Circular RNAs and Their Linear Transcripts as Diagnostic and Prognostic Tissue Biomarkers in Prostate Cancer after Prostatectomy in Combination with Clinicopathological Factors
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics and Study Design
2.2. Discovery of circRNAs in Prostate Cancer Tissue Using Microarray Analysis
2.2.1. Identification of Differentially Expressed circRNAs
2.2.2. Selection of circRNAs for Further Evaluation
2.3. Analytical Confirmation Phase of the Selected circRNAs
2.3.1. Experimental Proof of the Circular Nature of Transcripts
2.3.2. Analytical Performance of RT-qPCR Assays
2.4. Clinical Assessment
2.4.1. Differential Expression of circRNAs in Relation to Clinicopathological Variables
2.4.2. CircRNAs and linRNAs as Biomarkers for Discrimination between Normal and Cancerous Tissue
2.4.3. CircRNAs and Linear Transcripts as Potential Markers for Predicting BCR
2.4.4. BCR Prediction Models Based on Clinicopathological Variables in Combination with the RNA Signature
3. Discussion
4. Materials and Methods
4.1. Patients and Tissue Samples
4.2. Analytical Methods
4.2.1. Total RNA Samples and Their Characteristics
4.2.2. Microarray Detection of circRNAs
4.2.3. RT-qPCR Methodology and circRNA Validation Methods
4.3. Statistics and Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
%RSD | percent relative standard deviation |
AKT | AKT serine/threonine kinase 1 |
ALAS1 | 5′-aminolevulinate synthase 1 |
ATXN10 | ataxin 10 |
AUC | area under the ROC curve |
BCR | biochemical recurrence |
CAPRAS | Cancer of the Prostate Risk Assessment Postsurgical Score |
cDNA | complementary DNA |
CI | confidence interval |
circ | circular (used in composition with gene symbols to define examined circRNAs) |
circRNA | circular RNA |
Cq | quantification cycle |
CRIM1 | cysteine rich transmembrane BMP regulator 1 |
CSNK1G3 | casein kinase 1 gamma 3 |
DRE | digital rectal examination |
GUCY1A2 | guanylate cyclase 1 soluble subunit alpha 2 |
HPRT1 | hypoxanthine phosphoribosyltransferase 1 |
HR | hazard ratio |
IGF1R | insulin like growth factor 1 receptor |
IQR | interquartile range |
ISUP | International Society of Urologic Pathology |
lin | lin (in composition with gene symbols to define examined linRNAs) |
linRNA | linear RNA (mRNA) |
lnc | long non-coding (used in composition with gene symbols) |
LPP | LIM domain containing preferred translocation partner in lipoma |
MIQE | The Minimum Information for Publication of Quantitative Real-Time PCR Experiments |
NCCN | National Comprehensive Cancer Network |
NEAT1 | nuclear paraspeckle assembly transcript 1 |
NRQ | normalized relative quantity |
PCa | prostate cancer |
pN | pathological lymph node status |
PSA | prostate-specific antigen |
pT | pathological tumor classification |
REMARK | Reporting Recommendations for Tumor Marker Prognostic Studies |
RHOBTB3 | rho related BTB domain containing 3 |
RIN | RNA integrity number |
ROC | receiver operating characteristic |
RQ | relative quantity |
RT-qPCR | reverse-transcription quantitative real-time polymerase chain reaction |
SCRC3 | steroid receptor co-activator |
STARD | Standards for Reporting of Diagnostic Accuracy Studies |
STIL | STIL centriolar assembly protein |
TCGA (PRAD) | The Cancer Genome Atlas Prostate Cancer |
T/N | expression index of circRNA or linRNA in tumor to adjacent normal tissue |
TNM | Tumor, Node, Metastases |
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2018, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cookson, M.S.; Aus, G.; Burnett, A.L.; Canby-Hagino, E.D.; D’Amico, A.V.; Dmochowski, R.R.; Eton, D.T.; Forman, J.D.; Goldenberg, S.L.; Hernandez, J.; et al. Variation in the Definition of Biochemical Recurrence in Patients Treated for Localized Prostate Cancer: The American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel Report and Recommendations for a Standard in the Reporting of Surgical Outcomes. J. Urol. 2007, 177, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Cornford, P.; Bellmunt, J.; Bolla, M.; Briers, E.; De Santis, M.; Gross, T.; Henry, A.; Joniau, S.; Lam, T.B.; Mason, M.D.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part II: Treatment of Relapsing, Metastatic, and Castration-Resistant Prostate Cancer. Eur. Urol. 2017, 71, 630–642. [Google Scholar] [CrossRef] [PubMed]
- Broeck, T.V.D.; Bergh, R.C.V.D.; Arfi, N.; Gross, T.; Moris, L.; Briers, E.; Cumberbatch, M.; De Santis, M.; Tilki, D.; Fanti, S.; et al. Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review. Eur. Urol. 2019, 75, 967–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pound, C.R.; Partin, A.W.; Eisenberger, M.A.; Chan, D.W.; Pearson, J.D.; Walsh, P.C. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 1999, 281, 1591–1597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Weickmann, S.; Jung, M.; Lein, M.; Kilic, E.; Stephan, C.; Erbersdobler, A.; Fendler, A.; Jung, K. A novel predictor tool of bochemical recurrence after radical prostatectomy based on a five-microRNA tissue signature. Cancers 2019, 11, 1603. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, A.J.; Scardino, P.T.; Eastham, J.A.; Bianco, F.J., Jr.; Dotan, Z.A.; Diblasio, C.J.; Reuther, A.; Klein, E.A.; Kattan, M.W. Postoperative Nomogram Predicting the 10-Year Probability of Prostate Cancer Recurrence After Radical Prostatectomy. J. Clin. Oncol. 2005, 23, 7005–7012. [Google Scholar] [CrossRef] [Green Version]
