Shear Stress-Induced Activation of von Willebrand Factor and Cardiovascular Pathology
Abstract
:1. Introduction
2. Structure and Functions of VWF in Bloodstream
3. Diagnostic Tests for the von Willebrand Factor Deficiency and Dysfunction
4. Diseases, Associated with von Willebrand Factor and ADAMTS-13 Dysfunction
5. Acquired von Willebrand Syndrome in Heart Valve Disease and Hypertrophic Cardiomyopathy
6. von Willebrand Factor and Coronary Artery Disease
7. Inflammatory and Stress Stimuli as a Possible Cause of Elevation in Plasma von Willebrand Factor in Coronary Artery Disease
8. The Potential for New Treatment, Targeting von Willebrand Factor and ADAMTS-13 in Cardiovascular Diseases
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Terraube, V.; O’Donnell, J.S.; Jenkins, P.V. Factor VIII and von Willebrand factor interaction: Biological, clinical and therapeutic importance. Haemophilia 2010, 16, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chung, D.W. Inflammation, von Willebrand factor, and ADAMTS13. Blood 2018, 132, 141–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawecki, C.; Lenting, P.J.; Denis, C.V. von Willebrand factor and inflammation. J. Thromb. Haemost. 2017, 15, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Pendu, R.; Terraube, V.; Christophe, O.D.; Gahmberg, C.G.; de Groot, P.G.; Lenting, P.J.; Denis, C.V. P-selectin glycoprotein ligand 1 and β2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor. Blood 2006, 108, 3746–3752. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Wang, X.; Peng, X.; Feng, S.; Zhao, J.; Liao, L.; Zhang, Y.; Hou, Y.; Liu, J. Prognostic value of plasma von Willebrand factor levels in major adverse cardiovascular events: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2020, 20, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovacevic, K.D.; Mayer, F.J.; Jilma, B.; Buchtele, N.; Obermayer, G.; Binder, C.J.; Blann, A.D.; Minar, E.; Schillinger, M.; Hoke, M. Von Willebrand factor antigen levels predict major adverse cardiovascular events in patients with carotid stenosis of the ICARAS study. Atherosclerosis 2019, 290, 31–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, J.-X.; Kong, Q.; Ma, X. Current advances in circulating inflammatory biomarkers in atherosclerosis and related cardio-cerebrovascular diseases. Chronic Dis. Transl. Med. 2017, 3, 207–212. [Google Scholar] [CrossRef]
- Van Belle, E.; Vincent, F.; Rauch, A.; Casari, C.; Jeanpierre, E.; Loobuyck, V.; Rosa, M.; Delhaye, C.; Spillemaeker, H.; Paris, C.; et al. von Willebrand Factor and Management of Heart Valve Disease. J. Am. Coll. Cardiol. 2019, 73, 1078–1088. [Google Scholar] [CrossRef]
- Springer, T.A. von Willebrand factor, Jedi knight of the bloodstream. Blood 2014, 124, 1412–1425. [Google Scholar] [CrossRef] [Green Version]
- Budde, U.; Pieconka, A.; Will, K.; Schneppenheim, R. Laboratory Testing for von Willebrand Disease: Contribution of Multimer Analysis to Diagnosis and Classification. Semin. Thromb. Hemost. 2006, 32, 514–521. [Google Scholar] [CrossRef]
- Stockschlaeder, M.; Schneppenheim, R.; Budde, U. Update on von Willebrand factor multimers: Focus on high-molecular-weight multimers and their role in hemostasis. Blood Coagul. Fibrinolysis 2014, 25, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhou, Y.-F.; Zhang, C.-Z.; Zhang, X.; Lu, C.; Springer, T.A. Structural specializations of A2, a force-sensing domain in the ultralarge vascular protein von Willebrand factor. Proc. Natl. Acad. Sci. USA 2009, 106, 9226–9231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadler, J.E. Biochemistry and Genetics of von willebrand factor. Annu. Rev. Biochem. 1998, 67, 395–424. [Google Scholar] [CrossRef]
