Roles of Adipokines in Digestive Diseases: Markers of Inflammation, Metabolic Alteration and Disease Progression
Abstract
:1. Introduction
2. Adipokines and the Liver
2.1. NAFLD
2.1.1. Leptin
2.1.2. Adiponectin
2.1.3. Other Adipokines
2.2. Viral Hepatitis
2.2.1. Hepatitis B
Leptin
Adiponectin
Resistin
Visfatin
Chemerin
Multiple Adipokines
2.2.2. Hepatitis C
Leptin
Adiponectin
PAI-1
Visfatin
RBP4
Resistin
Chemerin
Multiple Adipokines
2.3. Autoimmune Liver Disease
2.3.1. Primary Biliary Cholangitis (PBC)
Leptin
Adiponectin and Resistin
2.3.2. Autoimmune Hepatitis (AIH)
Adiponectin
2.4. Alcoholic Liver Disease (ALD)
2.4.1. Leptin
2.4.2. Adiponectin
2.4.3. Other Adipokines
3. Adipokines and the Pancreas
3.1. Pancreatic Cancer
3.1.1. Leptin
3.1.2. Adiponectin
3.2. Insulin Resistance and Diabetes
3.2.1. Leptin
3.2.2. Other Adipokines
4. Adipokines and the Alimentary Tract
4.1. Esophagus
4.1.1. Leptin
4.1.2. Adiponectin
4.1.3. Leptin and Adiponectin
4.2. Stomach
Leptin
4.3. Small Intestine
Leptin
4.4. Colon
4.4.1. Colitis
Leptin
Adiponectin
Leptin and Adiponectin
4.4.2. Diverticulosis
Leptin and Adiponectin
4.4.3. Colon Polyps and Cancer
Leptin
Adiponectin
Leptin and Adiponectin
Other Adipokines
5. Adipokines and the Biliary Tract
5.1. Leptin
5.2. Adiponectin
5.3. Resistin
6. Adipokines and the Gallbladder
6.1. Leptin
6.2. Adiponectin
7. Conclusive Remarks and Future Challenges
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
NAFLD | nonalcoholic fatty liver disease |
PPAR-α | proliferator-activated receptor-alpha |
ObR | leptin receptor |
NASH | nonalcoholic steatohepatitis |
AdipoR1 | adiponectin receptor 1 |
TNF-α | tumor necrosis factor-alpha |
BA | bile acid |
SNP | single nucleotide polymorphism |
PAI-1 | plasminogen activator inhibitor-1 |
RBP-4 | retinol-binding protein-4 |
HBV | hepatitis B virus |
CHB | chronic hepatitis B |
IFN-α | interferon-alpha |
HCC | hepatocellular carcinoma |
ALT | alanine aminotransferase |
IFNL3 | interferon λ3 |
DAA | direct-acting antiviral agent |
G | genotype |
SVR | sustained virologic response |
C3 | component 3 |
HMW | high-molecular-weight |
PBC | primary biliary cholangitis |
AIH | autoimmune hepatitis |
BMI | body mass index |
JAK2 | Janus kinase 2 |
STAT3 | signal transducer and activator of transcription 3 |
KATP | ATP-sensitive K+ |
GERD | gastroesophageal reflux disease |
ERK | extracellular signal-regulated kinase |
MAPK | mitogen-activated protein kinase |
PI3K | phosphoinositide 3-kinase |
COX-2 | cyclooxygenase-2; |
PGE2 | prostaglandin E2 |
LMW | low-molecular-weight |
SCC | squamous cell carcinoma |
UC | ulcerative colitis |
CD | Crohn’s disease |
ADSC | adipose-derived stromal cells |
TNBS | 2,4,6-trinitrobenzene sulfonic acid |
NF-κB | nuclear factor κ-light-chain-enhancer of activated B cells |
RhoA | Ras homolog gene family, member A |
IL-1β | interleukin 1β |
DSS | dextran sodium sulfate |
MAT | mesenteric adipose tissue |
CRC | colorectal cancer |
mTOR | mammalian target of rapamycin |
Nrf2 | nuclear factor erythroid 2-related factor 2 |
SIRT1 | silent information regulator 2 homologue 1 |
AP-1 | activator protein 1 |
IL-6 | interleukin 6 |
CXCL1 | chemokine (C-X-C motif) ligand 1 |
VEGF | vascular endothelial growth factor |
PKC | protein kinase C |
CICC | chronic inflammation-induced colon cancer |
Lgr5+ | leucine-rich repeat-containing G-protein coupled receptor 5+ |
AMPK | AMP-activated protein kinase |
LKB | liver kinase B1 |
ACF | aberrant crypt foci |
TLR4 | Toll-like receptor 4 |
MYD88 | myeloid differentiation primary response 88; |
RETN | resistin |
BDL | bile duct-ligated |
DMN | dimethylnitrosamine |
HSC | hepatic stellate cell |
References
- Kershaw, E.E.; Flier, J.S. Adipose Tissue as an Endocrine Organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Sun, H.M.; Hwang, K.-C.; Kim, S.-W. Adipose-Derived Stromal Vascular Fraction Cells: Update on Clinical Utility and Efficacy. Crit. Rev. Eukaryot. Gene Expr. 2015, 25, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Romacho, T.; Elsen, M.; Röhrborn, D.; Eckel, J. Adipose tissue and its role in organ crosstalk. Acta Physiol. 2014, 210, 733–753. [Google Scholar] [CrossRef] [PubMed]
- Szydło, B.; Kiczmer, P.; Świętochowska, E.; Ostrowska, Z. Role of omentin and chemerin in metabolic syndrome and tumor diseases. Postępy Hig. Med. Doświadczalnej 2016, 70, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Batra, A.; Siegmund, B. The role of visceral fat. Dig. Dis. 2012, 30, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Strong, A.L.; Burow, M.E.; Gimble, J.M.; Bunnell, B.A. Concise Review: The Obesity Cancer Paradigm: Exploration of the Interactions and Crosstalk with Adipose Stem Cells. Stem Cells 2015, 33, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Yehuda-Shnaidman, E.; Schwartz, B. Mechanisms linking obesity, inflammation and altered metabolism to colon carcinogenesis. Obes. Rev. 2012, 13, 1083–1095. [Google Scholar] [CrossRef]
- Nieman, K.M.; Romero, I.L.; Van Houten, B.; Lengyel, E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2013, 1831, 1533–1541. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Harris, E.N. New aspects of hepatic endothelial cells in physiology and nonalcoholic fatty liver disease. Am. J. Physiol. Physiol. 2020, 318, C1200–C1213. [Google Scholar] [CrossRef]
- Azzu, V.; Vacca, M.; Virtue, S.; Allison, M.; Vidal-Puig, A. Adipose Tissue-Liver Cross Talk in the Control of Whole-Body Metabolism: Implications in Nonalcoholic Fatty Liver Disease. Gastroenteroloy 2020, 158, 1899–1912. [Google Scholar] [CrossRef]
- Renehan, A.G.; Roberts, D.L.; Dive, C. Obesity and cancer: Pathophysiological and biological mechanisms. Arch. Physiol. Biochem. 2008, 114, 71–83. [Google Scholar] [CrossRef]
- Nam, S.Y. Obesity-Related Digestive Diseases and Their Pathophysiology. Gut Liver 2017, 11, 323–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, S.; Watabe, K.; Takehara, T. Is Obesity a New Risk Factor for Gastritis? Digestion 2012, 85, 108–110. [Google Scholar] [CrossRef] [PubMed]
- Conde, J.; Scotece, M.; Gómez, R.; López, V.; Gómez-Reino, J.J.; Lago, F.; Gualillo, O. Adipokines: BioFactors from white adipose tissue. A complex hub among inflammation, metabolism, and immunity. BioFactors 2001, 37, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Lehr, S.; Hartwig, S.; Sell, H. Adipokines: A treasure trove for the discovery of biomarkers for metabolic disorders. Proteom. Clin. Appl. 2011, 6, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Boddicker, R.L.; Whitley, E.; Birt, D.F.; Spurlock, M.E. Early Lesion Formation in Colorectal Carcinogenesis Is Associated With Adiponectin Status Whereas Neoplastic Lesions Are Associated With Diet and Sex in C57BL/6J Mice. Nutr. Cancer 2011, 63, 1297–1306. [Google Scholar] [CrossRef]
- Fenton, J.I.; Birmingham, J.M.; Hursting, S.D.; Hord, N.G. Adiponectin blocks multiple signaling cascades associated with leptin-induced cell proliferation inApcMin/+ colon epithelial cells. Int. J. Cancer 2008, 122, 2437–2445. [Google Scholar] [CrossRef]
- Parthasarathy, G.; Revelo, X.; Malhi, H. Pathogenesis of Nonalcoholic Steatohepatitis: An Overview. Hepatol. Commun. 2020, 4, 478–492. [Google Scholar] [CrossRef] [Green Version]
- Froehlich, S.J.; Lackerbauer, C.A.; Rudolph, G.; Rémi, J.; Noachtar, S.; Heppt, W.J.; Cryer, A.; Zenner, H.-P.; Niller, H.H.; Schwarzmann, F.; et al. Nonalcoholic Steatohepatitis. Encycl. Mol. Mech. Dis. 2009, 1487. [Google Scholar] [CrossRef]
- Boutari, C.; Perakakis, N.; Mantzoros, C.S. Association of Adipokines with Development and Progression of Nonalcoholic Fatty Liver Disease. Endocrinol. Metab. 2018, 33, 33–43. [Google Scholar] [CrossRef]
- Sennello, J.A.; Fayad, R.; Morris, A.M.; Eckel, R.H.; Asilmaz, E.; Montez, J.; Friedman, J.M.; Dinarello, C.A.; Fantuzzi, G. Regulation of T Cell-Mediated Hepatic Inflammation by Adiponectin and Leptin. Endocrinoloy 2005, 146, 2157–2164. [Google Scholar] [CrossRef] [Green Version]
- Giby, V.G.; Ajith, T.A. Role of adipokines and peroxisome proliferator-activated receptors in nonalcoholic fatty liver disease. World J. Hepatol. 2014, 6, 570–579. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Aronis, K.N.; Kountouras, J.; Raptis, D.D.; Vasiloglou, M.F.; Mantzoros, C.S. Circulating leptin in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Diabetoloy 2016, 59, 30–43. [Google Scholar] [CrossRef]
- Li, X.-L.; Sui, J.-Q.; Lu, L.-L.; Zhang, N.-N.; Xu, X.; Dong, Q.-Y.; Xin, Y.; Xuan, S. Gene polymorphisms associated with non-alcoholic fatty liver disease and coronary artery disease: A concise review. Lipids Health Dis. 2016, 15, 53. [Google Scholar] [CrossRef] [Green Version]
- Haque, W.A.; Shimomura, I.; Matsuzawa, Y.; Garg, A. Serum adiponectin and leptin levels in patients with lipodystrophies. J. Clin. Endocrinol. Metab. 2002, 87, 2395. [Google Scholar] [CrossRef]
- Zadeh, E.S.; Lungu, A.O.; Cochran, E.K.; Brown, R.J.; Ghany, M.G.; Heller, T.; Kleiner, D.E.; Gorden, P. The liver diseases of lipodystrophy: The long-term effect of leptin treatment. J. Hepatol. 2013, 59, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Shabani, P.; Emamgholipour, S.; Doosti, M. CTRP1 in Liver Disease. Int. Rev. Cytol. 2017, 79, 1–23. [Google Scholar] [CrossRef]
- Balmer, M.L.; Joneli, J.; Schoepfer, A.; Stickel, F.; Thormann, W.; Dufour, J.-F. Significance of serum adiponectin levels in patients with chronic liver disease. Clin. Sci. 2010, 119, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Silva, T.; Colombo, G.; Schiavon, L.L. Adiponectin: A multitasking player in the field of liver diseases. Diabetes Metab. 2014, 40, 95–107. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Toulis, K.A.; Goulis, D.G.; Zavos, C.; Kountouras, J. Serum total adiponectin in nonalcoholic fatty liver disease: A systematic review and meta-analysis. Metabolism 2011, 60, 313–326. [Google Scholar] [CrossRef]
- Combs, T.P.; Marliss, E.B. Adiponectin signaling in the liver. Rev. Endocr. Metab. Disord. 2013, 15, 137–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shehzad, A.; Iqbal, W.; Shehzad, O.; Lee, Y.S. Adiponectin: Regulation of its production and its role in human diseases. Hormones 2012, 11, 8–20. [Google Scholar] [CrossRef]
- Moschen, A.R.; Wieser, V.; Tilg, H. Adiponectin: Key Player in the Adipose Tissue-Liver Crosstalk. Curr. Med. Chem. 2012, 19, 5467–5473. [Google Scholar] [CrossRef] [PubMed]