- Brockman, J.A.; Alanee, S.; Vickers, A.J.; Scardino, P.T.; Wood, D.P.; Kibel, A.S.; Lin, D.W.; Bianco, F.J., Jr.; Rabah, D.M.; Klein, E.A.; et al. Nomogram Predicting Prostate Cancer–specific Mortality for Men with Biochemical Recurrence After Radical Prostatectomy. Eur. Urol. 2015, 67, 1160–1167. [Google Scholar] [CrossRef] [Green Version]
- Cooperberg, M.R.; Pasta, D.J.; Elkin, E.P.; Litwin, M.S.; Latini, D.M.; Du Chane, J.; Carroll, P.R. The University of California, San Francisco Cancer of the Prostate Risk Assessment Score: A Straightforward and Reliable Preoperative Predictor of Disease Recurrence after Radical Prostatectomy. J. Urol. 2005, 173, 1938–1942. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, A.V.; Whittington, R.; Malkowicz, S.B.; Schultz, D.; Blank, K.; Broderick, G.A.; Tomaszewski, J.E.; Renshaw, A.A.; Kaplan, I.; Beard, C.J.; et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998, 280, 969–974. [Google Scholar] [CrossRef]
- Mohler, J.L. The 2010 NCCN Clinical Practice Guidelines in Oncology on Prostate Cancer. J. Natl. Compr. Cancer Netw. 2010, 8, 145. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Jeong, C.W.; Choi, W.S.; Park, Y.H.; Cho, S.Y.; Lee, S.; Lee, S.B.; Ku, J.H.; Hong, S.K.; Byun, S.-S.; et al. Pre- and Post-Operative Nomograms to Predict Recurrence-Free Probability in Korean Men with Clinically Localized Prostate Cancer. PLoS ONE 2014, 9, e100053. [Google Scholar] [CrossRef] [PubMed]
- Shariat, S.F.; Karakiewicz, P.I.; Suardi, N.; Kattan, M.W. Comparison of Nomograms with Other Methods for Predicting Outcomes in Prostate Cancer: A Critical Analysis of the Literature. Clin. Cancer Res. 2008, 14, 4400–4407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remmers, S.; Verbeek, J.F.M.; Nieboer, D.; Van Der Kwast, T.; Roobol-Bouts, M. Predicting biochemical recurrence and prostate cancer-specific mortality after radical prostatectomy: Comparison of six prediction models in a cohort of patients with screening- and clinically detected prostate cancer. BJU Int. 2019, 124, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Meurs, P.; Galvin, R.; Fanning, D.M.; Fahey, T. Prognostic value of the CAPRA clinical prediction rule: A systematic review and meta-analysis. BJU Int. 2012, 111, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Lorent, M.; Maalmi, H.; Tessier, P.; Supiot, S.; Dantan, E.; Foucher, Y. Meta-analysis of predictive models to assess the clinical validity and utility for patient-centered medical decision making: Application to the CAncer of the Prostate Risk Assessment (CAPRA). BMC Med. Inform. Decis. Mak. 2019, 19, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Spratt, D.E.; Zhang, J.; Santiago-Jiménez, M.; Dess, R.T.; Davis, J.W.; Den, R.B.; Dicker, A.P.; Kane, C.J.; Pollack, A.; Stoyanova, R.; et al. Development and Validation of a Novel Integrated Clinical-Genomic Risk Group Classification for Localized Prostate Cancer. J. Clin. Oncol. 2018, 36, 581–590. [Google Scholar] [CrossRef]
- Ross, A.E.; Johnson, M.H.; Yousefi, K.; Davicioni, E.; Netto, G.J.; Marchionni, L.; Fedor, H.L.; Glavaris, S.; Choeurng, V.; Buerki, C.; et al. Tissue-based Genomics Augments Post-prostatectomy Risk Stratification in a Natural History Cohort of Intermediate- and High-Risk Men. Eur. Urol. 2016, 69, 157–165. [Google Scholar] [CrossRef]
- Hiser, W.M.; Sangiorgio, V.; Bollito, E.; Esnakula, A.; Feely, M.; Falzarano, S.M. Tissue-based multigene expression tests for pretreatment prostate cancer risk assessment: Current status and future perspectives. Future Oncol. 2018, 14, 3073–3083. [Google Scholar] [CrossRef]
- Fine, N.; Lapolla, F.W.Z.; Epstein, M.; Loeb, S.; Dani, H. Genomic classifiers for treatment selection in newly diagnosed prostate cancer. BJU Int. 2019, 124, 578–586. [Google Scholar] [CrossRef]
- Alam, S.; Tortora, J.; Staff, I.; McLaughlin, T.; Wagner, J. Prostate cancer genomics: Comparing results from three molecular assays. Can. J. Urol. 2019, 26, 9758–9762. [Google Scholar] [PubMed]
- Franz, A.; Ralla, B.; Weickmann, S.; Rochow, H.; Stephan, C.; Erbersdobler, A.; Kilic, E.; Fendler, A.; Jung, M.; Jung, K. Circular RNAs in Clear Cell Renal Cell Carcinoma: Their Microarray-Based Identification, Analytical Validation, and Potential Use in a Clinico-Genomic Model to Improve Prognostic Accuracy. Cancers 2019, 11, 1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeck, W.R.; Sorrentino, J.A.; Wang, K.; Slevin, M.K.; Burd, C.E.; Liu, J.; Marzluff, W.F.; Sharpless, N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2012, 19, 141–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nat. Cell Biol. 2013, 495, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Maass, P.G.; Glažar, P.; Memczak, S.; Dittmar, G.; Hollfinger, I.; Schreyer, L.; Sauer, A.V.; Toka, O.; Aiuti, A.; Luft, F.C.; et al. A map of human circular RNAs in clinically relevant tissues. J. Mol. Med. 2017, 95, 1179–1189. [Google Scholar] [CrossRef]
- Salzman, J.; Chen, R.E.; Olsen, M.N.; Wang, P.L.; Brown, P.O. Cell-type specific features of circular RNA expression. PLoS Genet. 2013, 9, e1003777. [Google Scholar] [CrossRef]
- Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nat. Cell Biol. 2013, 495, 384–388. [Google Scholar] [CrossRef]
- Li, Z.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.; Zhong, G.; Yu, B.; Hu, W.; Dai, L.; et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 2015, 22, 256–264. [Google Scholar] [CrossRef]