- Denorme, F.; Vanhoorelbeke, K.; De Meyer, S.F. von Willebrand Factor and Platelet Glycoprotein Ib: A Thromboinflammatory Axis in Stroke. Front. Immunol. 2019, 10, 2884. [Google Scholar] [CrossRef]
- Schneider, S.W.; Nuschele, S.; Wixforth, A.; Gorzelanny, C.; Alexander-Katz, A.; Netz, R.R.; Schneider, M.F. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc. Natl. Acad. Sci. USA 2007, 104, 7899–7903. [Google Scholar] [CrossRef] [Green Version]
- Crawley, J.T.B.; de Groot, R.; Xiang, Y.; Luken, B.M.; Lane, D.A. Unraveling the scissile bond: How ADAMTS13 recognizes and cleaves von Willebrand factor. Blood 2011, 118, 3212–3221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sing, C.E.; Alexander-Katz, A. Elongational Flow Induces the Unfolding of von Willebrand Factor at Physiological Flow Rates. Biophys. J. 2010, 98, L35–L37. [Google Scholar] [CrossRef] [Green Version]
- Westein, E.; van der Meer, A.D.; Kuijpers, M.J.E.; Frimat, J.-P.; van den Berg, A.; Heemskerk, J.W.M. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. Proc. Natl. Acad. Sci. USA 2013, 110, 1357–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Chen, J.; López, J.A. Flow-driven assembly of VWF fibres and webs in in vitro microvessels. Nat. Commun. 2015, 6, 7858. [Google Scholar] [CrossRef]
- Zhang, C.; Kelkar, A.; Neelamegham, S. von Willebrand factor self-association is regulated by the shear-dependent unfolding of the A2 domain. Blood Adv. 2019, 3, 957–968. [Google Scholar] [CrossRef]
- Kanaji, S.; Fahs, S.A.; Shi, Q.; Haberichter, S.L.; Montgomery, R.R. Contribution of platelet vs. endothelial VWF to platelet adhesion and hemostasis: Hemostatic effect of platelet VWF in murine VWD. J. Thromb. Haemost. 2012, 10, 1646–1652. [Google Scholar] [CrossRef] [PubMed]
- Verhenne, S.; Denorme, F.; Libbrecht, S.; Vandenbulcke, A.; Pareyn, I.; Deckmyn, H.; Lambrecht, A.; Nieswandt, B.; Kleinschnitz, C.; Vanhoorelbeke, K.; et al. Platelet-derived VWF is not essential for normal thrombosis and hemostasis but fosters ischemic stroke injury in mice. Blood 2015, 126, 1715–1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujikawa, K.; Suzuki, H.; McMullen, B.; Chung, D. Purification of human von Willebrand factor–cleaving protease and its identification as a new member of the metalloproteinase family. Blood 2001, 98, 1662–1666. [Google Scholar] [CrossRef]
- Uemura, M.; Tatsumi, K.; Matsumoto, M.; Fujimoto, M.; Matsuyama, T.; Ishikawa, M.; Iwamoto, T.; Mori, T.; Wanaka, A.; Fukui, H.; et al. Localization of ADAMTS13 to the stellate cells of human liver. Blood 2005, 106, 922–924. [Google Scholar] [CrossRef] [Green Version]
- Mannucci, P.M.; Capoferri, C.; Canciani, M.T. Plasma levels of von Willebrand factor regulate ADAMTS-13, its major cleaving protease. Br. J. Haematol. 2004, 126, 213–218. [Google Scholar] [CrossRef]
- Xiang, Y.; de Groot, R.; Crawley, J.T.B.; Lane, D.A. Mechanism of von Willebrand factor scissile bond cleavage by a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13). Proc. Natl. Acad. Sci. USA 2011, 108, 11602–11607. [Google Scholar] [CrossRef] [Green Version]