- Ishtiaq, S.M.; Rashid, H.; Hussain, Z.; Arshad, M.I.; Khan, J.A. Adiponectin and PPAR: A setup for intricate crosstalk between obesity and non-alcoholic fatty liver disease. Rev. Endocr. Metab. Disord. 2019, 20, 253–261. [Google Scholar] [CrossRef]
- Duntas, L.H.; Popovic, V.; Panotopoulos, G. Adiponectin: Novelties in Metabolism and Hormonal Regulation. Nutr. Neurosci. 2004, 7, 195–200. [Google Scholar] [CrossRef]
- Tilg, H. The Role of Cytokines in Non-Alcoholic Fatty Liver Disease. Dig. Dis. 2010, 28, 179–185. [Google Scholar] [CrossRef]
- Bechmann, L.P.; Kocabayoglu, P.; Sowa, J.-P.; Sydor, S.; Best, J.; Schlattjan, M.; Beilfuss, A.; Schmitt, J.; Hannivoort, R.A.; Kilicarslan, A.; et al. Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis. Hepatoloy 2013, 57, 1394–1406. [Google Scholar] [CrossRef]
- Liu, J.; Xing, J.; Wang, B.; Wei, C.; Yang, R.; Zhu, Y.; Qiu, H. Correlation Between Adiponectin Gene rs1501299 Polymorphism and Nonalcoholic Fatty Liver Disease Susceptibility: A Systematic Review and Meta-Analysis. Med. Sci. Monit. 2019, 25, 1078–1086. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.-L.; Hsu, C.-M.; Tseng, J.-H.; Tsou, Y.-H.; Chen, S.-C.; Shiau, S.-S.; Yeh, C.-T.; Chiu, C.-T. Plasminogen activator inhibitor-1 is independently associated with non-alcoholic fatty liver disease whereas leptin and adiponectin vary between genders. J. Gastroenterol. Hepatol. 2015, 30, 329–336. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S. Adipokines in nonalcoholic fatty liver disease. Metabolism 2016, 65, 1062–1079. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.K.; Nguyen, M.H.; Kim, W.R.; Gish, R.; Perumalswami, P.; Jacobson, I.M. Prevalence of Chronic Hepatitis B Virus Infection in the United States. Am. J. Gastroenterol. 2020, 115, 1429–1438. [Google Scholar] [CrossRef]
- Duraisamy, G.S.; Bhosale, D.; Lipenská, I.; Huvarova, I.; Růžek, D.; Windisch, M.P.; Miller, A.D. Advanced Therapeutics, Vaccinations, and Precision Medicine in the Treatment and Management of Chronic Hepatitis B Viral Infections; Where Are We and Where Are We Going? Viruses 2020, 12, 998. [Google Scholar] [CrossRef]
- Durantel, D.; Zoulim, F. New antiviral targets for innovative treatment concepts for hepatitis B virus and hepatitis delta virus. J. Hepatol. 2016, 64, S117–S131. [Google Scholar] [CrossRef]
- Mousa, N.; Abdel-Razik, A.; Sheta, T.; Shabana, W.; Zakaria, S.; Awad, M.; Abdelsalam, M.; El-Wakeel, N.; Elkashef, W.; Effat, N.; et al. Serum leptin and homeostasis model assessment-IR as novel predictors of early liver fibrosis in chronic hepatitis B virus infection. Br. J. Biomed. Sci. 2018, 75, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Manolakopoulos, S.; Bethanis, S.; Liapi, C.; Stripeli, F.; Sklavos, P.; Margeli, A.; Christidou, A.; Katsanika, A.; Vogiatzakis, E.; Tzourmakliotis, D.; et al. An assessment of serum leptin levels in patients with chronic viral hepatitis: A prospective study. BMC Gastroenterol. 2007, 7, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zografos, T.; Rigopoulou, E.I.; Liaskos, C.; Togousidis, E.; Zachou, K.; Gatselis, N.; Germenis, A.; Dalekos, G.N. Alterations of leptin during IFN-α therapy in patients with chronic viral hepatitis. J. Hepatol. 2006, 44, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Ataseven, H.; Bahcecioglu, I.H.; Kuzu, N.; Yalniz, M.; Celebi, S.; Erensoy, A.; Ustündağ, B. The Levels of Ghrelin, Leptin, TNF-α, and IL-6 in Liver Cirrhosis and Hepatocellular Carcinoma due to HBV and HDV Infection. Mediat. Inflamm. 2006, 2006, 078380. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.; Jung, J.; Kim, T.; Park, S.; Chwae, Y.-J.; Shin, H.-J.; Kim, K. Adiponectin, a downstream target gene of peroxisome proliferator-activated receptor γ, controls hepatitis B virus replication. Viroloy 2011, 409, 290–298. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.-H.; Lai, J.-S.; Hung, S.-H.; Lee, L.-T.; Sheu, J.-C.; Huang, K.-C. Serum adiponectin levels are associated with hepatitis B viral load in overweight to obese hepatitis B virus carriers. Obesity 2013, 21, 291–296. [Google Scholar] [CrossRef]
- Mohamadkhani, A.; Sayehmiri, K.; Ghanbari, R.; Elahi, E.; Poustchi, H.; Montazeri, G. The inverse association of serum HBV DNA level with HDL and adiponectin in chronic hepatitis B infection. Virol. J. 2010, 7, 228. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.-Y.; Su, T.-C.; Liu, Y.-H.; Hsu, H.-J.; Chen, C.-L.; Yang, W.-S. Lower plasma adiponectin is correlated to higher alanine aminotransferase independent of metabolic factors and hepatitis B virus carrier status. Intern. Med. J. 2007, 37, 365–371. [Google Scholar] [CrossRef]
- Lu, J.-Y.; Chuang, L.-M.; Yang, W.-S.; Tai, T.-Y.; Lai, M.-Y.; Chen, P.-J.; Kao, J.-H.; Lee, C.-Z.; Lee, H.-S. Adiponectin levels among patients with chronic hepatitis B and C infections and in response to IFN-alpha therapy. Liver Int. 2005, 25, 752–759. [Google Scholar] [CrossRef]
- Chen, C.-L.; Yang, W.-S.; Yang, H.-I.; You, S.-L.; Wang, L.-Y.; Lu, S.-N.; Liu, C.-J.; Kao, J.-H.; Chen, P.-J.; Chen, D.-S.; et al. Plasma Adipokines and Risk of Hepatocellular Carcinoma in Chronic Hepatitis B Virus-Infected Carriers: A Prospective Study in Taiwan. Cancer Epidemiol. Biomarkers Prev. 2014, 23, 1659–1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Z.; Zhang, Y.; Wei, Z.; Liu, P.; Kang, J.; Zhang, Y.; Ma, D.; Ke, C.; Chen, Y.; Luo, J.; et al. High serum resistin associates with intrahepatic inflammation and necrosis: An index of disease severity for patients with chronic HBV infection. BMC Gastroenterol. 2017, 17, 6. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, M.; Belci, P.; Niro, G.A.; Collo, A.; Grisoglio, E.; Ambrogio, V.; Spandre, M.; Fontana, R.; Gambino, R.; Cassader, M.; et al. Variations of serum levels of adiponectin and resistin in chronic viral hepatitis. J. Endocrinol. Investig. 2013, 36, 600–605. [Google Scholar]
- Yuksel, E.; Akbal, E.; Koçak, E.; Akyürek, Ö.; Köklü, S.; Ekiz, F.; Yılmaz, B.; Yilmaz, B. The relationship between visfatin, liver inflammation, and acute phase reactants in chronic viral hepatitis B. Wien. Klin. Wochenschr. 2015, 128, 658–662. [Google Scholar] [CrossRef]
- Haberl, E.M.; Feder, S.; Pohl, R.; Rein-Fischboeck, L.; Dürholz, K.; Eichelberger, L.; Wanninger, J.; Weiss, T.S.; Buechler, C. Chemerin Is Induced in Non-Alcoholic Fatty Liver Disease and Hepatitis B-Related Hepatocellular Carcinoma. Cancers 2020, 12, 2967. [Google Scholar] [CrossRef]
- Hsu, C.-S.; Liu, W.-L.; Chao, Y.-C.; Lin, H.H.; Tseng, T.-C.; Wang, C.-C.; Chen, D.-S.; Kao, J.-H. Adipocytokines and liver fibrosis stages in patients with chronic hepatitis B virus infection. Hepatol. Int. 2015, 9, 231–242. [Google Scholar] [CrossRef]
- Borgia, S.M.; Hedskog, C.; Parhy, B.; Hyland, R.H.; Stamm, L.M.; Brainard, D.M.; Subramanian, G.M.; McHutchison, J.G.; Mo, H.; Svarovskaia, E.; et al. Identification of a Novel Hepatitis C Virus Genotype From Punjab, India: Expanding Classification of Hepatitis C Virus Into 8 Genotypes. J. Infect. Dis. 2018, 218, 1722–1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spearman, C.W.; Dusheiko, G.M.; Hellard, M. Hepatitis C. Lancet 2019, 394, 1451–1466. [Google Scholar] [CrossRef]
- Chang, M.-L. Metabolic alterations and hepatitis C: From bench to bedside. World J. Gastroenterol. 2016, 22, 1461–1476. [Google Scholar] [CrossRef]
- Chang, M.-L.; Chen, T.-H.; Hsu, C.-M.; Lin, C.-H.; Kuo, C.-J.; Huang, S.-W.; Chen, C.-W.; Cheng, H.-T.; Yeh, C.-T.; Chiu, C.-T. The Evolving Interplay among Abundant Adipokines in Patients with Hepatitis C during Viral Clearance. Nutrients 2017, 9, 570. [Google Scholar] [CrossRef]
- Thompson, A.J.; Muir, A.J.; Sulkowski, M.S.; Ge, D.; Fellay, J.; Shianna, K.V.; Urban, T.; Afdhal, N.H.; Jacobson, I.M.; Esteban, R.; et al. Interleukin-28B Polymorphism Improves Viral Kinetics and Is the Strongest Pretreatment Predictor of Sustained Virologic Response in Genotype 1 Hepatitis C Virus. Gastroenteroloy 2010, 139, 120–129.e18. [Google Scholar] [CrossRef] [Green Version]
- Pawlotsky, J.-M.; Feld, J.J.; Zeuzem, S.; Hoofnagle, J.H. From non-A, non-B hepatitis to hepatitis C virus cure. J. Hepatol. 2015, 62, S87–S99. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhang, N.; Han, Q.-Y.; Zeng, J.-T.; Chu, Y.-L.; Qiu, J.-M.; Wang, Y.-W.; Ma, L.-T.; Wang, X.-Q. Correlation of serum leptin levels with anthropometric and metabolic parameters and biochemical liver function in Chinese patients with chronic hepatitis C virus infection. World J. Gastroenterol. 2005, 11, 3357–3362. [Google Scholar] [CrossRef]
- El-Gindy, E.M.; Ali-Eldin, F.A.; Meguid, A.M. Serum leptin level and its association with fatigue in patients with chronic hepatitis C virus infection. Arab. J. Gastroenterol. 2012, 13, 54–57. [Google Scholar] [CrossRef]
- Cua, I.H.Y.; Hui, J.M.; Bandara, P.; Kench, J.G.; Farrell, G.C.; McCaughan, G.W.; George, J. Insulin resistance and liver injury in hepatitis C is not associated with virus-specific changes in adipocytokines. Hepatology 2007, 46, 66–73. [Google Scholar] [CrossRef]
- Giannini, E.; Ceppa, P.; Botta, F.; Mastracci, L.; Romagnoli, P.; Comino, I.; Pasini, A.; Risso, D.; BLantieri, P.; Icardi, G.; et al. Leptin has no role in determining severity of steatosis and fibrosis in patients with chronic hepatitis C. Am. J. Gastroenterol. 2000, 95, 3211–3217. [Google Scholar] [CrossRef]
- Hickman, I.J.; Powell, E.; Prins, J.; Clouston, A.D.; Ash, S.; Purdie, D.M.; Jonsson, J.R. In overweight patients with chronic hepatitis C circulating insulin is associated with hepatic fibrosis: Implications for therapy. J. Hepatol. 2003, 39, 1042–1048. [Google Scholar] [CrossRef]
- Romero-Gómez, M.; Castellano-Megias, V.M.; Grande, L. Serum leptin levels correlate with hepatic steatosis in chronic hepatitis C. Am. J. Gastroenterol. 2003, 98, 1135–1141. [Google Scholar] [CrossRef]
- Saad, Y.; Ahmed, A.; Saleh, D.A.; Doss, W. Adipokines and insulin resistance, predictors of response to therapy in Egyptian patients with chronic hepatitis C virus genotype 4. Eur. J. Gastroenterol. Hepatol. 2013, 25, 920–925. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, Y.; Mizuta, T.; Yasutake, T.; Hisatomi, A.; Iwakiri, R.; Ozaki, I.; Fujimoto, K. High serum leptin is an independent risk factor for non-response patients with low viremia to antiviral treatment in chronic hepatitis C. World J. Gastroenterol. 2006, 12, 556–560. [Google Scholar] [CrossRef]