- Abdelmohsen, K.; Panda, A.C.; Munk, R.; Grammatikakis, I.; Dudekula, D.B.; De, S.; Kim, J.; Noh, J.H.; Kim, K.M.; Martindale, J.L.; et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 2017, 14, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Pamudurti, N.R.; Bartok, O.; Jens, M.; Ashwal-Fluss, R.; Stottmeister, C.; Ruhe, L.; Hanan, M.; Wyler, E.; Perez-Hernandez, D.; Ramberger, E.; et al. Translation of CircRNAs. Mol. Cell 2017, 66, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Franz, A.; Rabien, A.; Stephan, C.; Ralla, B.; Fuchs, S.; Jung, K.; Fendler, A. Circular RNAs: A new class of biomarkers as a rising interest in laboratory medicine. Clin. Chem. Lab. Med. 2018, 56, 1992–2003. [Google Scholar] [CrossRef] [PubMed]
- Aufiero, S.; Reckman, Y.J.; Pinto, Y.M.; Creemers, E.E. Circular RNAs open a new chapter in cardiovascular biology. Nat. Rev. Cardiol. 2019, 16, 503–514. [Google Scholar] [CrossRef]
- Guria, A.; Sharma, P.; Natesan, S.; Pandi, G. Circular RNAs—The Road Less Traveled. Front. Mol. Biosci. 2020, 6, 146. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.L.; Mohidin, T.B.M.; Shukla, K. Functional role of circular RNAs in cancer development and progression. RNA Biol. 2018, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Xie, L.; Han, L.; Qu, X.; Yang, Y.; Zhang, Y.; He, Z.; Wang, Y.; Li, J. Circular RNAs: Regulators of Cancer-Related Signaling Pathways and Potential Diagnostic Biomarkers for Human Cancers. Theranostics 2017, 7, 3106–3117. [Google Scholar] [CrossRef] [PubMed]
- Bachmayr-Heyda, A.; Reiner, A.T.; Auer, K.; Sukhbaatar, N.; Aust, S.; Bachleitner-Hofmann, T.; Mesteri, I.; Grunt, T.W.; Zeillinger, R.; Pils, D. Correlation of circular RNA abundance with proliferation—Exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis and normal human tissues. Sci. Rep. 2015, 5, 8057. [Google Scholar] [CrossRef]
- Sun, D.; Chen, L.; Lv, H.; Gao, Y.; Liu, X.; Zhang, X. Circ_0058124 Upregulates MAPK1 Expression to Promote Proliferation, Metastasis and Metabolic Abilities in Thyroid Cancer Through Sponging miR-940a. Onco Targets Ther. 2020, 13, 1569–1581. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Yu, F.; Li, P. Circular RNAs: Characteristics, Function and Clinical Significance in Hepatocellular Carcinoma. Cancers 2018, 10, 258. [Google Scholar] [CrossRef] [Green Version]
- Vo, J.N.; Cieslik, M.; Zhang, Y.; Shukla, S.; Xiao, L.; Zhang, Y.; Wu, Y.-M.; Dhanasekaran, S.M.; Engelke, C.G.; Cao, X.; et al. The Landscape of Circular RNA in Cancer. Cell 2019, 176, 869–881.e13. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Li, Z.; Yang, Y.; Zeng, X.; Li, Y.; Du, X.; Zhu, X. Circular RNAs as biomarkers and therapeutic targets in environmental chemical exposure-related diseases. Environ. Res. 2020, 180, 108825. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, Y.; Li, Z.; Ruan, Y.; Li, T.; Xiao, B.; Sun, W. The biogenesis and biological functions of circular RNAs and their molecular diagnostic values in cancers. J. Clin. Lab. Anal. 2019, 34, e23049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Yang, T.; Wang, W.; Xi, W.; Zhang, T.; Li, Q.; Yang, A.; Wang, T. Circular RNAs in immune responses and immune diseases. Theranostics 2019, 9, 588–607. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, D.; Luo, H.; Zhu, X. Circular RNAs: The star molecules in cancer. Mol. Asp. Med. 2019, 70, 141–152. [Google Scholar] [CrossRef]
- Chen, S.; Huang, V.; Xu, X.; Livingstone, J.; Soares, F.; Jeon, J.; Zeng, Y.; Hua, J.T.; Petricca, J.; Guo, H.; et al. Widespread and Functional RNA Circularization in Localized Prostate Cancer. Cell 2019, 176, 831–843.e22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Xiong, J.; Yang, Q.; Wang, Y.; Shi, H.; Tian, Q.; Huang, H.; Kong, D.; Lv, J.; Liu, D.; et al. Profiling and bioinformatics analyses of differential circular RNA expression in prostate cancer cells. Futur. Sci. OA 2018, 4, FSOA340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, S.; Sun, C.; Hu, Q.; Guo, Y.; Xia, G.; Mi, Y.; Zhu, L. Differential expression profiles of circRNAs in human prostate cancer based on chip and bioinformatic analysis. Int. J. Clin. Exp. Pathol. 2020, 13, 1045–1052. [Google Scholar] [PubMed]
- Xia, Q.; Ding, T.; Zhang, G.; Li, Z.; Zeng, L.; Zhu, Y.; Guo, J.; Hou, J.; Zhu, T.; Zheng, J.; et al. Circular RNA Expression Profiling Identifies Prostate Cancer—Specific circRNAs in Prostate Cancer. Cell. Physiol. Biochem. 2018, 50, 1903–1915. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Zhou, L.; Zhang, C.; Xu, J. Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Lett. 2020, 468, 88–101. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, J.; Huan, J.; Che, F. Downregulation of circular RNA hsa_circ_0000735 boosts prostate cancer sensitivity to docetaxel via sponging miR-7. Cancer Cell Int. 2020, 20, 1–13. [Google Scholar] [CrossRef]
- Liu, F.; Fan, Y.; Ou, L.; Li, T.; Fan, J.; Duan, L.; Yang, J.; Luo, C.; Wu, X. CircHIPK3 facilitates the G2/M transition in prostate cancer cells by sponging miR-338-3p. Onco Targets Ther. 2020, 13, 4545–4558. [Google Scholar] [CrossRef]
- Weng, X.-D.; Yan, T.; Liu, C.-L. Circular RNA_LARP4 inhibits cell migration and invasion of prostate cancer by targeting FOXO3A. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 5303–5309. [Google Scholar] [PubMed]