- Gragnano, F.; Sperlongano, S.; Golia, E.; Natale, F.; Bianchi, R.; Crisci, M.; Fimiani, F.; Pariggiano, I.; Diana, V.; Carbone, A.; et al. The Role of von Willebrand Factor in Vascular Inflammation: From Pathogenesis to Targeted Therapy. Mediat. Inflamm. 2017, 2017, 5620314. [Google Scholar] [CrossRef]
- Petri, B.; Broermann, A.; Li, H.; Khandoga, A.G.; Zarbock, A.; Krombach, F.; Goerge, T.; Schneider, S.W.; Jones, C.; Nieswandt, B.; et al. von Willebrand factor promotes leukocyte extravasation. Blood 2010, 116, 4712–4719. [Google Scholar] [CrossRef] [PubMed]
- Hillgruber, C.; Steingräber, A.K.; Pöppelmann, B.; Denis, C.V.; Ware, J.; Vestweber, D.; Nieswandt, B.; Schneider, S.W.; Goerge, T. Blocking von Willebrand Factor for Treatment of Cutaneous Inflammation. J. Investig. Dermatol. 2014, 134, 77–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aymé, G.; Adam, F.; Legendre, P.; Bazaa, A.; Proulle, V.; Denis, C.V.; Christophe, O.D.; Lenting, P.J. A Novel Single-Domain Antibody against von Willebrand Factor A1 Domain Resolves Leukocyte Recruitment and Vascular Leakage during Inflammation—Brief Report. Arter. Thromb. Vasc. Biol. 2017, 37, 1736–1740. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.M.; Motto, D.G.; Lentz, S.R.; Chauhan, A.K. ADAMTS13 reduces VWF-mediated acute inflammation following focal cerebral ischemia in mice: Role of ADAMTS13 and VWF in inflammatory brain injury. J. Thromb. Haemost. 2012, 10, 1665–1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Meyer, S.F.; Savchenko, A.S.; Haas, M.S.; Schatzberg, D.; Carroll, M.C.; Schiviz, A.; Dietrich, B.; Rottensteiner, H.; Scheiflinger, F.; Wagner, D.D. Protective anti-inflammatory effect of ADAMTS13 on myocardial ischemia/reperfusion injury in mice. Blood 2012, 120, 5217–5223. [Google Scholar] [CrossRef]
- Vincentelli, A.; Susen, S.; Le Tourneau, T.; Six, I.; Fabre, O.; Juthier, F.; Bauters, A.; Decoene, C.; Goudemand, J.; Prat, A.; et al. Acquired von Willebrand Syndrome in Aortic Stenosis. N. Engl. J. Med. 2003, 349, 343–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, N.C.; Anicchino-Bizzacchi, J.M.; Locatelli, M.F.; Castro, V.; Barjas-Castro, M.L. The relationship between ABO groups and subgroups, factor VIII and von Willebrand factor. Haematologica 2007, 92, 236–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budde, U.; Schneppenheim, R. von Willebrand Factor and von Willebrand disease. Rev. Clin. Exp. Hematol. 2001, 5, 335–368. [Google Scholar] [CrossRef]
- Franchini, M.; Capra, F.; Targher, G.; Montagnana, M.; Lippi, G. Relationship between ABO blood group and von Willebrand factor levels: From biology to clinical implications. Thromb. J. 2007, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Gill, J.C.; Endres-Brooks, J.; Bauer, P.J.; Marks, W.J.; Montgomery, R.R. The effect of ABO blood group on the diagnosis of von Willebrand disease. Blood 1987, 69, 1691–1695. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.J. Laboratory Diagnosis of von Willebrand Disease. Clin. Lab. Sci. 2017, 30, 65–74. [Google Scholar] [CrossRef]