- Chang, M.-L.; Kuo, C.-J.; Huang, H.-C.; Chu, Y.-Y.; Chiu, C.-T. Association between Leptin and Complement in Hepatitis C Patients with Viral Clearance: Homeostasis of Metabolism and Immunity. PLoS ONE 2016, 11, e0166712. [Google Scholar] [CrossRef]
- Canavesi, E.; Porzio, M.; Ruscica, M.; Rametta, R.; Macchi, C.; Pelusi, S.; Fracanzani, A.L.; Dongiovanni, P.; Fargion, S.; Magni, P.; et al. Increased circulating adiponectin in males with chronic HCV hepatitis. Eur. J. Intern. Med. 2015, 26, 635–639. [Google Scholar] [CrossRef]
- Khattab, M.A.; Eslam, M.; Aly, M.M.; Shatat, M.; Hussen, A.; Moussa, Y.I.; Elsaghir, G.; Abdalhalim, H.; Aly, A.; Gaber, S.; et al. Association of Serum Adipocytokines With Insulin Resistance and Liver Injury in Patients With Chronic Hepatitis C Genotype 4. J. Clin. Gastroenterol. 2012, 46, 871–879. [Google Scholar] [CrossRef]
- Corbetta, S.; Redaelli, A.; Pozzi, M.; Bovo, G.; Ratti, L.; Redaelli, E.; Pellegrini, C.; Beck-Peccoz, P.; Spada, A. Fibrosis is associated with adiponectin resistance in chronic hepatitis C virus infection. Eur. J. Clin. Investig. 2011, 41, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-H.; Lee, C.-M.; Chen, C.-H.; Hu, T.-H.; Jiang, S.-R.; Wang, J.-H.; Lu, S.-N.; Wang, P.-W. Association of inflammatory and anti-inflammatory cytokines with insulin resistance in chronic hepatitis C. Liver Int. 2009, 29, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Wedemeyer, I.; Bechmann, L.P.; Odenthal, M.; Jochum, C.; Marquitan, G.; Drebber, U.; Gerken, G.; Gieseler, R.K.; Dienes, H.P.; Canbay, A. Adiponectin inhibits steatotic CD95/Fas up-regulation by hepatocytes: Therapeutic implications for hepatitis C. J. Hepatol. 2009, 50, 140–149. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Zampino, R.; Marrone, A.; Tripodi, M.-F.; Rinaldi, L.; Restivo, L.; Cioffi, M.; Ruggiero, G.; Adinolfi, L.E. Hepatic steatosis and insulin resistance are associated with serum imbalance of adiponectin/tumour necrosis factor-? in chronic hepatitis C patients. Aliment. Pharmacol. Ther. 2006, 24, 1349–1357. [Google Scholar] [CrossRef]
- Liu, C.-J.; Chen, P.-J.; Jeng, Y.-M.; Huang, W.-L.; Yang, W.-S.; Lai, M.-Y.; Kao, J.-H.; Chen, D.-S. Serum adiponectin correlates with viral characteristics but not histologic features in patients with chronic hepatitis C. J. Hepatol. 2005, 43, 235–242. [Google Scholar] [CrossRef]
- Derbala, M.; Rizk, N.M.; Al-Kaabi, S.; Amer, A.; Shebl, F.; Al Marri, A.; Aigha, I.; Alyaesi, D.; Mohamed, H.; Aman, H.; et al. Adiponectin changes in HCV-Genotype 4: Relation to liver histology and response to treatment. J. Viral Hepat. 2009, 16, 689–696. [Google Scholar] [CrossRef]
- Shah, S.R.; Patel, K.; Marcellin, P.; Foster, G.R.; Manns, M.; Kottilil, S.; Healey, L.; Pulkstenis, E.; Subramanian, G.M.; McHutchison, J.G.; et al. Steatosis Is an Independent Predictor of Relapse Following Rapid Virologic Response in Patients With HCV Genotype 3. Clin. Gastroenterol. Hepatol. 2011, 9, 688–693. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.Y.-H.; Hickman, I.J.; Richards, A.A.; Whitehead, J.P.; Prins, J.; Macdonald, G.A. High Molecular Weight Adiponectin Correlates with Insulin Sensitivity in Patients with Hepatitis C Genotype 3, But Not Genotype 1 Infection. Am. J. Gastroenterol. 2005, 100, 2717–2723. [Google Scholar] [CrossRef]
- Palmer, C.; Hampartzoumian, T.; Lloyd, A.R.; Zekry, A. A novel role for adiponectin in regulating the immune responses in chronic hepatitis C virus infection. Hepatology 2008, 48, 374–384. [Google Scholar] [CrossRef]
- Jonsson, J.R.; Moschen, A.R.; Hickman, I.J.; Richardson, M.M.; Kaser, S.; Clouston, A.D.; Powell, E.; Tilg, H. Adiponectin and its receptors in patients with chronic hepatitis C. J. Hepatol. 2005, 43, 929–936. [Google Scholar] [CrossRef]
- Korah, T.E.; El-Sayed, S.; Elshafie, M.K.; Hammoda, E.G.; Safan, A.M. Significance of serum leptin and adiponectin levels in Egyptian patients with chronic hepatitis C virus associated hepatic steatosis and fibrosis. World J. Hepatol. 2013, 5, 74–81. [Google Scholar] [CrossRef]
- Latif, H.A.; Assal, H.S.; Mahmoud, M.; Rasheed, W.I. Role of serum adiponectin level in the development of liver cirrhosis in patients with hepatitis C virus. Clin. Exp. Med. 2010, 11, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Ashour, E.; Samy, N.; Sayed, M.; Imam, A. The relationship between serum adiponectin and steatosis in patients with chronic hepatitis C genotype-4. Clin. Lab. 2010, 56, 103. [Google Scholar]
- Petit, J.-M.; Minello, A.; Jooste, V.; Bour, J.B.; Galland, F.; Duvillard, L.; Verges, B.; Olsson, N.O.; Gambert, P.; Hillon, P. Decreased Plasma Adiponectin Concentrations Are Closely Related to Steatosis in Hepatitis C Virus-Infected Patients. J. Clin. Endocrinol. Metab. 2005, 90, 2240–2243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lago, F.; Diéguez, C.; Gómez-Reino, J.; Gualillo, O. Adipokines as emerging mediators of immune response and inflammation. Nat. Clin. Pract. Rheumatol. 2007, 3, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.-L.; Yeh, H.-C.; Tsou, Y.-K.; Wang, C.-J.; Cheng, H.-Y.; Sung, C.-M.; Ho, Y.-P.; Chen, T.-H.; Yeh, C.-T. HCV Core-Induced Nonobese Hepatic Steatosis Is Associated With Hypoadiponectinemia and Is Ameliorated by Adiponectin Administration. Obesity 2012, 20, 1474–1480. [Google Scholar] [CrossRef]
- Zografos, T.; Liaskos, C.; Rigopoulou, E.I.; Togousidis, E.; Makaritsis, K.; Germenis, A.; Dalekos, G.N. Adiponectin: A New Independent Predictor of Liver Steatosis and Response to IFN-α Treatment in Chronic Hepatitis, C. Am. J. Gastroenterol. 2008, 103, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.-L.; Kuo, C.-J.; Pao, L.-H.; Hsu, C.-M.; Chiu, C.-T. The evolving relationship between adiponectin and insulin sensitivity in hepatitis C patients during viral clearance. Virulence 2017, 8, 1255–1264. [Google Scholar] [CrossRef] [Green Version]
- Fartoux, L.; Poujol-Robert, A.; Guéchot, J.; Wendum, D.; Poupon, R.; Serfaty, L. Insulin resistance is a cause of steatosis and fibrosis progression in chronic hepatitis C. Gut 2005, 54, 1003–1008. [Google Scholar] [CrossRef] [Green Version]
- Mihm, S. Hepatitis C Virus, Diabetes and Steatosis: Clinical Evidence in Favor of a Linkage and Role of Genotypes. Dig. Dis. 2010, 28, 280–284. [Google Scholar] [CrossRef]
- Bastard, J.-P.; Fellahi, S.; Audureau, E.; Layese, R.; Roudot-Thoraval, F.; Cagnot, C.; Mahuas-Bourcier, V.; Sutton, A.; Ziol, M.; Capeau, J.; et al. Elevated adiponectin and sTNFRII serum levels can predict progression to hepatocellular carcinoma in patients with compensated HCV1 cirrhosis. Eur. Cytokine Netw. 2018, 29, 112–120. [Google Scholar] [CrossRef]
- Shen, J.; Yeh, C.-C.; Wang, Q.; Gurvich, I.; Siegel, A.B.; Santella, R.M. Plasma Adiponectin and Hepatocellular Carcinoma Survival Among Patients Without Liver Transplantation. Anticancer Res. 2016, 36, 5307–5314. [Google Scholar] [CrossRef] [Green Version]
- Radwan, H.A.; Elsayed, E.H.; Saleh, O.M.; Hamed, E.H. Significance of Serum Adiponectin and Insulin Resistance Levels in Diagnosis of Egyptian Patients with Chronic Liver Disease and HCC. Asian Pac. J. Cancer Prev. 2019, 20, 1833–1839. [Google Scholar] [CrossRef] [Green Version]
- Hamdy, K.; Al Swaff, R.; Hussein, H.A.; Gamal, M. Assessment of serum adiponectin in Egyptian patients with HCV-related cirrhosis and hepatocellular carcinoma. J. Endocrinol. Investig. 2015, 38, 1225–1231. [Google Scholar] [CrossRef]
- Sumie, S.; Kawaguchi, T.; Kuromatsu, R.; Takata, A.; Nakano, M.; Satani, M.; Yamada, S.; Niizeki, T.; Torimura, T.; Sata, M. Total and High Molecular Weight Adiponectin and Hepatocellular Carcinoma with HCV Infection. PLoS ONE 2011, 6, e26840. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, H.; Fujiwara, N.; Tateishi, R.; Arano, T.; Nakagomi, R.; Kondo, M.; Minami, T.; Sato, M.; Uchino, K.; Enooku, K.; et al. Impact of serum levels of interleukin-6 and adiponectin on all-cause, liver-related, and liver-unrelated mortality in chronic hepatitis C patients. J. Gastroenterol. Hepatol. 2015, 30, 379–388. [Google Scholar] [CrossRef]
- Miki, D.; Ohishi, W.; Ochi, H.; Hayes, C.N.; Abe, H.; Tsuge, M.; Imamura, M.; Kamatani, N.; Nakamura, Y.; Chayama, K. Serum PAI-1 is a novel predictor for response to pegylated interferon-α-2b plus ribavirin therapy in chronic hepatitis C virus infection. J. Viral Hepat. 2011, 19, e126–e133. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.-L.; Lin, Y.-S.; Pao, L.-H.; Huang, H.-C.; Chiu, C.-T. Link between plasminogen activator inhibitor-1 and cardiovascular risk in chronic hepatitis C after viral clearance. Sci. Rep. 2017, 7, 42503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kukla, M.; Zwirska-Korczala, K.; Gabriel, A.; Waluga, M.; Warakomska, I.; Berdowska, A.; Rybus-Kalinowska, B.; Kalinowski, M.; Janczewska, E.; Wozniak-Grygiel, E.; et al. Visfatin serum levels in chronic hepatitis C patients. J. Viral Hepat. 2010, 17, 254–260. [Google Scholar] [CrossRef]
- Kukla, M.; Zalewska-Ziob, M.; Adamek, B.; Kasperczyk, J.; Bułdak, R.J.; Sawczyn, T.; Stygar, D.; Sobala-Szczygieł, B.; Stachowska, M.; Gabriel, A.; et al. Visfatin serum concentration and hepatic mRNA expression in chronic hepatitis C. Clin. Exp. Hepatol. 2019, 5, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, W.; Lai, S.; Li, Y.; Wang, X.; Zhang, H. Insulin resistance, serum visfatin, and adiponectin levels are associated with metabolic disorders in chronic hepatitis C virus-infected patients. Eur. J. Gastroenterol. Hepatol. 2013, 25, 935–941. [Google Scholar] [CrossRef]
- Huang, J.; Huang, C.-F.; Yu, M.; Dai, C.; Huang, C.-I.; Yeh, M.-L.; Hsieh, M.-H.; Yang, J.-F.; Hsieh, M.-Y.; Lin, Z.-Y.; et al. Serum visfatin is correlated with disease severity and metabolic syndrome in chronic hepatitis C infection. J. Gastroenterol. Hepatol. 2010, 26, 530–535. [Google Scholar] [CrossRef]
- Tsai, I.-T.; Wang, C.-P.; Yu, T.-H.; Lu, Y.-C.; Lin, C.-W.; Lu, L.-F.; Wu, C.-C.; Chung, F.-M.; Lee, Y.-J.; Hung, W.-C.; et al. Circulating visfatin level is associated with hepatocellular carcinoma in chronic hepatitis B or C virus infection. Cytokine 2017, 90, 54–59. [Google Scholar] [CrossRef]
- El-Daly, U.M.; Saber, M.M.; Abdellateif, M.S.; Nassar, H.R.; Namour, E.A.; Ismail, Y.M.; Zekri, A.-R.N. The Possible Role of Adipokines in HCV Associated Hepatocellular Carcinoma. Asian Pac. J. Cancer Prev. 2020, 21, 599–609. [Google Scholar] [CrossRef]