- Dong, C.; Fan, B.; Ren, Z.; Liu, B.; Wang, Y. CircSMARCA5 Facilitates the Progression of Prostate Cancer Through miR-432/PDCD10 Axis. Cancer Biother. Radiopharm. 2020. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Li, N.; Chen, X.; Tan, X.; Gu, J.; Chen, M.; Zhang, X. Circular RNA Myosin Light Chain Kinase (MYLK) Promotes Prostate Cancer Progression through Modulating Mir-29a Expression. Med. Sci. Monit. 2018, 24, 3462–3471. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Wan, X.; Zhang, Y.; Zhang, P.; Zhang, Y.; Zhang, X.; Qi, X.; Wu, H.; Huang, J.; Li, Y. Androgen-responsive circular RNA circSMARCA5 is up-regulated and promotes cell proliferation in prostate cancer. Biochem. Biophys. Res. Commun. 2017, 493, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Li, Y.; Zheng, W.; Xie, N.; Shi, Y.; Long, Z.; Xie, L.; Fazli, L.; Zhang, D.; Gleave, M.; et al. Characterization of a Prostate- and Prostate Cancer-Specific Circular RNA Encoded by the Androgen Receptor Gene. Mol. Ther.-Nucleic Acids 2019, 18, 916–926. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Ma, T.; Ungerleider, N.; Roberts, C.; Kobelski, M.; Jin, L.; Concha, M.; Wang, X.; Baddoo, M.; Nguyen, H.M.; et al. Circular RNAs add diversity to androgen receptor isoform repertoire in castration-resistant prostate cancer. Oncogene 2019, 38, 7060–7072. [Google Scholar] [CrossRef]
- Greene, J.; Baird, A.-M.; Casey, O.; Brady, L.; Blackshields, G.; Lim, M.; O’Brien, O.; Gray, S.G.; McDermott, R.; Finn, S.P. Circular RNAs are differentially expressed in prostate cancer and are potentially associated with resistance to enzalutamide. Sci. Rep. 2019, 9, 10739. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Zhuo, Z.; Ma, Z.; Hou, C.; Chen, G.; Xu, G. Hsa_Circ_0001206 is downregulated and inhibits cell proliferation, migration and invasion in prostate cancer. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2449–2464. [Google Scholar] [CrossRef] [Green Version]
- Umemori, M.; Kurata, M.; Yamamoto, A.; Yamamoto, K.; Ishibashi, S.; Ikeda, M.; Tashiro, K.; Kimura, T.; Sato, S.; Takahashi, H.; et al. The expression of MYC is strongly dependent on the circular PVT1 expression in pure Gleason pattern 4 of prostatic cancer. Med. Mol. Morphol. 2020, 53, 156–167. [Google Scholar] [CrossRef]
- Wang, X.; Wang, R.; Wu, Z.; Bai, P. Circular RNA ITCH suppressed prostate cancer progression by increasing HOXB13 expression via spongy miR-17-5p. Cancer Cell Int. 2019, 19, 1–11. [Google Scholar] [CrossRef]
- Huang, E.; Chen, X.; Yuan, Y. Downregulated circular RNA itchy E3 ubiquitin protein ligase correlates with advanced pathologic T stage, high lymph node metastasis risk and poor survivals in prostate cancer patients. Cancer Biomark. 2019, 26, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Deng, H.; Wang, Y.; Jiang, H.; Xu, R.; Zhu, X.; Huang, Z.; Zhao, X. Circular RNA circABCC4 as the ceRNA of miR-1182 facilitates prostate cancer progression by promoting FOXP4 expression. J. Cell. Mol. Med. 2019, 23, 6112–6119. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xiao, Y.; Yan, W.; Ji, Z.; Zheng, G. The human oncogene SCL/TAL1 interrupting locus (STIL) promotes tumor growth through MAPK/ERK, PI3K/Akt and AMPK pathways in prostate cancer. Gene 2019, 686, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Hudson, B.D.; Hum, N.R.; Thomas, C.B.; Kohlgruber, A.; Sebastian, A.; Collette, N.M.; Coleman, M.; Christiansen, B.A.; Loots, G.G. SOST Inhibits Prostate Cancer Invasion. PLoS ONE 2015, 10, e0142058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; He, C.; Yang, F.; Qin, L.; Lu, X.; Wu, J. Long non-coding RNA-NEAT1, a sponge for miR-98-5p, promotes expression of oncogene HMGA2 in prostate cancer. Biosci. Rep. 2019, 39, BSR20190635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuriyama, S.; Yoshida, M.; Yano, S.; Aiba, N.; Kohno, T.; Minamiya, Y.; Goto, A.; Tanaka, M. LPP inhibits collective cell migration during lung cancer dissemination. Oncogene 2015, 35, 952–964. [Google Scholar] [CrossRef]
- Zhang, C.-S.; Liu, Q.; Li, M.; Lin, S.-Y.; Peng, Y.; Wu, D.; Li, T.Y.; Fu, Q.; Jia, W.; Wang, X.; et al. RHOBTB3 promotes proteasomal degradation of HIFα through facilitating hydroxylation and suppresses the Warburg effect. Cell Res. 2015, 25, 1025–1042. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liang, Y.; Mao, Q.; Xia, W.; Chen, B.; Shen, H.; Xu, L.; Jiang, F.; Dong, G. Circular RNA circCRIM1 inhibits invasion and metastasis in lung adenocarcinoma through the microRNA (miR)-182/miR-93-leukemia inhibitory factor receptor pathway. Cancer Sci. 2019, 110, 2960–2972. [Google Scholar] [CrossRef] [Green Version]
- Dudekula, D.B.; Panda, A.C.; Grammatikakis, I.; De, S.; Abdelmohsen, K.; Gorospe, M. CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 2015, 13, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Wong, N.; Wang, X. miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2014, 43, D146–D152. [Google Scholar] [CrossRef]
- Agarwal, V.; Bell, G.W.; Nam, J.-W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015, 4, e05005. [Google Scholar] [CrossRef] [PubMed]
- Bender, R.; Lange, S. Adjusting for multiple testing—When and how? J. Clin. Epidemiol. 2001, 54, 343–349. [Google Scholar] [CrossRef]
- Goeman, J.J.; Solari, A. Multiple hypothesis testing in genomics. Stat. Med. 2014, 33, 1946–1978. [Google Scholar] [CrossRef]
- Rubin, M. Do p Values Lose Their Meaning in Exploratory Analyses? It Depends How You Define the Familywise Error Rate. Rev. Gen. Psychol. 2017, 21, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Glažar, P.; Papavasileiou, P.; Rajewsky, N. circBase: A database for circular RNAs. RNA 2014, 20, 1666–1670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustin, S.A.; Benes, V.; Garson, J.; Hellemans, J.; Huggett, J.F.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeck, W.R.; Sharpless, N.E. Detecting and characterizing circular RNAs. Nat. Biotechnol. 2014, 32, 453–461. [Google Scholar] [CrossRef]