- Budde, U.; Schneppenheim, R. Interactions of von Willebrand factor and ADAMTS13 in von Willebrand disease and thrombotic thrombocytopenic purpura. Hamostaseologie 2014, 34, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.C.; Flood, V.H. Laboratory diagnosis of von Willebrand disease. Int. J. Lab. Hematol. 2015, 37, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Favaloro, E.J. The Platelet Function Analyser (PFA)-100 and von Willebrand disease: A story well over 16 years in the making. Haemophilia 2015, 21, 642–645. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P. The role of PFA-100R testing in the investigation and management of haemostatic defects in children and adults. Br. J. Haematol. 2005, 130, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Schoeman, R.M.; Lehmann, M.; Neeves, K.B. Flow chamber and microfluidic approaches for measuring thrombus formation in genetic bleeding disorders. Platelets 2017, 28, 463–471. [Google Scholar] [CrossRef]
- Federici, A.B. Acquired von Willebrand syndrome: Is it an extremely rare disorder or do we see only the tip of the iceberg? J. Thromb. Haemost. 2008, 6, 565–568. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, C.; Rizzo, S. Thrombotic thrombocytopenic purpura: A review of the literature in the light of our experience with plasma exchange. Blood Transfus. 2012. [Google Scholar] [CrossRef]
- Knöbl, P. Inherited and Acquired Thrombotic Thrombocytopenic Purpura (TTP) in Adults. Semin. Thromb. Hemost. 2014, 40, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Scully, M.; Cataland, S.R.; Peyvandi, F.; Coppo, P.; Knöbl, P.; Kremer Hovinga, J.A.; Metjian, A.; de la Rubia, J.; Pavenski, K.; Callewaert, F.; et al. Caplacizumab Treatment for Acquired Thrombotic Thrombocytopenic Purpura. N. Engl. J. Med. 2019, 380, 335–346. [Google Scholar] [CrossRef]
- Heyde, E.C. Gastrointestinal Bleeding in Aortic Stenosis. N. Engl. J. Med. 1958, 259, 196. [Google Scholar] [CrossRef]
- Warkentin, T.; Morgan, D.G.; Moore, J.C. Aortic stenosis and bleeding gastrointestinal angiodysplasia: Is acquired von Willebrand’s disease the link? Lancet 1992, 340, 35–37. [Google Scholar] [CrossRef]
- Warkentin, T.E.; Moore, J.C.; Morgan, D.G. Gastrointestinal Angiodysplasia and Aortic Stenosis. N. Engl. J. Med. 2002, 347, 858–859. [Google Scholar] [CrossRef]
- Frank, R.D.; Lanzmich, R.; Haager, P.K.; Budde, U. Severe Aortic Valve Stenosis: Sustained Cure of Acquired von Willebrand Syndrome after Surgical Valve Replacement. Clin. Appl. Thromb. Hemost. 2017, 23, 229–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panzer, S.; Eslam, R.B.; Schneller, A.; Kaider, A.; Koren, D.; Eichelberger, B.; Rosenhek, R.; Budde, U.; Lang, I. Loss of high-molecular-weight von Willebrand factor multimers mainly affects platelet aggregation in patients with aortic stenosis. Thromb. Haemost. 2010, 103, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Yasar, S.J.; Abdullah, O.; Fay, W.; Balla, S. Von Willebrand factor revisited. J. Interven. Cardiol. 2018, 31, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Van Belle, E.; Rauch, A.; Vincent, F.; Robin, E.; Kibler, M.; Labreuche, J.; Jeanpierre, E.; Levade, M.; Hurt, C.; Rousse, N.; et al. Von Willebrand Factor Multimers during Transcatheter Aortic-Valve Replacement. N. Engl. J. Med. 2016, 375, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Solomon, C.; Budde, U.; Schneppenheim, S.; Czaja, E.; Hagl, C.; Schoechl, H.; von Depka, M.; Rahe-Meyer, N. Acquired type 2A von Willebrand syndrome caused by aortic valve disease corrects during valve surgery. Br. J. Anaesth. 2011, 106, 494–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackshear, J.L.; Wysokinska, E.M.; Safford, R.E.; Thomas, C.S.; Shapiro, B.P.; Ung, S.; Stark, M.E.; Parikh, P.; Johns, G.S.; Chen, D. Shear stress-associated acquired von Willebrand syndrome in patients with mitral regurgitation. J. Thromb. Haemost. 2014, 12, 1966–1974. [Google Scholar] [CrossRef]