- Huang, J.-F.; Dai, C.-Y.; Yu, M.-L.; Shin, S.; Hsieh, M.-Y.; Huang, C.-F.; Lee, L.-P.; Lin, K.-D.; Lin, Z.-Y.; Chen, S.-C.; et al. Serum retinol-binding protein 4 is inversely correlated with disease severity of chronic hepatitis C. J. Hepatol. 2009, 50, 471–478. [Google Scholar] [CrossRef]
- Qin, S.; Zhou, Y.; Lok, A.S.; Tsodikov, A.; Yan, X.; Gray, L.; Yuan, M.; Moritz, R.L.; Galas, D.; Omenn, G.S.; et al. SRM targeted proteomics in search for biomarkers of HCV-induced progression of fibrosis to cirrhosis in HALT-C patients. Proteomics 2012, 12, 1244–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kataria, Y.; Deaton, R.J.; Enk, E.; Jin, M.; Petrauskaite, M.; Dong, L.; Goldenberg, J.R.; Cotler, S.J.; Jensen, D.M.; Van Breemen, R.B.; et al. Retinoid and carotenoid status in serum and liver among patients at high-risk for liver cancer. BMC Gastroenterol. 2016, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gouthamchandra, K.; Kumar, A.; Shwetha, S.; Mukherjee, A.; Chandra, M.; Ravishankar, B.; Khaja, M.N.; Sadhukhan, P.C.; Das, S. Serum proteomics of hepatitis C virus infection reveals retinol-binding protein 4 as a novel regulator. J. Gen. Virol. 2014, 95, 1654–1667. [Google Scholar] [CrossRef]
- Iwasa, M.; Hara, N.; Miyachi, H.; Tanaka, H.; Takeo, M.; Fujita, N.; Kobayashi, Y.; Kojima, Y.; Kaito, M.; Takei, Y. Patients achieving clearance of HCV with interferon therapy recover from decreased retinol-binding protein 4 levels. J. Viral Hepat. 2009, 16, 716–723. [Google Scholar] [CrossRef]
- Tiftikçi, A.; Atug, O.; Yilmaz, Y.; Eren, F.; Ozdemir, F.T.; Yapali, S.; Özdoğan, O.; Celikel, C.A.; Imeryuz, N.; Tözün, N.; et al. Serum Levels of Adipokines in Patients with Chronic HCV Infection: Relationship with Steatosis and Fibrosis. Arch. Med. Res. 2009, 40, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Baranova, A.; Jarrar, M.; Stepanova, M.; Johnson, A.; Rafiq, N.; Gramlich, T.; Chandhoke, V.; Younossi, Z.M. Association of Serum Adipocytokines with Hepatic Steatosis and Fibrosis in Patients with Chronic Hepatitis, C. Digestion 2010, 83, 32–40. [Google Scholar] [CrossRef]
- Marra, F.; Bertolani, C. Adipokines in liver diseases. Hepatoloy 2009, 50, 957–969. [Google Scholar] [CrossRef]
- Sjöwall, C.; Cardell, K.; Boström, E.A.; Bokarewa, M.; Enocsson, H.; Ekstedt, M.; Lindvall, L.; Frydén, A.; Almer, S. Highprevalence of autoantibodies to C-reactive protein in patients with chronic hepatitis C infection: Association with liver fibrosis and portal inflammation. Hum. Immunol. 2012, 73, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, D.M.; Shaaban, E.S.E.; Fouad, T.A. Circulating Resistin Is Associated with Plasma Glucagon-Like Peptide-1 in Cirrhotic Patients with Hepatitis C Virus Genotype-4 Infection. Endocr. Res. 2019, 45, 17–23. [Google Scholar] [CrossRef]
- Chang, M.-L.; Liang, K.-H.; Ku, C.-L.; Lo, C.-C.; Cheng, Y.-T.; Hsu, C.-M.; Yeh, C.-T.; Chiu, C.-T. Resistin reinforces interferon λ-3 to eliminate hepatitis C virus with fine-tuning from RETN single-nucleotide polymorphisms. Sci. Rep. 2016, 6, 30799. [Google Scholar] [CrossRef] [Green Version]
- Elsayed, E.Y.; Mosalam, N.A.; Mohamed, N.R. Resistin and Insulin Resistance: A Link Between Inflammation and Hepatocarcinogenesis. Asian Pac. J. Cancer Prev. 2015, 16, 7139–7142. [Google Scholar] [CrossRef] [Green Version]
- Kukla, M.; Zwirska-Korczala, K.; Gabriel, A.; Waluga, M.; Warakomska, I.; Szczygiel, B.; Berdowska, A.; Mazur, W.; Wozniak-Grygiel, E.; Kryczka, W. Chemerin, vaspin and insulin resistance in chronic hepatitis C. J. Viral Hepat. 2009, 17, 661–667. [Google Scholar] [CrossRef]
- Kukla, M.; Adamek, B.; Waluga, M.; Zalewska-Ziob, M.; Kasperczyk, J.; Gabriel, A.; Mazur, W.; Sobala-Szczygieł, B.; Bułdak, R.J.; Zajecki, W.; et al. HepaticChemerinandChemokine-Like Receptor 1Expression in Patients with Chronic Hepatitis C. BioMed Res. Int. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Nkontchou, G.; Bastard, J.-P.; Ziol, M.; Aout, M.; Cosson, E.; Ganne-Carrié, N.; Grando-Lemaire, V.; Roulot, D.; Capeau, J.; Trinchet, J.-C.; et al. Insulin resistance, serum leptin, and adiponectin levels and outcomes of viral hepatitis C cirrhosis. J. Hepatol. 2010, 53, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Cheng, Y.-T.; Chang, M.-L.; Chien, R.-N. The extrahepatic events of Asian patients with primary biliary cholangitis: A 30-year cohort study. Sci. Rep. 2019, 9, 7577. [Google Scholar] [CrossRef]
- Breidert, M.; Zimmermann, T.F.; Schneider, R.; Ehninger, G.; Brabant, G. Ghrelin/Leptin-Imbalance in Patients with Primary Biliary Cirrhosis. Exp. Clin. Endocrinol. Diabetes 2004, 112, 123–126. [Google Scholar] [CrossRef]
- Floreani, A.; Variola, A.; Niro, G.A.; Premoli, A.; Baldo, V.; Gambino, R.; Musso, G.; Cassader, M.; Bossa, F.; Ferrara, F.; et al. Plasma Adiponectin Levels in Primary Biliary Cirrhosis: A Novel Perspective for Link Between Hypercholesterolemia and Protection Against Atherosclerosis. Am. J. Gastroenterol. 2008, 103, 1959–1965. [Google Scholar] [CrossRef] [PubMed]
- Rieger, R.; Oertelt, S.; Selmi, C.; Invernizzi, P.; Podda, M.; Gershwin, M.E.; Oertelt-Prigione, S. Decreased Serum Leptin Levels in Primary Biliary Cirrhosis: A Link between Metabolism and Autoimmunity? Ann. N. Y. Acad. Sci. 2005, 1051, 211–217. [Google Scholar] [CrossRef]
- Szalay, F.; Folhoffer, A.; Horváth, A.; Csák, T.; Speer, G.; Nagy, Z.; Lakatos, P.L.; Horváth, C.; Habior, A.; Tornai, I. Serum leptin, soluble leptin receptor, free leptin index and bone mineral density in patients with primary biliary cirrhosis. Eur. J. Gastroenterol. Hepatol. 2005, 17, 923–928. [Google Scholar] [CrossRef]
- García-Suárez, C.; Crespo, J.; Fernández-Gil, P.L.; Amado, J.A.; García-Unzueta, M.T.; Pons Romero, F. Concentraciones plasmáticas de leptina en los pacientes con cirrosis biliar primaria y su relación con el grado de fibrosis [Plasma leptin levels in patients with primary biliary cirrhosis and their relationship with degree of fibrosis]. Gastroenterol. Hepatol. 2004, 27, 47–50. [Google Scholar] [CrossRef]
- Lohse, A.W.; Chazouillères, O.; Dalekos, G.; Drenth, J.; Heneghan, M.; Hofer, H. EASL clinical practice guidelines: Autoimmune hepatitis. J. Hepatol. 2015, 63, 971–1004. [Google Scholar]
- Fantuzzi, G. Adiponectin in inflammatory and immune-mediated diseases. Cytokine 2013, 64, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, M.; Niro, G.; Premoli, A.; Morello, E.; Rizzotto, E.R.; Gambino, R.; Bo, S.; Musso, G.; Cassader, M.; Pagano, G.; et al. Type 1 autoimmune hepatitis and adipokines: New markers for activity and disease progression? J. Gastroenterol. 2009, 44, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Kema, V.H.; Mojerla, N.R.; Khan, I.; Mandal, P. Effect of alcohol on adipose tissue: A review on ethanol mediated adipose tissue injury. Adipocyte 2015, 4, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Yuan, G.; Zhong, F.; He, S. Roles of the complement system in alcohol-induced liver disease. Clin. Mol. Hepatol. 2020, 26, 677–685. [Google Scholar] [CrossRef]
- Steiner, J.L.; Lang, C.H. Alcohol, Adipose Tissue and Lipid Dysregulation. Biomolecules 2017, 7, 16. [Google Scholar] [CrossRef]
- Proskynitopoulos, P.J.; Rhein, M.; Jäckel, E.; Manns, M.P.; Frieling, H.; Bleich, S.; Thum, T.; Hillemacher, T.; Glahn, A. Corrigendum: Leptin Expression and Gene Methylation Patterns in Alcohol-Dependent Patients with Ethyltoxic Cirrhosis-Normalization After Liver Transplantation and Implications for Future Research. Alcohol. Alcohol. 2018, 53, 760. [Google Scholar] [CrossRef] [PubMed]
- Buechler, C.; Schäffler, A.; Johann, M.; Neumeier, M.; Kohl, P.; Weiss, T.S.; Wodarz, N.; Kiefer, P.; Hellerbrand, C. Elevated adiponectin serum levels in patients with chronic alcohol abuse rapidly decline during alcohol withdrawal. J. Gastroenterol. Hepatol. 2009, 24, 558–563. [Google Scholar] [CrossRef]
- Da Silva, T.E.; Costa-Silva, M.; Correa, C.G.; DeNardin, G.; Alencar, M.L.A.; Coelho, M.S.P.H.; Muraro-Wildner, L.; Luiza-Bazzo, M.; González-Chica, D.A.; Dantas-Correa, E.B.; et al. Clinical Significance of Serum Adiponectin and Resistin Levels in Liver Cirrhosis. Ann. Hepatol. 2018, 17, 286–299. [Google Scholar] [CrossRef]
- You, M.; Zhou, Z.; Daniels, M.; Jogasuria, A. Endocrine Adiponectin-FGF15/19 Axis in Ethanol-Induced Inflammation and Alcoholic Liver Injury. Gene Expr. 2018, 18, 103–113. [Google Scholar] [CrossRef]
- Prystupa, A.; Kiciński, P.; Luchowska-Kocot, D.; Sak, J.; Prystupa, T.; Tan, Y.-H.; Panasiuk, L.; Załuska, W. Factors influencing serum chemerin and kallistatin concentrations in patients with alcohol-induced liver cirrhosis. Ann. Agric. Environ. Med. 2019, 26, 143–147. [Google Scholar] [CrossRef]
- Trogen, G.; Bacon, J.; Li, Y.; Wright, G.L.; DeGroat, A.; Hagood, K.L.; Warren, Z.; Forsman, A.; Kilaru, A.; Clark, W.A.; et al. Transgenic overexpression of CTRP3 prevents alcohol-induced hepatic triglyceride accumulation. Am. J. Physiol. Metab. 2018, 315, E949–E960. [Google Scholar] [CrossRef]
- Gerst, F.; Wagner, R.; Oquendo, M.B.; Siegel-Axel, D.; Fritsche, A.; Heni, M.; Staiger, H.; Häring, H.-U.; Ullrich, S. What role do fat cells play in pancreatic tissue? Mol. Metab. 2019, 25, 1–10. [Google Scholar] [CrossRef]
- Takahashi, M.; Hori, M.; Ishigamori, R.; Mutoh, M.; Imai, T.; Nakagama, H. Fatty pancreas: A possible risk factor for pancreatic cancer in animals and humans. Cancer Sci. 2018, 109, 3013–3023. [Google Scholar] [CrossRef]
- Brocco, D.; Florio, R.; De Lellis, L.; Veschi, S.; Grassadonia, A.; Tinari, N.; Cama, A. The Role of Dysfunctional Adipose Tissue in Pancreatic Cancer: A Molecular Perspective. Cancers 2020, 12, 1849. [Google Scholar] [CrossRef]
- Rosa, S.C.D.S.; Nayak, N.; Caymo, A.M.; Gordon, J.W. Mechanisms of muscle insulin resistance and the cross-talk with liver and adipose tissue. Physiol. Rep. 2020, 8, e16407. [Google Scholar] [CrossRef]
- Jansson, L.; Carlsson, P. Pancreatic Blood Flow with Special Emphasis on Blood Perfusion of the Islets of Langerhans. Compr. Physiol. 2019, 9, 799–837. [Google Scholar] [CrossRef]
- Matafome, P.; Eickhoff, H.; Letra, L.; Seiça, R. Neuroendocrinology of Adipose Tissue and Gut–Brain Axis. Adv. Neurobiol. 2017, 19, 49–70. [Google Scholar] [CrossRef]