- Szabo, L.; Salzman, J. Detecting circular RNAs: Bioinformatic and experimental challenges. Nat. Rev. Genet. 2016, 17, 679–692. [Google Scholar] [CrossRef] [Green Version]
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.; Lijmer, J.G.; Moher, D.; Rennie, D.; de Vet, H.C.; et al. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies. Clin. Chem. 2015, 61, 1446–1452. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.; Devanarayan, V.; Barrett, Y.C.; Weiner, R.; Allinson, J.; Fountain, S.; Keller, S.; Weinryb, I.; Green, M.; Duan, L.; et al. Fit-for-Purpose Method Development and Validation for Successful Biomarker Measurement. Pharm. Res. 2006, 23, 312–328. [Google Scholar] [CrossRef]
- Ohl, F.; Jung, M.; Xu, C.; Stephan, C.; Rabien, A.; Burkhardt, M.; Nitsche, A.; Kristiansen, G.; Loening, S.A.; Radonic, A.; et al. Gene expression studies in prostate cancer tissue: Which reference gene should be selected for normalization? J. Mol. Med. 2005, 83, 1014–1024. [Google Scholar] [CrossRef] [PubMed]
- Sauerbrei, W.; Taube, S.E.; McShane, L.M.; Cavenagh, M.M.; Altman, D.G. Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): An Abridged Explanation and Elaboration. J. Natl. Cancer Inst. 2018, 110, 803–811. [Google Scholar] [CrossRef]
- Li, S.; Teng, S.; Xu, J.; Su, G.; Zhang, Y.; Zhao, J.; Zhang, S.; Wang, H.; Qin, W.; Lu, Z.J.; et al. Microarray is an efficient tool for circRNA profiling. Brief. Bioinform. 2018, 20, 1420–1433. [Google Scholar] [CrossRef]
- Pandey, P.R.; Munk, R.; Kundu, G.; De, S.; Abdelmohsen, K.; Gorospe, M. Methods for analysis of circular RNAs. Wiley Interdiscip. Rev. RNA 2019, 11, e1566. [Google Scholar] [CrossRef]
- Shan, G.; Shao, B.; Liu, Q.; Zeng, Y.; Fu, C.; Chen, A.; Chen, Q. circFMN2 Sponges miR-1238 to Promote the Expression of LIM-Homeobox Gene 2 in Prostate Cancer Cells. Mol. Ther. Nucleic Acids 2020, 21, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Xiao, Y.; Chen, Y.; Luo, G. Screening and identification of epithelial-to-mesenchymal transition-related circRNA and miRNA in prostate cancer. Pathol. Res. Pract. 2019, 216, 152784. [Google Scholar] [CrossRef]
- Qiu, L.; Huang, Y.; Li, Z.; Dong, X.; Chen, G.; Xu, H.; Zeng, Y.; Cai, Z.; Liu, X.; Liu, J. Circular RNA profiling identifies circ ADAMTS 13 as a miR-484 sponge which suppresses cell proliferation in hepatocellular carcinoma. Mol. Oncol. 2019, 13, 441–455. [Google Scholar] [CrossRef] [Green Version]
- Rochow, H.; Franz, A.; Jung, M.; Weickmann, S.; Ralla, B.; Kilic, E.; Stephan, C.; Fendler, A.; Jung, K. Instability of circular RNAs in clinical tissue samples impairs their reliable expression analysis using RT-qPCR: From the myth of their advantage as biomarkers to reality. Theranostics 2020, 10, 9268–9279. [Google Scholar] [CrossRef]
- Westholm, J.O.; Miura, P.; Olson, S.; Shenker, S.; Joseph, B.; Sanfilippo, P.; Celniker, S.E.; Graveley, B.R.; Lai, E.C. Genome-wide Analysis of Drosophila Circular RNAs Reveals Their Structural and Sequence Properties and Age-Dependent Neural Accumulation. Cell Rep. 2014, 9, 1966–1980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, S.; Zhou, S.; Yang, S.; Yu, X.; Xu, H.; Wang, J.; Zhang, Q.; Lv, M.; Feng, J. Identification of internal control genes for circular RNAs. Biotechnol. Lett. 2019, 41, 1111–1119. [Google Scholar] [CrossRef]
- Lu, T.; Cui, L.; Zhou, Y.; Zhu, C.; Fan, D.; Gong, H.; Zhao, Q.; Zhou, C.; Zhao, Y.; Lu, D.; et al. Transcriptome-wide investigation of circular RNAs in rice. RNA 2015, 21, 2076–2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, Z.; Wan, X.; Lu, Y.; Zhang, Y.; Huang, Y.; Xu, Y.; Liu, Y.; Zhao, P.; Xiang, X.; Li, L.; et al. Circular RNA circFOXO3 promotes prostate cancer progression through sponging miR-29a-3p. J. Cell. Mol. Med. 2020, 24, 799–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Wang, J.; Zheng, Y.; Zhang, J.; Chen, S.; Zhao, F. Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat. Commun. 2016, 7, 12060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakravarty, D.; Sboner, A.; Nair, S.S.; Giannopoulou, E.; Li, R.; Hennig, S.; Mosquera, J.M.; Pauwels, J.; Park, K.; Kossai, M.; et al. The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat. Commun. 2014, 5, 5383. [Google Scholar] [CrossRef]
- Bai, J.; Huang, G. Role of long non-coding RNA NEAT1 in the prognosis of prostate cancer patients. Medicine 2020, 99, e20204. [Google Scholar] [CrossRef]
- Gerszten, R.E.; Wang, T.J. The search for new cardiovascular biomarkers. Nat. Cell Biol. 2008, 451, 949–952. [Google Scholar] [CrossRef]
- Ralla, B.; Busch, J.; Flörcken, A.; Westermann, J.; Zhao, Z.; Kilic, E.; Weickmann, S.; Jung, M.; Fendler, A.; Jung, K. miR-9-5p in Nephrectomy Specimens is a Potential Predictor of Primary Resistance to First-Line Treatment with Tyrosine Kinase Inhibitors in Patients with Metastatic Renal Cell Carcinoma. Cancers 2018, 10, 321. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.L.; Lim, B.T.; Anene-Nzelu, C.G.; Ackers-Johnson, M.; Dashi, A.; See, K.; Tiang, Z.; Lee, D.P.; Chua, W.W.; Luu, T.D.; et al. A landscape of circular RNA expression in the human heart. Cardiovasc. Res. 2017, 113, 298–309. [Google Scholar] [CrossRef]
- Cieslik, M.; Chugh, R.; Wu, Y.-M.; Wu, M.; Brennan, C.; Lonigro, R.; Su, F.; Wang, R.; Siddiqui, J.; Mehra, R.; et al. The use of exome capture RNA-seq for highly degraded RNA with application to clinical cancer sequencing. Genome Res. 2015, 25, 1372–1381. [Google Scholar] [CrossRef] [Green Version]