- Susen, S.; Vincentelli, A.; Le Tourneau, T.; Caron, C.; Zawadzki, C.; Prat, A.; Goudemand, J.; Jude, B. Severe Aortic and Mitral Valve Regurgitation Are Associated with von Willebrand Factor Defect. Blood 2005, 106, 1790. [Google Scholar] [CrossRef]
- Blackshear, J.L.; Schaff, H.V.; Ommen, S.R.; Chen, D.; Nichols, W.L. Hypertrophic Obstructive Cardiomyopathy, Bleeding History, and Acquired von Willebrand Syndrome: Response to Septal Myectomy. Mayo Clin. Proc. 2011, 86, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Le Tourneau, T.; Susen, S.; Caron, C.; Millaire, A.; Maréchaux, S.; Polge, A.-S.; Vincentelli, A.; Mouquet, F.; Ennezat, P.-V.; Lamblin, N.; et al. Functional Impairment of von Willebrand Factor in Hypertrophic Cardiomyopathy: Relation to Rest and Exercise Obstruction. Circulation 2008, 118, 1550–1557. [Google Scholar] [CrossRef] [Green Version]
- Nascimbene, A.; Neelamegham, S.; Frazier, O.H.; Moake, J.L.; Dong, J. Acquired von Willebrand syndrome associated with left ventricular assist device. Blood 2016, 127, 3133–3141. [Google Scholar] [CrossRef] [Green Version]
- Nichols, T.C.; Bellinger, D.A.; Tate, D.A.; Reddick, R.L.; Read, M.S.; Koch, G.G.; Brinkhous, K.M.; Griggs, T.R. von Willebrand factor and occlusive arterial thrombosis. A study in normal and von Willebrand’s disease pigs with diet-induced hypercholesterolemia and atherosclerosis. Arteriosclerosis 1990, 10, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, C.; Motto, D.G.; Jensen, M.; Lentz, S.R.; Chauhan, A.K. ADAMTS13 deficiency exacerbates VWF-dependent acute myocardial ischemia/reperfusion injury in mice. Blood 2012, 120, 5224–5230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seaman, C.D.; Yabes, J.; Comer, D.M.; Ragni, M.V. Does deficiency of von Willebrand factor protect against cardiovascular disease? Analysis of a national discharge register. J. Thromb. Haemost. 2015, 13, 1999–2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, A.-G.; Xu, R.-M.; Lu, C.-Q.; Yao, M.-Y.; Zhao, W.; Fu, X.; Guo, J.; Xu, Q.-F.; Li, D.-D. Correlation of von Willebrand factor gene polymorphism and coronary heart disease. Mol. Med. Rep. 2012, 6, 1107–1110. [Google Scholar] [CrossRef]
- Thompson, S.G.; Kienast, J.; Pyke, S.D.M.; Haverkate, F.; van de Loo, J.C.W. Hemostatic Factors and the Risk of Myocardial Infarction or Sudden Death in Patients with Angina Pectoris. N. Engl. J. Med. 1995, 332, 635–641. [Google Scholar] [CrossRef]
- Willeit, P.; Thompson, A.; Aspelund, T.; Rumley, A.; Eiriksdottir, G.; Lowe, G.; Gudnason, V.; Di Angelantonio, E. Hemostatic Factors and Risk of Coronary Heart Disease in General Populations: New Prospective Study and Updated Meta-Analyses. PLoS ONE 2013, 8, e55175. [Google Scholar] [CrossRef] [Green Version]
- Ray, K.K.; Morrow, D.A.; Gibson, C.M.; Murphy, S.; Antman, E.M.; Braunwald, E. Predictors of the rise in vWF after ST elevation myocardial infarction: Implications for treatment strategies and clinical outcome. Eur. Heart J. 2005, 26, 440–446. [Google Scholar] [CrossRef]
- Jansson, J.H.; Nilsson, T.K.; Johnson, O. von Willebrand factor in plasma: A novel risk factor for recurrent myocardial infarction and death. Heart 1991, 66, 351–355. [Google Scholar] [CrossRef]
