Cardiac Autonomic Neuropathy: A Progressive Consequence of Chronic Low-Grade Inflammation in Type 2 Diabetes and Related Metabolic Disorders
Abstract
:1. Introduction
2. Rationale
3. The Metabolic Syndrome: A Continuum of Low-Grade Pro-Oxidative and Proinflammatory Processes
3.1. The Role of Altered Glucose Homeostasis in Meta-Inflammation
3.2. Contribution of Gut Microbiota to Meta-Inflammation
4. Progression of CAN: From Metabolic Syndrome and Prediabetes to T2D
4.1. Determinants of CAN in Early-Onset and Advanced T2D
4.2. Effect of Glucose Homeostasis along the Continuum of Prediabetes to Early-Onset T2D on CAN
4.3. Influence of Obesity Indices and Dyslipidemia
5. Association between Adipose, Vascular, Systemic, and Neuroinflammation and CAN
6. Relationship between Gut Microbiota and Autonomic Dysfunction in Metabolic Diseases
7. CAN as a Possible Mediator of the Impact of Meta-inflammation on Cardiovascular Disease in the Continuum from Prediabetes to T2D
8. Therapeutic Interventions to Ameliorate CAN in T2D
9. Conclusions
Funding
Conflicts of Interest
References
- Zoppini, G.; Cacciatori, V.; Raimondo, D.; Gemma, M.; Trombetta, M.; Dauriz, M.; Brangani, C.; Pichiri, I.; Negri, C.; Stoico, V. Prevalence of cardiovascular autonomic neuropathy in a cohort of patients with newly diagnosed type 2 diabetes: The Verona Newly Diagnosed Type 2 Diabetes Study (VNDS). Diabetes Care 2015, 38, 1487–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kück, J.-L.; Bönhof, G.J.; Strom, A.; Zaharia, O.-P.; Müssig, K.; Szendroedi, J.; Roden, M.; Ziegler, D. Impairment in baroreflex sensitivity in recent-onset type 2 diabetes without progression over 5 years. Diabetes 2020, 69, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Boulton, A.J.; Vinik, A.I.; Arezzo, J.C.; Bril, V.; Feldman, E.L.; Freeman, R.; Malik, R.A.; Maser, R.E.; Sosenko, J.M.; Ziegler, D. Diabetic neuropathies: A statement by the American Diabetes Association. Diabetes Care 2005, 28, 956–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolim, L.; Sá, J.; Chacra, A.R.; Dib, S.A. Diabetic cardiovascular autonomic neuropathy: Risk factors, clinical impact and early diagnosis. Arq. Bras. Cardiol. 2008, 90, e24–e31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberger, J.J.; Arora, R.; Buckley, U.; Shivkumar, K. Autonomic nervous system dysfunction: JACC focus seminar. J. Am. Coll. Cardiol. 2019, 73, 1189–1206. [Google Scholar] [CrossRef]
- Ruiz, J.; Monbaron, D.; Parati, G.; Perret, S.; Haesler, E.; Danzeisen, C.; Hayoz, D. Diabetic neuropathy is a more important determinant of baroreflex sensitivity than carotid elasticity in type 2 diabetes. Hypertension 2005, 46, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Cseh, D.; Climie, R.E.; Offredo, L.; Guibout, C.; Thomas, F.; Zanoli, L.; Danchin, N.; Sharman, J.E.; Laurent, S.; Jouven, X.; et al. Type 2 Diabetes Mellitus Is Independently Associated With Decreased Neural Baroreflex Sensitivity: The Paris Prospective Study III. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1420–1428. [Google Scholar] [CrossRef]