- Steyerberg, E.W.; Pencina, M.J.; Lingsma, H.F.; Kattan, M.W.; Vickers, A.J.; Van Calster, B. Assessing the incremental value of diagnostic and prognostic markers: A review and illustration. Eur. J. Clin. Investig. 2011, 42, 216–228. [Google Scholar] [CrossRef] [Green Version]
- Mohler, J.L.; Antonarakis, E.S.; Armstrong, A.J.; D’Amico, A.V.; Davis, B.J.; Dorff, T.; Eastham, J.A.; Enke, C.A.; Farrington, T.A.; Higano, C.S.; et al. Prostate Cancer, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2019, 17, 479–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, H.B. Predicting Clinical Outcomes Using Molecular Biomarkers. Biomark. Cancer 2016, 8, BIC.S33380–99. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Y.; Dou, Z.; Jiang, H.; Wang, Y.; Gao, X.; Xin, X. Knockdown of STIL suppresses the progression of gastric cancer by down-regulating the IGF-1/PI3K/AKT pathway. J. Cell. Mol. Med. 2019, 23, 5566–5575. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Guo, S.; Zhang, Y.; Zhao, Y.; Li, X.; Jia, Y.; Xu, Y.; Ma, B. LncRNA NEAT1 promotes docetaxel resistance in prostate cancer by regulating ACSL4 via sponging miR-34a-5p and miR-204-5p. Cell. Signal. 2020, 65, 109422. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Huang, C.; Deng, H.; Jian, C.; Zen, C.; Ye, K.; Zhong, Z.; Zhao, X.; Zhu, L. Oncogenic non-coding RNA NEAT1 promotes the prostate cancer cell growth through the SRC3/IGF1R/AKT pathway. Int. J. Biochem. Cell Biol. 2018, 94, 125–132. [Google Scholar] [CrossRef]
- Steyerberg, E.W.; Harrell, F.E.; Borsboom, G.J.; Eijkemans, M.; Vergouwe, Y.; Habbema, J.F. Internal validation of predictive models. J. Clin. Epidemiol. 2001, 54, 774–781. [Google Scholar] [CrossRef]
- Jung, M.; Mollenkopf, H.J.; Grimm, C.H.; Wagner, I.; Albrecht, M.; Waller, T.; Pilarsky, C.; Johannsen, M.; Stephan, C.; Lehrach, H.; et al. MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J. Cell. Mol. Med. 2009, 13, 3918–3928. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, A.; Jung, M.; Mollenkopf, H.-J.; Wagner, I.; Stephan, C.; Jentzmik, F.; Miller, K.; Lein, M.; Kristiansen, G.; Jung, K. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int. J. Cancer 2009, 126, 1166–1176. [Google Scholar] [CrossRef]
- O’Sullivan, B.; Brierley, J.; Byrd, D.; Bosman, F.; Kehoe, S.; Kossary, C.; Piñeros, M.; Van Eycken, E.; Weir, H.K.; Gospodarowicz, M. The TNM classification of malignant tumours—Towards common understanding and reasonable expectations. Lancet Oncol. 2017, 18, 849–851. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, P.A.; Amin, M.B.; Berney, D.M.; Billis, A.; Cao, D.; Cheng, L.; Delahunt, B.; Egevad, L.; Epstein, J.I.; Fine, S.W.; et al. Acinar Adenocarcinoma. In WHO Classification of Tumours of the Urinary System and Male Genital Organs, 4th ed.; Moch, H., Humphrey, P.A., Ulbright, T.M., Reuter, V.E., Eds.; International Agency for Research on Cancer: Lyon, France, 2016; pp. 152–154. [Google Scholar]
- Jentzmik, F.; Stephan, C.; Lein, M.; Miller, K.; Kamlage, B.; Bethan, B.; Kristiansen, G.; Jung, K. Sarcosine in Prostate Cancer Tissue is not a Differential Metabolite for Prostate Cancer Aggressiveness and Biochemical Progression. J. Urol. 2011, 185, 706–711. [Google Scholar] [CrossRef]
- Jung, K.; Reszka, R.; Kamlage, B.; Bethan, B.; Stephan, C.; Lein, M.; Kristiansen, G. Tissue metabolite profiling identifies differentiating and prognostic biomarkers for prostate carcinoma. Int. J. Cancer 2013, 133, 2914–2924. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [Green Version]
- D’Haene, B.; Mestdagh, P.; Hellemans, J.; Vandesompele, J. miRNA Expression Profiling: From Reference Genes to Global Mean Normalization. In Next-Generation MicroRNA Expression Profiling Technology; Humana Press: Totowa, NJ, USA, 2012; pp. 261–272. [Google Scholar] [CrossRef]
- Hellemans, J.; Mortier, G.; De Paepe, A.; Speleman, F.; Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8, R19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vickers, A.J.; Elkin, E.B. Decision Curve Analysis: A Novel Method for Evaluating Prediction Models. Med. Decis. Mak. 2006, 26, 565–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephan, C.; Jung, K.; Semjonow, A.; Schulze-Forster, K.; Cammann, H.; Hu, X.; Meyer, H.-A.; Bögemann, M.; Miller, K.; Friedersdorff, F. Comparative Assessment of Urinary Prostate Cancer Antigen 3 and TMPRSS2: ERG Gene Fusion with the Serum [−2]Proprostate-Specific Antigen–Based Prostate Health Index for Detection of Prostate Cancer. Clin. Chem. 2013, 59, 280–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pencina, M.J.; D’Agostino, R.B. OverallC as a measure of discrimination in survival analysis: Model specific population value and confidence interval estimation. Stat. Med. 2004, 23, 2109–2123. [Google Scholar] [CrossRef] [PubMed]
- Harrell, F.E., Jr.; Lee, K.L.; Mark, D.B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errorrs. Stat. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
Characteristics | All Patients | Patients with Biochemical Recurrence | Patients without Biochemical Recurrence | p-Value a |
---|---|---|---|---|
Patients, no. (%) | 115 (100) | 39 (34) | 76 (66) | |
Age, median years, (IQR) | 67 (62–70) | 66 (59–71) | 67 (64–70) | 0.339 |
PSA, µg/L (IQR) | 7.7 (5.4–12.2) | 9.7 (6.1–19.5) | 7.0 (5.4–9.5) | 0.011 |
Prostate volume, cm3 (IQR) | 32 (25–45) | 30 (23–39) | 33 (26–45) | 0.264 |
DRE, no. (%) | 0.067 | |||
Non-suspicious | 67 (58) | 17 (44) | 50 (66) | |
Suspicious | 32 (28) | 14 (36) | 18 (24) | |