- Rutten, B.; Maseri, A.; Cianflone, D.; Laricchia, A.; Cristell, N.; Durante, A.; Spartera, M.; Ancona, F.; Limite, L.; Hu, D.; et al. Plasma levels of active von Willebrand factor are increased in patients with first ST-segment elevation myocardial infarction: A multicenter and multiethnic study. Eur. Heart J. Acute Cardiovasc. Care 2015, 4, 64–74. [Google Scholar] [CrossRef]
- Kaikita, K.; Soejima, K.; Matsukawa, M.; Nakagaki, T.; Ogawa, H. Reduced von Willebrand factor-cleaving protease (ADAMTS13) activity in acute myocardial infarction. J. Thromb. Haemost. 2006, 4, 2490–2493. [Google Scholar] [CrossRef]
- Crawley, J.T.B.; Lane, D.A.; Woodward, M.; Rumley, A.; Lowe, G.D.O. Evidence that high von Willebrand factor and low ADAMTS-13 levels independently increase the risk of a non-fatal heart attack. J. Thromb. Haemost. 2008, 6, 583–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chion, C.K.N.K.; Doggen, C.J.M.; Crawley, J.T.B.; Lane, D.A.; Rosendaal, F.R. ADAMTS13 and von Willebrand factor and the risk of myocardial infarction in men. Blood 2007, 109, 1998–2000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morange, P.E.; Simon, C.; Alessi, M.C.; Luc, G.; Arveiler, D.; Ferrieres, J.; Amouyel, P.; Evans, A.; Ducimetiere, P.; Juhan-Vague, I. Endothelial Cell Markers and the Risk of Coronary Heart Disease: The Prospective Epidemiological Study of Myocardial Infarction (PRIME) Study. Circulation 2004, 109, 1343–1348. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Dong, F.; Guo, L.; Hou, Y.; Hu, H.; Yan, S.; Zhou, X.; Liao, L.; Allen, T.D.; et al. Plasma von Willebrand factor level is transiently elevated in a rat model of acute myocardial infarction. Exp. Ther. Med. 2015, 10, 1743–1749. [Google Scholar] [CrossRef]
- Price, J. Relationship between smoking and cardiovascular risk factors in the development of peripheral arterial disease and coronary artery disease; Edinburgh Artery Study Edinburgh Artery Study. Eur. Heart J. 1999, 20, 344–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danesh, J.; Wheeler, J.G.; Hirschfield, G.M.; Eda, S.; Eiriksdottir, G.; Rumley, A.; Lowe, G.D.O.; Pepys, M.B.; Gudnason, V. C-Reactive Protein and Other Circulating Markers of Inflammation in the Prediction of Coronary Heart Disease. N. Engl. J. Med. 2004, 350, 1387–1397. [Google Scholar] [CrossRef]
- Lee, K.; Blann, A.; Lip, G. High pulse pressure and nondipping circadian blood pressure in patients with coronary artery disease: Relationship to thrombogenesis and endothelial damage/dysfunction. Am. J. Hypertens. 2005, 18, 104–115. [Google Scholar] [CrossRef]
- Lip, G.Y.H.; Blann, A.D.; Jones, A.F.; Lip, P.L.; Beevers, D.G. Relation of Endothelium, Thrombogenesis, and Hemorheology in Systemic Hypertension to Ethnicity and Left Ventricular Hypertrophy. Am. J. Cardiol. 1997, 80, 1566–1571. [Google Scholar] [CrossRef]
- Jager, A.; van Hinsbergh, V.W.M.; Kostense, P.J.; Emeis, J.J.; Yudkin, J.S.; Nijpels, G.; Dekker, J.M.; Heine, R.J.; Bouter, L.M.; Stehouwer, C.D.A. von Willebrand Factor, C-Reactive Protein, and 5-Year Mortality in Diabetic and Nondiabetic Subjects: The Hoorn Study. Arter. Thromb. Vasc. Biol 1999, 19, 3071–3078. [Google Scholar] [CrossRef] [Green Version]
- Stehouwer, C.A.; Zeldenrust, G.C.; den Ottolander, G.H.; Hackeng, W.H.L.; Donker, A.J.M.; Nauta, J.J.P. Urinary albumin excretion, cardiovascular disease, and endothelial dysfunction in non-insulin-dependent diabetes mellitus. Lancet 1992, 340, 319–323. [Google Scholar] [CrossRef]