- Denroche, H.C.; Huynh, F.K.; Kieffer, T.J. The role of leptin in glucose homeostasis. J. Diabetes Investig. 2012, 3, 115–129. [Google Scholar] [CrossRef] [Green Version]
- Marroquí, L.; González, A.; Ñeco, P.; Caballero-Garrido, E.; Vieira, E.; Ripoll, C.; Nadal, A.; Quesada, I. Role of leptin in the pancreatic -cell: Effects and signaling pathways. J. Mol. Endocrinol. 2012, 49, R9–R17. [Google Scholar] [CrossRef] [Green Version]
- Kieffer, T.J.; Habener, J.F. The adipoinsular axis: Effects of leptin on pancreatic beta-cells. Am. J. Phys. Metab. 2000, 278, E1–E14. [Google Scholar] [CrossRef] [PubMed]
- Holz, G.G.; Chepurny, O.G.; Leech, C.A. Leptin-stimulated KATP channel trafficking: A new paradigm for β-cell stimulus-secretion coupling? Islets 2013, 5, 229–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seufert, J. Leptin effects on pancreatic beta-cell gene expression and function. Diabetes 2004, 53, S152–S158. [Google Scholar] [CrossRef] [Green Version]
- Tucholski, K.; Otto-Buczkowska, E. The role of leptin in the regulation of carbohydrate metabolism. Endokrynol. Polska 2011, 62, 258–262. [Google Scholar]
- Gunawardana, S.C. Benefits of healthy adipose tissue in the treatment of diabetes. World J. Diabetes 2014, 5, 420. [Google Scholar] [CrossRef]
- Lindström, P. beta-cell function in obese-hyperglycemic mice [ob/ob Mice]. Adv. Exp. Med. Biol. 2010, 654, 463–477. [Google Scholar]
- Cantley, J. The control of insulin secretion by adipokines: Current evidence for adipocyte-beta cell endocrine signalling in metabolic homeostasis. Mamm. Genome 2014, 25, 442–454. [Google Scholar] [CrossRef]
- Arner, P. The adipocyte in insulin resistance: Key molecules and the impact of the thiazolidinediones. Trends Endocrinol. Metab. 2003, 14, 137–145. [Google Scholar] [CrossRef]
- Tao, C.; Sifuentes, A.; Holland, W.L. Regulation of glucose and lipid homeostasis by adiponectin: Effects on hepatocytes, pancreatic β cells and adipocytes. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-H.; Magkos, F.; Mantzoros, C.S.; Kang, E.S. Effects of leptin and adiponectin on pancreatic β-cell function. Metabolism 2011, 60, 1664–1672. [Google Scholar] [CrossRef]
- Adeghate, E. An update on the biology and physiology of resistin. Cell. Mol. Life Sci. 2004, 61, 2485–2496. [Google Scholar] [CrossRef]
- Revollo, J.R.; Körner, A.; Mills, K.F.; Satoh, A.; Wang, T.; Garten, A.; Dasgupta, B.; Sasaki, Y.; Wolberger, C.; Townsend, R.R.; et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 2007, 6, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Kendall, B.J.; Thrift, A.P. Unravelling the Riddle of Gastroesophageal Reflux Disease, Obesity, and Barrett’s Esophagus. Clin. Gastroenterol. Hepatol. 2015, 13, 2273–2275. [Google Scholar] [CrossRef]
- Chandar, A.K.; Iyer, P.G. Role of Obesity in the Pathogenesis and Progression of Barrett’s Esophagus. Gastroenterol. Clin. N. Am. 2015, 44, 249–264. [Google Scholar] [CrossRef]
- Kendall, B.J.; Macdonald, A.G.; Hayward, N.K.; Prins, J.B.; Brown, I.; Walker, N.; Pandeya, N.; Green, A.C.; Webb, P.M.; Whiteman, D.C.; et al. Leptin and the risk of Barrett’s oesophagus. Gut 2007, 57, 448–454. [Google Scholar] [CrossRef]
- Sharma, P.; Yadlapati, R. Pathophysiology and treatment options for gastroesophageal reflux disease: Looking beyond acid. Ann. N. Y. Acad. Sci. 2020. [Google Scholar] [CrossRef]
- Livzan, M.A.; Lapteva, I.V.; Krolevets, T.S.; Kiselev, I.E. Specific features of gastroesophageal reflux disease associated with obesity and overweight. Ter. Arkh. 2016, 88, 21–27. [Google Scholar] [CrossRef]
- Livzan, M.A.; Lapteva, I.V.; Krolevets, T.S. Gastroesophageal refluxed disease in persons with obesity and leptin resistance. Eksp. Klin. Gastroenterol. 2015, 3, 11–16. [Google Scholar]
- Thomas, S.J.; Almers, L.; Schneider, J.L.; Graham, J.L.; Havel, P.J.; Corley, D.A. Ghrelin and Leptin Have a Complex Relationship with Risk of Barrett’s Esophagus. Dig. Dis. Sci. 2015, 61, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Abdelkader, N.A.; Montasser, I.F.; Bioumy, E.E.; Saad, W.E. Impact of anthropometric measures and serum leptin on severity of gastroesophageal reflux disease. Dis. Esophagus 2014, 28, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Thrift, A.P.; Garcia, J.M.; El-Serag, H.B. A Multibiomarker Risk Score Helps Predict Risk for Barrett’s Esophagus. Clin. Gastroenterol. Hepatol. 2014, 12, 1267–1271. [Google Scholar] [CrossRef] [Green Version]
- Rubenstein, J.H.; Morgenstern, H.; McConell, D.; Scheiman, J.M.; Schoenfeld, P.; Appelman, H.; McMahon, L.F., Jr.; Kao, J.Y.; Metko, V.; Zhang, M.; et al. Associations of diabetes mellitus, insulin, leptin, and ghrelin with gastroesophageal reflux and Barrett’s esophagus. Gastroenterology 2013, 145, 1237–1244.e445. [Google Scholar] [CrossRef] [Green Version]
- Murata, T.; Asanuma, K.; Ara, N.; Iijima, K.; Hatta, W.; Hamada, S.; Asano, N.; Koike, T.; Imatani, A.; Masamune, A.; et al. Leptin Aggravates Reflux Esophagitis by Increasing Tissue Levels of Macrophage Migration Inhibitory Factor in Rats. Tohoku J. Exp. Med. 2018, 245, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Ogunwobi, O.; Mutungi, G.; Beales, I.L.P. Leptin Stimulates Proliferation and Inhibits Apoptosis in Barrett’s Esophageal Adenocarcinoma Cells by Cyclooxygenase-2-Dependent, Prostaglandin-E2-Mediated Transactivation of the Epidermal Growth Factor Receptor and c-Jun NH2-Terminal Kinase Activation. Endocrinology 2006, 147, 4505–4516. [Google Scholar] [CrossRef]
- Beales, I.; Francois, F.; Roper, J.; Goodman, A.J.; Pei, Z.; Ghumman, M.; Mourad, M.; de Perez, A.Z.O.; Perez-Perez, G.I.; Tseng, C.-H.; et al. Faculty Opinions recommendation of The association of gastric leptin with oesophageal inflammation and metaplasia. Fac. Opin. Post Publ. Peer Rev. Biomed. Lit. 2008, 57, 16–24. [Google Scholar] [CrossRef]
- Mongan, A.M.; Lynam-Lennon, N.; Doyle, S.L.; Casey, R.; Carr, E.; Cannon, A.; Conroy, M.J.; Pidgeon, G.P.; Brennan, L.; Lysaght, J.; et al. Visceral Adipose Tissue Modulates Radiosensitivity in Oesophageal Adenocarcinoma. Int. J. Med. Sci. 2019, 16, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Trevellin, E.; Scarpa, M.; Carraro, A.; Lunardi, F.; Kotsafti, A.; Porzionato, A.; Saadeh, L.; Cagol, M.; Alfieri, R.; Tedeschi, U.; et al. Esophageal adenocarcinoma and obesity: Peritumoral adipose tissue plays a role in lymph node invasion. Oncotarget 2015, 6, 11203–11215. [Google Scholar] [CrossRef]
- Bain, G.H.; Collie-Duguid, E.; Murray, I.G.; Gilbert, F.J.; Denison, A.; McKiddie, F.; Ahearn, T.; Fleming, I.; Leeds, J.; Phull, P.; et al. Tumour expression of leptin is associated with chemotherapy resistance and therapy-independent prognosis in gastro-oesophageal adenocarcinomas. Br. J. Cancer 2014, 110, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- Beales, I.L.; Garcia-Morales, C.; Ogunwobi, O.O.; Mutungi, G. Adiponectin inhibits leptin-induced oncogenic signalling in oesophageal cancer cells by activation of PTP1B. Mol. Cell. Endocrinol. 2014, 382, 150–158. [Google Scholar] [CrossRef]
- Rubenstein, J.H.; Kao, J.Y.; Madanick, R.D.; Zhang, M.; Wang, M.; Spacek, M.B.; Donovan, J.L.; Bright, S.D.; Shaheen, N.J. Association of adiponectin multimers with Barrett’s oesophagus. Gut 2009, 58, 1583–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greer, K.B.; Falk, G.W.; Bednarchik, B.; Li, L.; Chak, A. Associations of Serum Adiponectin and Leptin with Barrett’s Esophagus. Clin. Gastroenterol. Hepatol. 2015, 13, 2265–2272. [Google Scholar] [CrossRef] [Green Version]
- Tseng, P.-H.; Yang, W.-S.; Liou, J.-M.; Lee, Y.-C.; Wang, H.-P.; Lin, J.-T.; Wu, M.-S. Associations of Circulating Gut Hormone and Adipocytokine Levels with the Spectrum of Gastroesophageal Reflux Disease. PLoS ONE 2015, 10, e0141410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, M.; Watabe, K.; Hamasaki, T.; Umeda, M.; Furubayashi, A.; Kinoshita, K.; Kishida, O.; Fujimoto, T.; Yamada, A.; Tsukamoto, Y.; et al. Association of low serum adiponectin levels with erosive esophagitis in men: An analysis of 2405 subjects undergoing physical check-ups. J. Gastroenterol. 2011, 46, 1361–1367. [Google Scholar] [CrossRef]
- Almers, L.; Graham, J.L.; Havel, P.J.; Corley, D.A. Adiponectin May Modify the Risk of Barrett’s Esophagus in Patients with Gastroesophageal Reflux Disease. Clin. Gastroenterol. Hepatol. 2015, 13, 2256–2264.e1. [Google Scholar] [CrossRef] [Green Version]
- Chandar, A.K.; Devanna, S.; Lu, C.; Singh, S.; Greer, K.B.; Chak, A.; Iyer, P.G. Association of Serum Levels of Adipokines and Insulin With Risk of Barrett’s Esophagus: A Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2015, 13, 2241–2255.e4. [Google Scholar] [CrossRef] [Green Version]
- Garcia, J.M.; Splenser, A.E.; Kramer, J.R.; Alsarraj, A.; Fitzgerald, S.; Ramsey, D.J.; El-Serag, H.B. Circulating Inflammatory Cytokines and Adipokines Are Associated With Increased Risk of Barrett’s Esophagus: A Case–Control Study. Clin. Gastroenterol. Hepatol. 2014, 12, 229–238.e3. [Google Scholar] [CrossRef] [Green Version]
- Duggan, C.; Onstad, L.; Hardikar, S.; Blount, P.L.; Reid, B.J.; Vaughan, T.L. Association between markers of obesity and progression from Barrett’s esophagus to esophageal adenocarcinoma. Clin. Gastroenterol. Hepatol. 2013, 11, 934–943. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, A.; Bilici, M.; Cayir, K.; Yanmaz, V.; Yildirim, S.; Tekin, S.B.; Yıldırım, A.; Çayır, K. Serum Adiponectin Levels in Patients with Esophageal Cancer. Jpn. J. Clin. Oncol. 2008, 39, 92–96. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, T.E.; Yamada, Y.; Hamano, T.; Furuta, K.; Oda, I.; Kato, H.; Kato, K.; Hamaguchi, T.; Shimada, Y. Adipocytokines and squamous cell carcinoma of the esophagus. J. Cancer Res. Clin. Oncol. 2009, 136, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Rehman, K.; Akash, M.S.H.; Alina, Z. Leptin: A new therapeutic target for treatment of diabetes mellitus. J. Cell. Biochem. 2018, 119, 5016–5027. [Google Scholar] [CrossRef]
- Delhanty, P.J.; Van Der Eerden, B.C.; Van Leeuwen, J.P.T.M. Ghrelin and bone. BioFactors 2013, 40, 41–48. [Google Scholar] [CrossRef]
- Perboni, S.; Inui, A. Appetite and gastrointestinal motility: Role of ghrelin-family peptides. Clin. Nutr. 2010, 29, 227–234. [Google Scholar] [CrossRef]
- Inagaki-Ohara, K. Gastric Leptin and Tumorigenesis: Beyond Obesity. Int. J. Mol. Sci. 2019, 20, 2622. [Google Scholar] [CrossRef] [Green Version]