Unclassified | 16 (14) | 8 (20) | 8 (10) | |
pT status, no. (%) | 0.005 | |||
pT1c | 1 (1) | 0 | 1 (1) | |
pT2a | 2 (2) | 0 | 2 (3) | |
pT2b | 1 (1) | 0 | 1 (1) | |
pT2c | 61 (53) | 13 (33) | 48 (63) | |
pT3a | 27 (23) | 11 (28) | 16 (21) | |
pT3b | 23 (20) | 15 (39) | 8 (11) | |
ISUP Grade groups, no. (%) | 0.0001 | |||
1 | 26 (23) | 2 (5) | 24 (31) | |
2 | 47 (41) | 13 (33) | 34 (45) | |
3 | 30 (26) | 14 (36) | 16 (21) | |
4 | 4 (3 | 4 (11) | 0 (0) | |
5 | 8 (7) | 6 (15) | 2 (3) | |
pN status, no. (%) | 0.017 | |||
pN0/Nx | 109 (95) | 34 (87) | 75 (99) | |
pN1 | 6 (5) | 5 (13) | 1 (1) | |
Surgical margin, no. (%) | ||||
Negative | 64 (56) | 16 (41) | 48 (63) | 0.030 |
Positive | 51 (44) | 23 (59) | 28 (37) | |
Follow-up after surgery | <0.0001 | |||
Median months (IQR) | 41 (26–72) | 19.9 (9.8–41) | 52 (38–80) |
circRNA in Manuscript | circRNA ID in circBase a,b | Absolute Fold Change on Microarray (p-Value) | Best Transcript | Official Gene Symbol (Official Gene Name) |
---|---|---|---|---|
Upregulated circRNAs | ||||
circLPP | circ_0003759 | 1.94 (0.025) | NM_005578.5 | LPP (LIM domain containing preferred translocation partner in lipoma) |
circNEAT1 | circ_0000324 | 2.73 (0.0235) | NR_131012.1 | NEAT1 (Nuclear paraspeckle assembly transcript 1) |
circSTIL | circ_0000069 | 1.75 (0.007) | NM_001282936.1 | STIL (STIL centriolar assembly protein) |
Downregulated circRNAs | ||||
circATXN10 | circ_0001246 | 2.48 (0.001)) | NM_013236.4 | ATXN10 (Ataxin 10) |
circCRIM1 | circ_0007386 | 2.17 (0.006)) | NM_016441.3 | CRIM1 (Cysteine rich transmembrane BMP regulator 1) |
circRHOBTB3 | circ_0007444 | 2.14 (0.0003) | NM_014899.4 | RHOBTB3 (Rho related BTB domain containing 3) |
circRNAs from Literature c | ||||
circCSNK1G3 | circ_0001522 | −1.31 (0.003) | NM_001044723.2 | CSNK1G3 (Casein kinase 1 gamma 3) |
circGUCY1A2 | circ_0008602 | −1.02 (0.305) | NM_000855.3 | GUCY1A2 (Guanylate cyclase 1 soluble subunit alpha 2) |
RNA | Repeatability a | Reproducibility b | ||
---|---|---|---|---|
Cq Value Mean (%RSD) | Relative Quantities Mean (%RSD) | Cq Value Mean ± SD (%RSD) | Relative Quantities Mean ± SD (%RSD) | |
circATXN10 | 24.49 (0.595) | 1.345 (10.4) | 24.31 ± 0.144 (0.591) | 1.004 ± 0.100 (9.98) |
circCRIM1 | 24.61 (0.455) | 1.299 (7.59) | 24.39 ± 0.115 (0.472) | 1.003 ± 0.078 (7.79) |
circCSNK1G3 | 21.47 (0.289) | 1.164 (4.28) | 21.34 ± 0.131 (0.613) | 1.003 ± 0.093 (9.22) |
circGUCY1A2 | 24.68 (0.516) | 1.461 (8.81) | 24.68 ± 0.134 (0.541) | 1.003 ± 0.092 (9.18) |
circLPP | 25.71 (0.314) | 1.177 (5.71) | 25.76 ± 0.104 (0.406) | 1.002 ± 0.070 (7.00) |
circNEAT1 | 35.56 (0.680) | 1.285 (16.4) | 36.80 ± 0.309 (0.838) | 1.017 ± 0.214 (21.1) |
circRHOBTB3 | 23.91 (0.241) | 1.055 (3.95) | 24.02 ± 0.178 (0.739) | 1.006 ± 0.121 (12.1) |
circSTIL | 28.51 (0.542) | 1.261 (10.9) | 28.47 ± 0.105 (0.369) | 1.002 ± 0.0.72 (7.18) |
linATXN10 | 20.23 (0.341) | 1.250 (5.07) | 20.21 ± 0.106 (0.525) | 1.002 ± 0.072 (7.14) |
linCRIM1 | 21.67 (0.257) | 1.305 (3.85) | 21.49 ± 0.145(0.673) | 1.004 ± 0.102 (10.1) |
linCSNK1G3 | 21.73 (0.275) | 1.052 (4.13) | 22.23 ± 0.152 (0.683) | 1.003 ± 0.091 (9.08) |
linGUCY1A2 | 23.55 (0.480) | 1.458 (8.22) | 22.51 ± 0.134 (0.596) | 1.004 ± 0.096 (9.57) |
linLPP | 19.27 (0.472) | 1.193 (6.64) | 19.06 ± 0.121 (0.633) | 1.003 ± 0.085 (8.46) |
linNEAT1 | 18.79 (0.231) | 1.641 (2.96) | 19.80 ± 0.079 (0.401) | 1.001 ± 0.054 (5.38) |
linRHOBTB3 | 21.23 (0.259) | 1.147 (3.73) | 21.34 ± 0.170 (0.796) | 1.006 ± 0.120 (11.9) |
linSTIL | 25.88 (0.411) | 1.381 (5.22) | 26.22 ± 0.131 (0.500) | 1.003 ± 0.089 (8.94) |
ALAS1 | 23.04 (0.305) | 1.113 (4.86) | 23.32 ± 0.064 (0.275) | 1.001 ± 0.043 (4.33) |
HPRT1 | 25.32 (0.411) | 1.192 (7.09) | 25.97 ± 0.112 (0.432) | 1.002 ± 0.077 (7.75) |
circRNA | Microarray Expression Data a | RT-qPCR Expression Data b |
---|---|---|
Ratio of Tumor to Normal Tissue (p-Value) | Ratio of Tumor to Normal Tissue (p-Value) | |
circATXN10 | −2.48 (0.001) | −2.09 (0.020) |
circCRIM1 | −2.17 (0.006) | −2.45 (0.027) |
circCSNK1G3 | −1.31 (0.003) | −1.84 (0.027) |
circGUCY1A2 | −1.02 (0.305) | −1.07 (0.781) |
circLPP | +1.94 (0.025) | −2.01 (0.004) |
circNEAT1 | +2.73 (0.024) | +4.33 (0.061) |
circRHOBTB3 | −2.14 (0.0003) | −2.05 (0.041) |
circSTIL | +1.75 (0.007) | −1.35 (0.086) |
RNAs | AUC (95% CI) | p-Value Different to AUC = 0.5 | Differentiating Ability at the Youden Index a | Overall Correct Classification (%) | |
---|---|---|---|---|---|
Sensitivity (95% CI) | Specificity (95% CI) | ||||
Single variable | |||||
circATXN10 | 0.801 (0.719–0.851) | <0.0001 | 77 (68–84) | 72 (61–82) | 74.2 |
linATXN10 (p < 0.0001) b | 0.525 (0.442–0.606) | 0.534 | 45 (36–55) | 65 (53–75) | 59.3 |
circCRIM1 | 0.743 (0.660–0.808) | <0.0001 | 74 (66–82) | 66 (54–76) | 67.0 |
linCRIM1 (p = 0.143) b | 0.778 (0.697–0.836) | <0.0001 | 76 (67–83) | 76 (65–85) | 71.7 |
circCSNK1G3 | 0.780 (0.715–0.836) | <0.0001 | 69 (59–77) | 77 (66–86) | 72.7 |
linCSNK1G3 (p < 0.0001) b | 0.518 (0.436–0.602) | 0.661 | 49 (40–59) | 59 (48–70) | 59.3 |
circGUCY1A2 | 0.545 (0.459–0.624) | 0.285 | 65 (56–74) | 48 (37–60) | 58.8 |
linGUCY1A2 (p = 0.208) b | 0.583 (0.493–0.665) | 0.051 | 70 (60–78) | 49 (40–61) | 58.3 |
circLPP | 0.773 (0.708–0.830) | <0.0001 | 71 (62–79) | 75 (64–84) | 72.2 |
linLPP (p = 0.321) b | 0.762 (0.696–0.820) | <0.0001 | 70 (61–79) | 76 (65–85) | 71.6 |
circNEAT1 | 0.634 (0.552–0.733) | <0.013 | 72 (60–82) | 51 (36–67) | 62.5 |
linNEAT1 (p = 0.371) b | 0.690 (0.608–0.760) | <0.0001 | 63 (53–72) | 72 (61–82) | 63.4 |
