Disease/function | Cytokinesis | K20-only | 2.278 | 2.8 × 10−8 |
Disease/function | M phase of cervical cancer cell lines | K20-only | 2.019 | 8.5 × 10−8 |
Disease/function | Cytokinesis of tumor cell lines | K20-only | 2.249 | 1.0 × 10−7 |
Disease/function | Interphase | K20-only | 2.744 | 2.4 × 10−7 |
Disease/function | Cell survival | K20-only | 2.348 | 6.7 × 10−6 |
Disease/function | Cell viability of tumor cell lines | K20-only | 2.470 | 1.3 × 10−5 |
Disease/function | Cell proliferation of tumor cell lines | K20-only | 2.796 | 5.4 × 10−5 |
Disease/function | Cell viability | K20-only | 2.328 | 9.8 × 1−5 |
Disease/function | G1 phase | K20-only | 2.111 | 1.1 × 10−4 |
Disease/function | Mitotic index | K20-only | 2.214 | 5.8 × 10−4 |
Disease/function | Cell viability of myeloma cell lines | K20-only | 2.601 | 3.7 × 10−3 |
Disease/function | Interphase of tumor cell lines | K20-only | 2.017 | 6.0 × 10−3 |
Disease/function | Interphase of cervical cancer cell lines | K20-only | 2.392 | 1.8 × 10−2 |
Disease/function | Cell viability of lung cancer cell lines | K20-only | 2.100 | 4.7 × 10−2 |
Disease/function | Missegregation of chromosomes | K5/6-only | 2.392 | 1.4 × 10−3 |
K20-only_Lund vs. double-high_Lund group | ||||
Upstream | RABL6 | K20-only | 2.828 | 4.2 × 10−4 |
Upstream | ERBB2 | K20-only | 2.219 | 1.2 × 10−2 |
Upstream | TGFB1 | K20-only | 2.186 | 4.3 × 10−2 |
Disease/function | NA | NA | NA | NA |
K5/6-only_Lund vs. double-high_Lund group | ||||
Upstream | KDM5B | K5/6-only | 2.000 | 8.6 × 10−3 |
Upstream | RABL6 | Double-high | 2.236 | 2.2 × 10−4 |
Disease/function | NA | NA | NA | NA |
K20-only_Lund vs. double-low_Lund group | ||||
Upstream | RABL6 | K20-only | 3.207 | 6.4 × 10−10 |
Upstream | FOXM1 | K20-only | 3.382 | 7.1 × 10−8 |
Upstream | ERBB2 | K20-only | 2.538 | 7.1 × 10−7 |
Upstream | MYBL2 | K20-only | 2.412 | 2.3 × 10−6 |
Upstream | LIN9 | K20-only | 2.438 | 7.0 × 10−6 |
Upstream | AREG | K20-only | 2.132 | 2.9 × 10−5 |
Upstream | HIF1A-AS1 | K20-only | 2.236 | 3.6 × 10−4 |
Upstream | 26s Proteasome | K20-only | 2.607 | 2.9 × 10−3 |
Upstream | E2F3 | K20-only | 2.646 | 7.3 × 10−3 |
Upstream | RARA | K20-only | 3.000 | 2.1 × 10−2 |
Upstream | MITF | K20-only | 2.646 | 2.4 × 10−2 |
Upstream | ESR1 | K20-only | 2.718 | 4.8 × 10−2 |
Upstream | TRPS1 | Double-low | 2.828 | 7.1 × 10−7 |
Upstream | TP53 | Double-low | 3.827 | 3.2 × 10−6 |
Upstream | CDKN1A | Double-low | 2.848 | 2.9 × 10−5 |
Upstream | CTLA4 | Double-low | 2.236 | 1.3x10−3 |
Upstream | KDM5B | Double-low | 2.823 | 5.3 × 10−3 |
Disease/function | Segregation of chromosomes | K20-only | 2.000 | 4.9 × 10−4 |
K5/6-only_Lund vs. double-low_Lund group | ||||
Upstream | NA | NA | NA | NA |
Disease/function | NA | NA | NA | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, M.; Jang, I.; Kim, K.; Moon, K.C. Non-Muscle-Invasive Bladder Carcinoma with Respect to Basal Versus Luminal Keratin Expression. Int. J. Mol. Sci. 2020, 21, 7726. https://doi.org/10.3390/ijms21207726
Jung M, Jang I, Kim K, Moon KC. Non-Muscle-Invasive Bladder Carcinoma with Respect to Basal Versus Luminal Keratin Expression. International Journal of Molecular Sciences. 2020; 21(20):7726. https://doi.org/10.3390/ijms21207726
Chicago/Turabian StyleJung, Minsun, Insoon Jang, Kwangsoo Kim, and Kyung Chul Moon. 2020. "Non-Muscle-Invasive Bladder Carcinoma with Respect to Basal Versus Luminal Keratin Expression" International Journal of Molecular Sciences 21, no. 20: 7726. https://doi.org/10.3390/ijms21207726
APA StyleJung, M., Jang, I., Kim, K., & Moon, K. C. (2020). Non-Muscle-Invasive Bladder Carcinoma with Respect to Basal Versus Luminal Keratin Expression. International Journal of Molecular Sciences, 21(20), 7726. https://doi.org/10.3390/ijms21207726