- Warlo, E.M.K.; Pettersen, A.-Å.R.; Arnesen, H.; Seljeflot, I. vWF/ADAMTS13 is associated with on-aspirin residual platelet reactivity and clinical outcome in patients with stable coronary artery disease. Thromb. J. 2017, 15, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blann, A.D.; Herrick, A.; Jayson, M.I.V. Altered levels of soluble adhesion molecules in rheumatoid arthritis, vasculitis and systemic sclerosis. Rheumatology 1995, 34, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Nossent, J.C.; Raymond, W.D.; Eilertsen, G.Ø. Increased von Willebrand factor levels in patients with systemic lupus erythematosus reflect inflammation rather than increased propensity for platelet activation. Lupus Sci. Med. 2016, 3, e000162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacquemant, C.; Gaucher, C.; Delorme, C.; Chatellier, G.; Gallois, Y.; Rodier, M.; Passa, P.; Balkau, B.; Mazurier, C.; Marre, M.; et al. Association between high von Willebrand factor levels and the Thr789Ala vWF gene polymorphism but not with nephropathy in type I diabetes. Kidney Int. 2000, 57, 1437–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonetti, P.O.; Lerman, L.O.; Lerman, A. Endothelial Dysfunction: A Marker of Atherosclerotic Risk. ATVB 2003, 23, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Heper, G.; Murat, S.N.; Durmaz, T.; Kalkan, F. Prospective Evaluation of von Willebrand Factor Release after Multiple and Single Stenting. Angiology 2004, 55, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Kefer, J.M.; Galanti, L.M.; Desmet, S.; Deneys, V.; Hanet, C.E. Time course of release of inflammatory markers after coronary stenting: Comparison between bare metal stent and sirolimus-eluting stent. Coron. Artery Dis. 2005, 16, 505–509. [Google Scholar] [CrossRef]
- Pottinger, B.E.; Read, R.C.; Paleolog, E.M.; Higgins, P.G.; Pearson, J.D. von Willebrand factor is an acute phase reactant in man. Thromb. Res. 1989, 53, 387–394. [Google Scholar] [CrossRef]
- Bernardo, A.; Ball, C.; Nolasco, L.; Choi, H.; Moake, J.L.; Dong, J.F. Platelets adhered to endothelial cell-bound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. J. Thromb. Haemost. 2005, 3, 562–570. [Google Scholar] [CrossRef]
- Kaufmann, J.E.; Oksche, A.; Wollheim, C.B.; Günther, G.; Rosenthal, W.; Vischer, U.M. Vasopressin-induced von Willebrand factor secretion from endothelial cells involves V2 receptors and cAMP. J. Clin. Investig. 2000, 106, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Melnikov, I.; Avtaeva, Y.; Kozlov, S.; Nozadze, D.; Gabbasov, Z. P721Shear stress induced unfolding of von willebrand factor may be involved in the premature development of myocardial infarction. Eur. Heart J. 2019, 40, ehz747.0326. [Google Scholar] [CrossRef]
- Sobel, M.; McNeill, P.M.; Carlson, P.L.; Kermode, J.C.; Adelman, B.; Conroy, R.; Marques, D. Heparin inhibition of von Willebrand factor-dependent platelet function in vitro and in vivo. J. Clin. Investig. 1991, 87, 1787–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montalescot, G.; Philippe, F.; Ankri, A.; Vicaut, E.; Bearez, E.; Poulard, J.E.; Carrie, D.; Flammang, D.; Dutoit, A.; Carayon, A.; et al. Early Increase of von Willebrand Factor Predicts Adverse Outcome in Unstable Coronary Artery Disease: Beneficial Effects of Enoxaparin. Circulation 1998, 98, 294–299. [Google Scholar] [CrossRef] [Green Version]
- Kageyama, S.; Matsushita, J.; Yamamoto, H. Effect of a humanized monoclonal antibody to von Willebrand factor in a canine model of coronary arterial thrombosis. Eur. J. Pharmacol. 2002, 443, 143–149. [Google Scholar] [CrossRef]