- Cammisotto, P.G.; Levy, E.; Bukowiecki, L.J.; Bendayan, M. Cross-talk between adipose and gastric leptins for the control of food intake and energy metabolism. Prog. Histochem. Cytochem. 2010, 45, 143–200. [Google Scholar] [CrossRef]
- Weidinger, C.; Ziegler, J.F.; Letizia, M.; Schmidt, F.; Siegmund, B. Adipokines and Their Role in Intestinal Inflammation. Front. Immunol. 2018, 9, 1974. [Google Scholar] [CrossRef] [Green Version]
- Grases-Pintó, B.; Torres-Castro, P.; Marín-Morote, L.; Abril-Gil, M.; Castell, M.; Rodriguez-Lagunas, M.J.; Pérez-Cano, F.J.; Franch, À. Leptin and EGF Supplementation Enhance the Immune System Maturation in Preterm Suckling Rats. Nutrients 2019, 11, 2380. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, G.G. The global burden of IBD: From 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Barnes, E.L.; Loftus, E.V., Jr.; Kappelman, M.D. Effects of Race and Ethnicity on Diagnosis and Management of Inflammatory Bowel Diseases. Gastroenterology 2020. [Google Scholar] [CrossRef]
- Nijakowski, K.; Surdacka, A. Salivary Biomarkers for Diagnosis of Inflammatory Bowel Diseases: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 7477. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-E.; Choo, J.; Yoon, J.; Chu, J.R.; Bae, Y.J.; Lee, S.; Park, T.; Sung, M.-K. Genome-wide analysis identifies colonic genes differentially associated with serum leptin and insulin concentrations in C57BL/6J mice fed a high-fat diet. PLoS ONE 2017, 12, e0171664. [Google Scholar] [CrossRef]
- Hoffman, J.M.; Sideri, A.; Ruiz, J.J.; Stavrakis, D.; Shih, D.Q.; Turner, J.R.; Pothoulakis, C.; Karagiannides, I. Mesenteric Adipose-derived Stromal Cells From Crohn’s Disease Patients Induce Protective Effects in Colonic Epithelial Cells and Mice With Colitis. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Kredel, L.; Batra, A.; Siegmund, B. Role of fat and adipokines in intestinal inflammation. Curr. Opin. Gastroenterol. 2014, 30, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Al-Hassi, O.H.; Bernardo, D.; Murugananthan, A.U.; Mann, E.R.; English, N.R.; Jones, A.; Kamm, A.M.; Arebi, N.; Hart, A.L.; Blakemore, A.I.F.; et al. A mechanistic role for leptin in human dendritic cell migration: Differences between ileum and colon in health and Crohn’s disease. Mucosal Immunol. 2013, 6, 751–761. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Tian, S.; Wang, D.; Cui, F.; Zhang, X.; Zhang, Y. Elevated expression of the leptin receptor ob-R may contribute to inflammation in patients with ulcerative colitis. Mol. Med. Rep. 2019, 20, 4706–4712. [Google Scholar] [CrossRef]
- Hoda, M.R.; Scharl, M.; Keely, S.J.; McCole, D.F.; Barrett, K.E. Apical leptin induces chloride secretion by intestinal epithelial cells and in a rat model of acute chemotherapy-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G714–G721. [Google Scholar] [CrossRef]
- Le Dréan, G.; Haure-Mirande, V.; Ferrier, L.; Bonnet, C.; Hulin, P.; De Coppet, P.; Segain, J. Visceral adipose tissue and leptin increase colonic epithelial tight junction permeability via a RhoA-ROCK-dependent pathway. FASEB J. 2013, 28, 1059–1070. [Google Scholar] [CrossRef]
- Liu, D.-R.; Xu, X.-J.; Yao, S.-K. Increased intestinal mucosal leptin levels in patients with diarrhea-predominant irritable bowel syndrome. World J. Gastroenterol. 2018, 24, 46–57. [Google Scholar] [CrossRef]
- Madan, R.; Guo, X.; Naylor, C.; Buonomo, E.L.; Mackay, D.; Noor, Z.; Concannon, P.; Scully, K.W.; Pramoonjago, P.; Kolling, G.L.; et al. Role of Leptin-Mediated Colonic Inflammation in Defense against Clostridium difficile Colitis. Infect. Immun. 2013, 82, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Obeid, S.; Wankell, M.; Charrez, B.; Sternberg, J.; Kreuter, R.; Esmaili, S.; Ramezani-Moghadam, M.; Devine, C.; Read, S.; Bhathal, P.; et al. Adiponectin confers protection from acute colitis and restricts a B cell immune response. J. Biol. Chem. 2017, 292, 6569–6582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arsenescu, V.; Narasimhan, M.L.; Halide, T.; Bressan, R.A.; Barisione, C.; Cohen, N.A.; De Villiers, W.J.S.; Arsenescu, R. Adiponectin and Plant-Derived Mammalian Adiponectin Homolog Exert a Protective Effect in Murine Colitis. Dig. Dis. Sci. 2011, 56, 2818–2832. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, Y.; Tan, L.; Yan, L.; Zuo, X. Adiponectin administration alleviates DSS-induced colonic inflammation in Caco-2 cells and mice. Inflamm. Res. 2018, 67, 663–670. [Google Scholar] [CrossRef]
- Matsunaga, H.; Hokari, R.; Kurihara, C.; Okada, Y.; Takebayashi, K.; Okudaira, K.; Watanabe, C.; Komoto, S.; Nakamura, M.; Tsuzuki, Y.; et al. Omega-3 fatty acids exacerbate DSS-induced colitis through decreased adiponectin in colonic subepithelial myofibroblasts. Inflamm. Bowel Dis. 2008, 14, 1348–1357. [Google Scholar] [CrossRef]
- Sideri, A.; Stavrakis, D.; Bowe, C.; Shih, D.Q.; Fleshner, P.; Arsenescu, V.; Arsenescu, R.; Turner, J.R.; Pothoulakis, C.; Karagiannides, I. Effects of obesity on severity of colitis and cytokine expression in mouse mesenteric fat. Potential role of adiponectin receptor 1. Am. J. Physiol. Liver Physiol. 2015, 308, G591–G604. [Google Scholar] [CrossRef] [Green Version]
- Fayad, R.; Pini, M.; Sennello, J.A.; Cabay, R.J.; Chan, L.; Xu, A.; Fantuzzi, G. Adiponectin Deficiency Protects Mice From Chemically Induced Colonic Inflammation. Gastroenterology 2007, 132, 601–614. [Google Scholar] [CrossRef]
- Nishihara, T.; Matsuda, M.; Araki, H.; Oshima, K.; Kihara, S.; Funahashi, T.; Shimomura, I. Effect of Adiponectin on Murine Colitis Induced by Dextran Sulfate Sodium. Gastroenterology 2006, 131, 853–861. [Google Scholar] [CrossRef] [Green Version]
- Olivier, I.; Theodorou, V.; Valet, P.; Castan-Laurell, I.; Ferrier, L.; Eutamène, H. Modifications of mesenteric adipose tissue during moderate experimental colitis in mice. Life Sci. 2014, 94, 1–7. [Google Scholar] [CrossRef]
- Paeschke, A.; Erben, U.; Kredel, L.I.; Kühl, A.A.; Siegmund, B. Role of visceral fat in colonic inflammation. Curr. Opin. Gastroenterol. 2017, 33, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Comstock, S.S.; Lewis, M.M.; Pathak, R.R.; Hortos, K.; Kovan, B.; Fenton, J.I. Cross-Sectional Analysis of Obesity and Serum Analytes in Males Identifies sRAGE as a Novel Biomarker Inversely Associated with Diverticulosis. PLoS ONE 2014, 9, e95232. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.-H.; Hsu, C.-M.; Hsu, H.-C.; Chiu, C.-T.; Su, M.-Y.; Chu, Y.-Y.; Chang, M.-L. Plasminogen activator inhibitor-1 is associated with the metabolism and development of advanced colonic polyps. Transl. Res. 2018, 200, 43–53. [Google Scholar] [CrossRef]
- Lieberman, D.A.; Rex, D.K.; Winawer, S.J.; Giardiello, F.M.; Johnson, D.A.; Levin, T.R. Guidelines for Colonoscopy Surveillance After Screening and Polypectomy: A Consensus Update by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 2012, 143, 844–857. [Google Scholar] [CrossRef] [Green Version]
- Comstock, S.S.; Hortos, K.; Kovan, B.; McCaskey, S.; Pathak, R.R.; Fenton, J.I. Adipokines and Obesity Are Associated with Colorectal Polyps in Adult Males: A Cross-Sectional Study. PLoS ONE 2014, 9, e85939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, J.S.; Kim, H.H.; Hwang, H.S.; Yun, D.Y.; Kim, B.S.; Lee, C.H.; Han, J.; Kim, H.G.; Jung, J.T.; Kwon, J.G.; et al. Comparison of blood leptin concentration and colonic mucosa leptin expression in colon adenoma patients and healthy control. Korean J. Gastroenterol. 2014, 63, 354–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paik, S.S.; Jang, S.-M.; Jang, K.; Lee, K.H.; Choi, D.; Jang, S.J. Leptin Expression Correlates with Favorable Clinicopathologic Phenotype and Better Prognosis in Colorectal Adenocarcinoma. Ann. Surg. Oncol. 2008, 16, 297–303. [Google Scholar] [CrossRef]
- Abolhassani, M.; Aloulou, N.; Chaumette, M.T.; Aparicio, T.; Martin-Garcia, N.; Mansour, H.; Le Gouvello, S.; Delchier, J.C.; Sobhani, I.; Rocks, N.; et al. Leptin Receptor-Related Immune Response in Colorectal Tumors: The Role of Colonocytes and Interleukin-8. Cancer Res. 2008, 68, 9423–9432. [Google Scholar] [CrossRef] [Green Version]
- Al-Shibli, S.M.; Harun, N.; Ashour, A.E.; Kasmuri, M.H.B.M.; Mizan, S. Expression of leptin and leptin receptors in colorectal cancer—an immunohistochemical study. PeerJ 2019, 7, e7624. [Google Scholar] [CrossRef]
- Endo, H.; Hosono, K.; Uchiyama, T.; Sakai, E.; Sugiyama, M.; Takahashi, H.; Nakajima, N.; Wada, K.; Takeda, K.; Nakagama, H.; et al. Leptin acts as a growth factor for colorectal tumours at stages subsequent to tumour initiation in murine colon carcinogenesis. Gut 2011, 60, 1363–1371. [Google Scholar] [CrossRef]
- Tutino, V.; Notarnicola, M.; Guerra, V.; Lorusso, D.; Caruso, M.G. Increased soluble leptin receptor levels are associated with advanced tumor stage in colorectal cancer patients. Anticancer Res. 2011, 31, 3381–3383. [Google Scholar]
- Aleksandrova, K.; Boeing, H.; Jenab, M.; Bueno-De-Mesquita, H.B.; Jansen, E.; Van Duijnhoven, F.J.B.; Rinaldi, S.; Fedirko, V.; Romieu, I.; Riboli, E.; et al. Leptin and Soluble Leptin Receptor in Risk of Colorectal Cancer in the European Prospective Investigation into Cancer and Nutrition Cohort. Cancer Res. 2012, 72, 5328–5337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uddin, S.; Bavi, P.P.; Hussain, A.R.; Alsbeih, G.; Alsanea, N.; Abduljabbar, A.; Ashari, L.H.; Alhomoud, S.; Al-Dayel, F.; Ahmed, M.; et al. Leptin receptor expression in Middle Eastern colorectal cancer and its potential clinical implication. Carcinogenesis 2009, 30, 1832–1840. [Google Scholar] [CrossRef] [Green Version]
- Aloulou, N.; Bastuji-Garin, S.; Le Gouvello, S.; Abolhassani, M.; Chaumette, M.T.; Charachon, A.; Leroy, K.; Sobhani, I. Involvement of the Leptin Receptor in the Immune Response in Intestinal Cancer. Cancer Res. 2008, 68, 9413–9422. [Google Scholar] [CrossRef] [Green Version]
- Penrose, H.M.; Heller, S.; Cable, C.; Nakhoul, H.; Baddoo, M.; Flemington, E.; Crawford, S.E.; Savkovic, S.D. High-fat diet induced leptin and Wnt expression: RNA-sequencing and pathway analysis of mouse colonic tissue and tumors. Carcinogenesis 2017, 38, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Chen, J.; Chen, H.; Duan, Z.; Xu, Q.; Wei, M.; Wang, L.; Zhong, M. Leptin regulates proliferation and apoptosis of colorectal carcinoma through PI3K/Akt/mTOR signalling pathway. J. Biosci. 2011, 37, 91–101. [Google Scholar] [CrossRef]