circRHOBTB3 | 0.684 (0.613–0.749) | <0.0001 | 73 (64–81) | 61 (49–72) | 66.0 |
linRHOBTB3 (p = 0.013) b | 0.520 (0.438–0.605) | 0.629 | 45 (36–55) | 67 (56–77) | 59.3 |
circSTIL | 0.645 (0.556–0.719) | <0.003 | 53 (44–62) | 72 (61–82) | 62.9 |
linSTIL (p < 0.0001) b | 0.841 (0.804–0.912) | <0.0001 | 78 (70–85) | 86 (77–93) | 80.4 |
Optimized combination | |||||
circATXN10 + linSTIL c | 0.892 (0.834–0.925) | <0.0001 | 79 (71–86) | 87 (78–94) | 81.4 |
Univariable Cox Regression a | Multivariable Cox Regression | |||||
---|---|---|---|---|---|---|
RNA | Full Model b | Reduced Model after Backward Elimination c | ||||
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Circular RNAs | ||||||
circATXN10 | 0.39 (0.10–1.88) | 0.239 | 0.27 (0.08–0.89) | 0.032 | 0.31 (0.13–0.76) | 0.011 |
circCRIM1 | 0.69 (0.22–2.16) | 0.521 | - | - | - | - |
circCSNK1G3 | 2.32 (0.51–10.6) | 0.240 | 1.96 (0.50–7.68) | 0.336 | - | - |
circGUCY1A2 | 1.31 (0.98–1.75) | 0.065 | 1.32 (0.99–1.75) | 0.051 | 1.33 (1.02–1.74) | 0.037 |
circLPP | 1.86 (0.84–4.12) | 0.125 | 1.76 (0.78–3.96) | 0.169 | 1.89 (0.91–3.95) | 0.092 |
circRHOBTB3 | 0.86 (0.38–1.93) | 0.705 | - | - | - | - |
circSTIL | 0.53 (0.18–1.53) | 0.238 | 0.57 (0.21–1.62) | 0.293 | - | - |
Linear mRNAs | ||||||
linATXN10 | 1.23 (0.15–10.2) | 0.846 | - | - | -- | - |
linCRIM1 | 0.90 (0.22–3.76) | 0.887 | - | - | - | - |
linCSNK1G3 | 0.47 (0.09–2.60) | 0.399 | - | - | - | - |
linGUCY1A2 | 1.52 (0.99–2.32) | 0.050 | 1.47 (1.09–2.00) | 0.012 | 1.47 (1.09–2.00) | 0.012 |
linLPP | 1.06 (0.23–4.76) | 0.941 | ||||
linNEAT1 | 1.41 (1.15–1.72) | 0.001 | 1.39 (1.16–1.66) | 0.0003 | 1.39 (1.16–1.66) | 0.0003 |
linRHOBTB3 | 0.78 (0.20–3.11) | 0.727 | ||||
linSTIL | 0.59 (0.32–1.08) | 0.086 | 0.54 (0.30–0.96) | 0.037 | 0.54 (0.30–0.96) | 0.037 |
Multivariable Cox Regression of the Combined Separate RNA Classifiers | ||||
---|---|---|---|---|
RNA Prediction Tool | Full Model with all Separate Classifiers a | Reduced Model after Backward Elimination b | ||
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
circRNA prediction tool | ||||
circATXN10 | 0.45 (0.18–1.12) | 0.086 | not included | - |
circGUCY1A2 | 0.95 (0.55–1.64) | 0.850 | not included | - |
circLPP | 1.37 (0.66–2.82) | 0.399 | not included | - |
linear RNA prediction tool | ||||
linGUCY1A2 | 1.77 (0.80–3.89) | 0.153 | 1.47 (1.09–2.00) | 0.012 |
linNEAT1 | 1.33 (1.11–1.60) | 0.002 | 1.39 (1.16–1.66) | 0.0003 |
linSTIL | 0.52 (0.29–0.94) | 0.030 | 0.54 (0.30–0.96) | 0.037 |
Variable a | Univariable Cox Regression | Multivariable Cox Regression | ||||
---|---|---|---|---|---|---|
Full Model b | Reduced Model after Backward Elimination c | |||||
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age | 0.97 (0.93–1.02) | 0.280 | ||||
PSA (> 10 <) | 2.24 (1.18–4.18) | 0.0130 | 1.59 (0.83–3.07) | 0.162 | ||
DRE | 1.24 (0.83–1.95) | 0.286 | ||||
Margin | 2.37(1.24–4.52) | 0.009 | 1.91 (0.98–3.72) | 0.056 | 1.99 (1.03–3.84) | 0.041 |
pN status | 2.60 (0.92–7.35) | 0.071 | 0.58 (0.19–1.81) | 0.352 | ||
pT stage | 2.16 (1.51–3.09) | <0.0001 | 1.55 (1.03–2.33) | 0.037 | 1.58 (1.05–2.40) | 0.030 |
ISUP Group | 1.66 (1.31–2.11 | <0.0001 | 1.55 (1.14–2.10) | 0.005 | 1.43 (1.07–1.91) | 0.016 |
Prediction Tool | Clinicopathological-Based Tool | Clinicopathological-Based Tool Combined with RNA Signature | p-Value |
---|---|---|---|
AUC (95% CI) | AUC (95% CI) | ||
Present study | |||
Full model | 0.810 (0.726–0.877) | 0.841 (0.761–0.902) | 0.073 |
Reduced model | 0.804 (0.720–0.872) | 0.827 (0.746–0.891) | 0.104 |
Reference models | |||
D’Amico et al. [10] | 0.513 (0.418–0.607) | 0.718 (0.627–0.798) | 0.004 |
CAPRAS [9] | 0.750 (0.660–0.826) | 0.799 (0.714–0.868) | 0.034 |
NCCN [11] | 0.733 (0.643–0.811) | 0.800 (0.715–0.869) | 0.035 |
Stephenson et al. [7] | 0.785 (0.699–0.856) | 0.821 (0.738–0.886) | 0.107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rochow, H.; Jung, M.; Weickmann, S.; Ralla, B.; Stephan, C.; Elezkurtaj, S.; Kilic, E.; Zhao, Z.; Jung, K.; Fendler, A.; et al. Circular RNAs and Their Linear Transcripts as Diagnostic and Prognostic Tissue Biomarkers in Prostate Cancer after Prostatectomy in Combination with Clinicopathological Factors. Int. J. Mol. Sci. 2020, 21, 7812. https://doi.org/10.3390/ijms21217812
Rochow H, Jung M, Weickmann S, Ralla B, Stephan C, Elezkurtaj S, Kilic E, Zhao Z, Jung K, Fendler A, et al. Circular RNAs and Their Linear Transcripts as Diagnostic and Prognostic Tissue Biomarkers in Prostate Cancer after Prostatectomy in Combination with Clinicopathological Factors. International Journal of Molecular Sciences. 2020; 21(21):7812. https://doi.org/10.3390/ijms21217812
Chicago/Turabian StyleRochow, Hannah, Monika Jung, Sabine Weickmann, Bernhard Ralla, Carsten Stephan, Sefer Elezkurtaj, Ergin Kilic, Zhongwei Zhao, Klaus Jung, Annika Fendler, and et al. 2020. "Circular RNAs and Their Linear Transcripts as Diagnostic and Prognostic Tissue Biomarkers in Prostate Cancer after Prostatectomy in Combination with Clinicopathological Factors" International Journal of Molecular Sciences 21, no. 21: 7812. https://doi.org/10.3390/ijms21217812
APA StyleRochow, H., Jung, M., Weickmann, S., Ralla, B., Stephan, C., Elezkurtaj, S., Kilic, E., Zhao, Z., Jung, K., Fendler, A., & Franz, A. (2020). Circular RNAs and Their Linear Transcripts as Diagnostic and Prognostic Tissue Biomarkers in Prostate Cancer after Prostatectomy in Combination with Clinicopathological Factors. International Journal of Molecular Sciences, 21(21), 7812. https://doi.org/10.3390/ijms21217812