- Gilbert, J.C.; DeFeo-Fraulini, T.; Hutabarat, R.M.; Horvath, C.J.; Merlino, P.G.; Marsh, H.N.; Healy, J.M.; BouFakhreddine, S.; Holohan, T.V.; Schaub, R.G. First-in-Human Evaluation of Anti–von Willebrand Factor Therapeutic Aptamer ARC1779 in Healthy Volunteers. Circulation 2007, 116, 2678–2686. [Google Scholar] [CrossRef] [PubMed]
- Markus, H.S.; McCollum, C.; Imray, C.; Goulder, M.A.; Gilbert, J.; King, A. The von Willebrand Inhibitor ARC1779 Reduces Cerebral Embolization after Carotid Endarterectomy: A Randomized Trial. Stroke 2011, 42, 2149–2153. [Google Scholar] [CrossRef] [Green Version]
- Kovacevic, K.D.; Buchtele, N.; Schoergenhofer, C.; Derhaschnig, U.; Gelbenegger, G.; Brostjan, C.; Zhu, S.; Gilbert, J.C.; Jilma, B. The aptamer BT200 effectively inhibits von Willebrand factor (VWF) dependent platelet function after stimulated VWF release by desmopressin or endotoxin. Sci. Rep. 2020, 10, 11180. [Google Scholar] [CrossRef]
- Sakai, K.; Someya, T.; Harada, K.; Yagi, H.; Matsui, T.; Matsumoto, M. Novel aptamer to von Willebrand factor A1 domain (TAGX-0004) shows total inhibition of thrombus formation superior to ARC1779 and comparable to caplacizumab. Haematologica 2019. [Google Scholar] [CrossRef]
- van Loon, J.E.; de Jaegere, P.P.T.; van Vliet, H.H.D.M.; de Maat, M.P.M.; de Groot, P.G.; Simoons, M.L.; Leebeek, F.W.G. The in vitro effect of the new antithrombotic drug candidate ALX-0081 on blood samples of patients undergoing percutaneous coronary intervention. Thromb. Haemost 2011, 106, 165–171. [Google Scholar] [CrossRef]
- Bartunek, J.; Barbato, E.; Vercruysse, K.; Duby, C.; Wijns, W.; Heyndrickx, G.; Holz, J.-B. Abstract 15084: Safety and Efficacy of Anti-von Willebrand Factor Nanobody® ALX-0081 in Stable Angina Patients Undergoing Percutaneous Coronary Intervention. Circulation 2010, 122, A15084. [Google Scholar]
- Bartunek, J.; Barbato, E.; Heyndrickx, G.; Vanderheyden, M.; Wijns, W.; Holz, J.-B. Novel Antiplatelet Agents: ALX-0081, a Nanobody Directed towards von Willebrand Factor. J. Cardiovasc. Trans. Res. 2013, 6, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Witsch, T.; Martinod, K.; Sorvillo, N.; Portier, I.; De Meyer, S.F.; Wagner, D.D. Recombinant Human ADAMTS13 Treatment Improves Myocardial Remodeling and Functionality after Pressure Overload Injury in Mice. JAHA 2018, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okhota, S.; Melnikov, I.; Avtaeva, Y.; Kozlov, S.; Gabbasov, Z. Shear Stress-Induced Activation of von Willebrand Factor and Cardiovascular Pathology. Int. J. Mol. Sci. 2020, 21, 7804. https://doi.org/10.3390/ijms21207804
Okhota S, Melnikov I, Avtaeva Y, Kozlov S, Gabbasov Z. Shear Stress-Induced Activation of von Willebrand Factor and Cardiovascular Pathology. International Journal of Molecular Sciences. 2020; 21(20):7804. https://doi.org/10.3390/ijms21207804
Chicago/Turabian StyleOkhota, Sergey, Ivan Melnikov, Yuliya Avtaeva, Sergey Kozlov, and Zufar Gabbasov. 2020. "Shear Stress-Induced Activation of von Willebrand Factor and Cardiovascular Pathology" International Journal of Molecular Sciences 21, no. 20: 7804. https://doi.org/10.3390/ijms21207804
APA StyleOkhota, S., Melnikov, I., Avtaeva, Y., Kozlov, S., & Gabbasov, Z. (2020). Shear Stress-Induced Activation of von Willebrand Factor and Cardiovascular Pathology. International Journal of Molecular Sciences, 21(20), 7804. https://doi.org/10.3390/ijms21207804