- Fazolini, N.P.B.; Cruz, A.L.S.; Werneck, M.B.F.; Viola, J.P.B.; Maya-Monteiro, C.M.; Bozza, P.T. Leptin activation of mTOR pathway in intestinal epithelial cell triggers lipid droplet formation, cytokine production and increased cell proliferation. Cell Cycle 2015, 14, 2667–2676. [Google Scholar] [CrossRef]
- Dong, Z.; Lee, Y.-H.; Na, H.-K.; Baek, J.-H.; Dong, Z. Leptin induces SIRT1 expression through activation of NF-E2-related factor 2: Implications for obesity-associated colon carcinogenesis. Biochem. Pharmacol. 2018, 153, 282–291. [Google Scholar] [CrossRef]
- Bartucci, M.; Svensson, S.; Ricci-Vitiani, L.; Dattilo, R.; Biffoni, M.; Signore, M.; Ferla, R.; De Maria, R.; Surmacz, E. Obesity hormone leptin induces growth and interferes with the cytotoxic effects of 5-fluorouracil in colorectal tumor stem cells. Endocr. Relat. Cancer 2010, 17, 823–833. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.-C.; Wang, F.-Y.; Ko, H.-H.; Tang, F.-Y. Cancer Chemopreventive Effects of Lycopene: Suppression of MMP-7 Expression and Cell Invasion in Human Colon Cancer Cells. J. Agric. Food Chem. 2011, 59, 11304–11318. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, T.; Schwartz, B. Leptin promotes motility and invasiveness in human colon cancer cells by activating multiple signal-transduction pathways. Int. J. Cancer 2008, 123, 2543–2556. [Google Scholar] [CrossRef]
- Hoda, M.R.; Keely, S.J.; Bertelsen, L.S.; Junger, W.G.; Dharmasena, D.; Barrett, K.E. Leptin acts as a mitogenic and antiapoptotic factor for colonic cancer cells. BJS 2007, 94, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Ogunwobi, O.O.; Beales, I.L. The anti-apoptotic and growth stimulatory actions of leptin in human colon cancer cells involves activation of JNK mitogen activated protein kinase, JAK2 and PI3 kinase/Akt. Int. J. Color. Dis. 2006, 22, 401–409. [Google Scholar] [CrossRef]
- Fenton, J.I.; Hursting, S.D.; Perkins, S.N.; Hord, N.G. Interleukin-6 production induced by leptin treatment promotes cell proliferation in an Apc (Min/+) colon epithelial cell line. Carcinogenesis 2006, 27, 1507–1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogunwobi, O.; Beales, I.L.P. Cyclo-oxygenase-Independent Inhibition of Apoptosis and Stimulation of Proliferation by Leptin in Human Colon Cancer Cells. Dig. Dis. Sci. 2007, 52, 1934–1945. [Google Scholar] [CrossRef]
- Padidar, S.; Farquharson, A.J.; Williams, L.M.; Kelaiditi, E.; Hoggard, N.; Arthur, J.R.; Drew, J.E. Leptin up-regulates pro-inflammatory cytokines in discrete cells within mouse colon. J. Cell. Physiol. 2011, 226, 2123–2130. [Google Scholar] [CrossRef] [PubMed]
- Birmingham, J.M.; Busik, J.V.; Hansen-Smith, F.M.; Fenton, J.I. Novel mechanism for obesity-induced colon cancer progression. Carcinogenesis 2009, 30, 690–697. [Google Scholar] [CrossRef] [Green Version]
- Plaisancie, P.; Ducroc, R.; El Homsi, M.; Tsocas, A.; Guilmeau, S.; Zoghbi, S.; Thibaudeau, O.; Bado, A. Luminal leptin activates mucin-secreting goblet cells in the large bowel. Am. J. Physiol. Liver Physiol. 2006, 290, G805–G812. [Google Scholar] [CrossRef] [Green Version]
- Saxena, A.; Fayad, R.; Kaur, K.; Truman, S.; Greer, J.; Carson, J.A.; Chanda, A. Dietary selenium protects adiponectin knockout mice against chronic inflammation induced colon cancer. Cancer Biol. Ther. 2017, 18, 257–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxena, A.; Baliga, M.S.; Ponemone, V.; Kaur, K.; Larsen, B.; Fletcher, E.; Greene, J.; Fayad, R. Mucus and adiponectin deficiency: Role in chronic inflammation-induced colon cancer. Int. J. Color. Dis. 2013, 28, 1267–1279. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Zhao, X.; Chen, M.; Ji, H.; Zhang, Q.; Chen, R.; Wang, Y. Plasma adiponectin, visfatin, leptin, and resistin levels and the onset of colonic polyps in patients with prediabetes. BMC Endocr. Disord. 2020, 20, 1–12. [Google Scholar] [CrossRef]
- Saetang, J.; Boonpipattanapong, T.; Palanusont, A.; Maneechay, W.; Sangkhathat, S. Alteration of Leptin and Adiponectin in Multistep Colorectal Tumorigenesis. Asian Pac. J. Cancer Prev. 2016, 17, 2119–2123. [Google Scholar] [CrossRef] [Green Version]
- Gonullu, G.; Kahraman, H.; Bedir, A.; Bektas, A.; Yücel, I. Association between adiponectin, resistin, insulin resistance, and colorectal tumors. Int. J. Color. Dis. 2009, 25, 205–212. [Google Scholar] [CrossRef]
- Nigro, E.; Schettino, P.; Polito, R.; Scudiero, O.; Monaco, M.L.; De Palma, G.D.; Daniele, A. Adiponectin and colon cancer: Evidence for inhibitory effects on viability and migration of human colorectal cell lines. Mol. Cell. Biochem. 2018, 448, 125–135. [Google Scholar] [CrossRef]
- Salinas, M.L.; Fuentes, N.R.; Choate, R.; Wright, R.C.; McMurray, D.N.; Chapkin, R.S. AdipoRon Attenuates Wnt Signaling by Reducing Cholesterol-Dependent Plasma Membrane Rigidity. Biophys. J. 2020, 118, 885–897. [Google Scholar] [CrossRef]
- Aleksandrova, K.; Boeing, H.; Jenab, M.; Bueno-De-Mesquita, H.B.; Jansen, E.; Van Duijnhoven, F.J.; Fedirko, V.; Rinaldi, S.; Romieu, I.; Riboli, E.; et al. Total and high-molecular weight adiponectin and risk of colorectal cancer: The European Prospective Investigation into Cancer and Nutrition Study. Carcinogenesis 2012, 33, 1211–1218. [Google Scholar] [CrossRef]
- Williams, C.J.; Mitsiades, N.; Sozopoulos, E.; His, A.; Wolk, A.; Nifli, A.P.; Tseleni-Balafouta, S.; Mantzoros, C.S. Adiponectin receptor expression is elevated in colorectal carcinomas but not in gastrointestinal stromal tumors. Endocr. Relat. Cancer 2008, 15, 289–299. [Google Scholar] [CrossRef] [Green Version]
- Vetvik, K.K.; Sonerud, T.; Lindeberg, M.; Lüders, T.; Størkson, R.H.; Jonsdottir, K.; Frengen, E.; Pietiläinen, K.H.; Bukholm, I. Globular adiponectin and its downstream target genes are up-regulated locally in human colorectal tumors: Ex vivo and in vitro studies. Metabolism 2014, 63, 672–681. [Google Scholar] [CrossRef]
- Polito, R.; Nigro, E.; Fei, L.; De Magistris, L.; Monaco, M.L.; D’Amico, R.; Naviglio, S.; Signoriello, G.; Daniele, A. Adiponectin Is Inversely Associated With Tumour Grade in Colorectal Cancer Patients. Anticancer Res. 2020, 40, 3751–3757. [Google Scholar] [CrossRef]
- Inamura, K.; Song, M.; Jung, S.; Nishihara, R.; Yamauchi, M.; Lochhead, P.; Qian, Z.R.; Kim, S.A.; Mima, K.; Sukawa, Y.; et al. Prediagnosis Plasma Adiponectin in Relation to Colorectal Cancer Risk According toKRASMutation Status. J. Natl. Cancer Inst. 2015, 108, djv363. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.Y.; Lee, Y.S.; Kim, K.H. Adiponectin represses colon cancer cell proliferation via AdipoR1- and -R2-mediated AMPK activation. Mol. Endocrinol. 2010, 24, 1441–1452. [Google Scholar] [CrossRef]
- Mutoh, M.; Teraoka, N.; Takasu, S.; Takahashi, M.; Onuma, K.; Yamamoto, M.; Kubota, N.; Iseki, T.; Kadowaki, T.; Sugimura, T.; et al. Loss of Adiponectin Promotes Intestinal Carcinogenesis in Min and Wild-type Mice. Gastroenterology 2011, 140, 2000–2008.e2. [Google Scholar] [CrossRef]
- Sugiyama, M.; Takahashi, H.; Hosono, K.; Endo, H.; Kato, S.; Yoneda, K.; Nozaki, Y.; Fujita, K.; Yoneda, M.; Wada, K.; et al. Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway. Int. J. Oncol. 2009, 34, 339–344. [Google Scholar]
- Moon, H.-S.; Mantzoros, C.S. Adiponectin and metformin additively attenuate IL1β-induced malignant potential of colon cancer. Endocr. Relat. Cancer 2013, 20, 849–859. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.-S.; Liu, X.; Nagel, J.M.; Chamberland, J.P.; Diakopoulos, K.N.; Brinkoetter, M.T.; Hatziapostolou, M.; Wu, Y.; Robson, S.C.; Iliopoulos, D.; et al. Salutary effects of adiponectin on colon cancer: In vivo and in vitro studies in mice. Gut 2012, 62, 561–570. [Google Scholar] [CrossRef]
- Erarslan, E.; Turkay, C.; Koktener, A.; Koca, C.; Uz, B.; Bavbek, N. Association of Visceral Fat Accumulation and Adiponectin Levels with Colorectal Neoplasia. Dig. Dis. Sci. 2008, 54, 862–868. [Google Scholar] [CrossRef]
- Declercq, V.; McMurray, D.; Chapkin, R.S. Obesity promotes colonic stem cell expansion during cancer initiation. Cancer Lett. 2015, 369, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Fujisawa, T.; Endo, H.; Tomimoto, A.; Sugiyama, M.; Takahashi, H.; Saito, S.; Inamori, M.; Nakajima, N.; Watanabe, M.; Kubota, N.; et al. Adiponectin suppresses colorectal carcinogenesis under the high-fat diet condition. Gut 2008, 57, 1531–1538. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Hosono, K.; Endo, H.; Nakajima, A. Colon epithelial proliferation and carcinogenesis in diet-induced obesity. J. Gastroenterol. Hepatol. 2013, 28, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Ealey, K.N.; Archer, M.C. Elevated circulating adiponectin and elevated insulin sensitivity in adiponectin transgenic mice are not associated with reduced susceptibility to colon carcinogenesis. Int. J. Cancer 2009, 124, 2226–2230. [Google Scholar] [CrossRef]
- He, B.; Pan, Y.; Zhang, Y.; Bao, Q.; Chen, L.; Nie, Z.-L.; Gu, L.; Xu, Y.; Wang, S. Effects of genetic variations in the Adiponectin pathway genes on the risk of colorectal cancer in the Chinese population. BMC Med. Genet. 2011, 12, 94. [Google Scholar] [CrossRef] [Green Version]
- Otani, K.; Ishihara, S.; Yamaguchi, H.; Murono, K.; Yasuda, K.; Nishikawa, T.; Tanaka, T.; Kiyomatsu, T.; Hata, K.; Kawai, K.; et al. Adiponectin and colorectal cancer. Surg. Today 2016, 47, 151–158. [Google Scholar] [CrossRef]
- Yunusova, N.V.; Kondakova, I.V.; Kolomiets, L.A.; Afanasiev, S.G.; Chernyshova, A.L.; Shatokhina, O.V.; Frolova, A.E.; Zhou, Z.; Wang, W. Serum adipokines and their receptors in endometrial and colon cancer patients: Relationship with tumor invasion and metastasis. Vopr. Onkol. 2015, 61, 619–623. [Google Scholar]
- Suman, S.; Kallakury, B.V.S.; Fornace, A.J.; Datta, K. Protracted Upregulation of Leptin and IGF1 is Associated with Activation of PI3K/Akt and JAK2 Pathway in Mouse Intestine after Ionizing Radiation Exposure. Int. J. Biol. Sci. 2015, 11, 274–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, M.; Zhang, X.; Wu, K.; Ogino, S.; Fuchs, C.S.; Giovannucci, E.L.; Chan, A.T. Plasma Adiponectin and Soluble Leptin Receptor and Risk of Colorectal Cancer: A Prospective Study. Cancer Prev. Res. 2013, 6, 875–885. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Chouhan, S.; Mohammad, N.; Bhat, M.K. Resistin causes G1 arrest in colon cancer cells through upregulation of SOCS3. FEBS Lett. 2017, 591, 1371–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.-S.; Yang, J.-T.; Lu, C.-C.; Chang, S.-F.; Chen, C.-N.; Su, Y.-P.; Lee, K.-C. Fulvic Acid Attenuates Resistin-Induced Adhesion of HCT-116 Colorectal Cancer Cells to Endothelial Cells. Int. J. Mol. Sci. 2015, 16, 29370–29382. [Google Scholar] [CrossRef] [Green Version]
- Al-Harithy, R.N. Polymorphisms in RETN gene and susceptibility to colon cancer in Saudi patients. Ann. Saudi Med. 2014, 34, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Johansen, J.S.; Christensen, I.J.; Jørgensen, L.N.; Olsen, J.; Rahr, H.B.; Nielsen, K.T.; Laurberg, S.; Brünner, N.; Nielsen, H.J. Serum YKL-40 in Risk Assessment for Colorectal Cancer: A Prospective Study of 4496 Subjects at Risk of Colorectal Cancer. Cancer Epidemiol. Biomark. Prev. 2015, 24, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Kzhyshkowska, J.; Yin, S.; Liu, T.; Riabov, V.; Mitrofanova, I. Role of chitinase-like proteins in cancer. Biol. Chem. 2016, 397, 231–247. [Google Scholar] [CrossRef]
- Abola, M.V.; Thompson, C.L.; Chen, Z.; Chak, A.; Berger, N.A.; Kirwan, J.P.; Li, L. Serum levels of retinol-binding protein 4 and risk of colon adenoma. Endocr. Relat. Cancer 2015, 22, L1–L4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichelmann, F.; Schulze, M.B.; Wittenbecher, C.; Menzel, J.; Weikert, C.; Di Giuseppe, R.; Biemann, R.; Isermann, B.; Fritsche, A.; Boeing, H.; et al. Association of Chemerin Plasma Concentration With Risk of Colorectal Cancer. JAMA Netw. Open 2019, 2, e190896. [Google Scholar] [CrossRef]
- Erdogan, S.; Yilmaz, F.M.; Yazici, O.; Yozgat, A.; Sezer, S.; Ozdemir, N.; Uysal, S.; Purnak, T.; Sendur, M.A.; Ozaslan, E. Inflammation and chemerin in colorectal cancer. Tumor Biol. 2015, 37, 6337–6342. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Saxena, N.K.; Lin, S.; Xu, A.; Srinivasan, S.; Anania, F.A. The Roles of Leptin and Adiponectin. Am. J. Pathol. 2005, 166, 1655–1669. [Google Scholar] [CrossRef]
- Lin, S.Y.; Chen, W.Y.; Chiu, Y.T.; Lee, W.J.; Wu, H.S.; Sheua, W.H.-H. Different tumor necrosis factor-α–associated leptin expression in rats with dimethylnitrosamine and bile duct ligation–induced liver cirrhosis. Metabolism 2005, 54, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Fava, G.; Alpini, G.; Rychlicki, C.; Saccomanno, S.; DeMorrow, S.; Trozzi, L.; Candelaresi, C.; Venter, J.; Di Sario, A.; Marzioni, M.; et al. Leptin enhances cholangiocarcinoma cell growth. Cancer Res. 2008, 68, 6752–6761. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Sun, Z.; Li, O. Leptin stimulates the epithelial-mesenchymal transition and pro-angiogenic capability of cholangiocarcinoma cells through the miR-122/PKM2 axis. Int. J. Oncol. 2019, 55, 298–308. [Google Scholar] [CrossRef]
- Moradi, M.; Doustimotlagh, A.H.; Dehpour, A.R.; Rahimi, N.; Golestani, A. The influence of TRAIL, adiponectin and sclerostin alterations on bone loss in BDL-induced cirrhotic rats and the effect of opioid system blockade. Life Sci. 2019, 233, 116706. [Google Scholar] [CrossRef]
- Xia, Y.; Gong, J.-P. Impact of Recombinant Globular Adiponectin on Early Warm Ischemia-Reperfusion Injury in Rat Bile Duct after Liver Transplantation. Sci. Rep. 2014, 4, 6426. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.-Y.; Sheu, W.H.-H.; Chen, W.-Y.; Lee, F.-Y.; Huang, C.-J. Stimulated resistin expression in white adipose of rats with bile duct ligation-induced liver cirrhosis: Relationship to cirrhotic hyperinsulinemia and increased tumor necrosis factor-alpha. Mol. Cell. Endocrinol. 2005, 232, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Nakeeb, A.; Comuzzie, A.G.; Al-Azzawi, H.; Sonnenberg, E.G.; Kissebah, A.H.; Pitt, A.H. Insulin Resistance Causes Human Gallbladder Dysmotility. J. Gastrointest. Surg. 2006, 10, 940–949. [Google Scholar] [CrossRef]
- Avgerinos, K.I.; Spyrou, N.; Mantzoros, C.S.; Dalamaga, M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism 2019, 92, 121–135. [Google Scholar] [CrossRef]
- Ko, C.W.; Beresford, S.A.A.; Schulte, S.J.; Matsumoto, A.M.; Lee, S.P. Incidence, natural history, and risk factors for biliary sludge and stones during pregnancy. Hepatology 2005, 41, 359–365. [Google Scholar] [CrossRef]
- Ruhl, C.E.; Everhart, J.E. Relationship of serum leptin concentration and other measures of adiposity with gallbladder disease. Hepatology 2001, 34, 877–883. [Google Scholar] [CrossRef]
- Hyogo, H. Restoration of gallstone susceptibility by leptin in C57BL/6Job/obmice. J. Lipid Res. 2003, 44, 1232–1240. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Lee, A.; Kweon, O.-K.; Kim, W.H. Presence and distribution of leptin and leptin receptor in the canine gallbladder. Acta Histochem. 2016, 118, 674–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Kweon, O.-K.; Kim, W.H. Associations between serum leptin levels, hyperlipidemia, and cholelithiasis in dogs. PLoS ONE 2017, 12, e0187315. [Google Scholar] [CrossRef] [Green Version]
- Swartz-Basile, D.A.; Lu, D.; Basile, D.P.; Graewin, S.J.; Al-Azzawi, H.; Kiely, J.M.; Mathur, A.; Yancey, K.; Pitt, H.A. Leptin regulates gallbladder genes related to absorption and secretion. Am. J. Physiol. Liver Physiol. 2007, 293, G84–G90. [Google Scholar] [CrossRef] [Green Version]
- Graewin, S.J.; Kiely, J.M.; Lu, D.; Svatek, C.L.; Al-Azzawi, H.H.; Swartz-Basile, D.A.; Pitt, H.A. Leptin Regulates Gallbladder Genes Related to Gallstone Pathogenesis in Leptin-Deficient Mice. J. Am. Coll. Surg. 2008, 206, 503–510. [Google Scholar] [CrossRef]
- Goldblatt, M.; Goldblatt, I.M.; Swartz-Basile, A.D.; Svatek, C.L.; Nakeeb, A.; Pitt, H.A. Decreased Gallbladder Response in Leptin-Deficient Obese Mice. J. Gastrointest. Surg. 2002, 6, 438–444. [Google Scholar] [CrossRef]
- Zou, H.; Liu, Y.; Wei, D.; Wang, T.; Wang, K.; Huang, S.; Liu, L.; Li, Y.; Ge, J.; Li, X.; et al. Leptin promotes proliferation and metastasis of human gallbladder cancer through OB-Rb leptin receptor. Int. J. Oncol. 2016, 49, 197–206. [Google Scholar] [CrossRef]
- Tran, K.Q.; Swartz-Basile, A.D.; Nakeeb, A.; Pitt, H.A. Gallbladder motility in agouti-yellow and leptin-resistant obese mice. J. Surg. Res. 2003, 113, 56–61. [Google Scholar] [CrossRef]
- Tran, K.Q.; Graewin, S.J.; Swartz-Basile, D.A.; Nakeeb, A.; Svatek, C.L.; Pitt, H.A. Leptin-resistant obese mice have paradoxically low biliary cholesterol saturation. Surgery 2003, 134, 372–377. [Google Scholar] [CrossRef]
- Coe, P.O.; O’Reilly, D.A.; Renehan, A.G. Excess adiposity and gastrointestinal cancer. BJS 2014, 101, 1518–1531. [Google Scholar] [CrossRef]
- Ogiyama, H.; Kamada, Y.; Kiso, S.; Araki, H.; Yamada, T.; Nishihara, T.; Watabe, K.; Tochino, Y.; Kihara, S.; Funahashi, T.; et al. Lack of adiponectin promotes formation of cholesterol gallstones in mice. Biochem. Biophys. Res. Commun. 2010, 399, 352–358. [Google Scholar] [CrossRef]
Diseases | Adipokines | Increased (I), Decreased (D), or No Changes (N) | Associated Findings (References) |
---|---|---|---|
NAFLD | Leptin | I | Increased severity [22] |
Adiponectin | D | Inversely related to the severity of steatosis [29], necroinflammation, and fibrosis [28] | |
PAI-1 | I | Independently associated with NAFLD [39] | |
Hepatitis B | Leptin | I/D | Associated with fibrosis/cirrhosis [44,45,46]/with cirrhosis/HCC [47] |
Adiponectin | I/D | Associated with viral load [48,49]/Viral load inversely associated with HDL-C [50] | |
Resistin | I | Associated with hepatic necroinflammation [54] | |
Visfatin | I | Negatively correlated with haptoglobin and fibrinogen [56] | |
Hepatitis C | Leptin | I/N | [65,66]/[67,68] |
Adiponectin | I/N/D | Associated with fibrosis [74,75,76,77,78,81] and inflammation [85]/[67]/in G1 and G3 HCV patients [84], associated with steatosis [79,84,86,87,88,89] | |
Visfatin | I | [104,105] | |
RBP4 | D | Inversely associated with hepatic fibrosis [110,111,112] | |
Resistin | I | Associated with hepatic fibrosis [115,116], reversed after viral clearance [55,120,121], associated with hepatic fibrosis [117] | |
Chemerin | I | [122] | |
PBC | Leptin | I/D | [126,127]/[128,129,130] |
Adiponectin | I | [127] | |
Resistin | I | [127] | |
ALD | Leptin | I, N or D | [136] |
Adiponectin | I or D | [136] | |
Chemerin | I | [141] | |
Pancreatic cancer | Leptin | I | [145] |
Adiponectin | D | [145] | |
Diabetes | Leptin | I | [141] |
GERD | Leptin | I | [167,168,173] |
Barrett’s esophagus | Leptin | I | [171,185,186], stronger in men [166,172] |
Adiponectin | I/D/N | [184]/Among patients with GERD and among smokers [181], especially in patients with GERD [180,182]/[186] | |
Esophageal cancer | Leptin | I | Increased cellular response to radiation [176], angiogenesis and lymphangiogenesis [177], chemoresistance of gastro-oesophageal adenocarcinomas [178]. |
Colitis | Leptin | I | [203] |
Diverticulosis | Leptin | I | [218] |
Adiponectin | D | [218] | |
Colon polyp | Leptin | I | Serum leptin associated with tubular adenoma [221], local leptin with colonic adenoma [222] |
Adiponectin | D | [247] | |
RBP4 | I | [277] | |
Colon cancer | Leptin | N | [227] |
Adiponectin | D | [248,249] | |
Resistin | I | [262,263] | |
YKL-40 | I | In subjects without comorbidity [275] and correlated with poor prognosis in patients with colon cancers [276] | |
Cholelithiasis | Leptin | I | [289] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, M.-L.; Yang, Z.; Yang, S.-S. Roles of Adipokines in Digestive Diseases: Markers of Inflammation, Metabolic Alteration and Disease Progression. Int. J. Mol. Sci. 2020, 21, 8308. https://doi.org/10.3390/ijms21218308
Chang M-L, Yang Z, Yang S-S. Roles of Adipokines in Digestive Diseases: Markers of Inflammation, Metabolic Alteration and Disease Progression. International Journal of Molecular Sciences. 2020; 21(21):8308. https://doi.org/10.3390/ijms21218308
Chicago/Turabian StyleChang, Ming-Ling, Zinger Yang, and Sien-Sing Yang. 2020. "Roles of Adipokines in Digestive Diseases: Markers of Inflammation, Metabolic Alteration and Disease Progression" International Journal of Molecular Sciences 21, no. 21: 8308. https://doi.org/10.3390/ijms21218308
APA StyleChang, M. -L., Yang, Z., & Yang, S. -S. (2020). Roles of Adipokines in Digestive Diseases: Markers of Inflammation, Metabolic Alteration and Disease Progression. International Journal of Molecular Sciences, 21(21), 8308. https://doi.org/10.3390/ijms21218308