- Wu, J.-S.; Lu, F.-H.; Yang, Y.-C.; Chang, S.-H.; Huang, Y.-H.; Chen, J.-J.J.; Chang, C.-J. Impaired baroreflex sensitivity in subjects with impaired glucose tolerance, but not isolated impaired fasting glucose. Acta Diabetol. 2014, 51, 535–541. [Google Scholar] [CrossRef]
- Levick, J. Cardiovascular Receptors, Reflexes and Central Control. An Introduction to Cardiovascular Physiology, 4th ed.; Hodder Arnold Publication: London, UK, 2003; pp. 279–296. [Google Scholar]
- Aicher, S.A.; Milner, T.A.; Pickel, V.M.; Reis, D.J. Anatomical substrates for baroreflex sympathoinhibition in the rat. Brain Res. Bull. 2000, 51, 107–110. [Google Scholar] [CrossRef]
- Lin, I.C.; Wu, C.-W.; Tain, Y.-L.; Chen, I.-C.; Hung, C.-Y.; Wu, K.L. High fructose diet induces early mortality via autophagy factors accumulation in the rostral ventrolateral medulla as ameliorated by pioglitazone. J. Nutr. Biochem. 2019, 69, 87–97. [Google Scholar] [CrossRef]
- Speretta, G.F.; Ruchaya, P.J.; Delbin, M.A.; Melo, M.R.; Li, H.; Menani, J.V.; Sumners, C.; Colombari, E.; Bassi, M.; Colombari, D.S. Importance of AT1 and AT2 receptors in the nucleus of the solitary tract in cardiovascular responses induced by a high-fat diet. Hypertens. Res. 2019, 42, 439–449. [Google Scholar] [CrossRef]
- Sheng, X.; Dan, Y.; Dai, B.; Guo, J.; Ji, H.; Zhang, X.; Xie, Z.; Song, S.; Pan, Q.; Wang, J. Knockdown the P2X3 receptor in the stellate ganglia of rats relieved the diabetic cardiac autonomic neuropathy. Neurochem. Int. 2018, 120, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Sheng, X.; Xu, Z.; Zhang, Y.; Dan, Y.; Guo, J.; Peng, H.; Liang, S.; Li, G. Osthole relieves diabetics cardiac autonomic neuropathy associated with P2X3 receptor in ratstellate ganglia. Brain Res. Bull. 2020, 157, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Sheng, X.; Wang, J.; Guo, J.; Xu, Y.; Jiang, H.; Zheng, C.; Xu, Z.; Zhang, Y.; Che, H.; Liang, S. Effects of baicalin on diabetic cardiac autonomic neuropathy mediated by the P2Y12 receptor in rat stellate ganglia. Cell. Physiol. Biochem. 2018, 46, 986–998. [Google Scholar] [CrossRef] [PubMed]
- Donath, M.Y. Targeting inflammation in the treatment of type 2 diabetes: Time to start. Nat. Rev. Drug Discov. 2014, 13, 465–476. [Google Scholar] [CrossRef]
- Grossmann, V.; Schmitt, V.H.; Zeller, T.; Panova-Noeva, M.; Schulz, A.; Laubert-Reh, D.; Juenger, C.; Schnabel, R.B.; Abt, T.G.; Laskowski, R. Profile of the immune and inflammatory response in individuals with prediabetes and type 2 diabetes. Diabetes Care 2015, 38, 1356–1364. [Google Scholar] [CrossRef] [Green Version]
- Festa, A.; D’Agostino, R., Jr.; Howard, G.; Mykkanen, L.; Tracy, R.P.; Haffner, S.M. Chronic subclinical inflammation as part of the insulin resistance syndrome: The Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000, 102, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Shoelson, S.E.; Goldfine, A.B. Getting away from glucose: Fanning the flames of obesity-induced inflammation. Nat. Med. 2009, 15, 373–374. [Google Scholar] [CrossRef] [Green Version]
- Hotamisligil, G.S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 2010, 140, 900–917. [Google Scholar] [CrossRef] [Green Version]
- Cullinan, S.B.; Diehl, J.A. Coordination of ER and oxidative stress signaling: The PERK/Nrf2 signaling pathway. Int. J. Biochem. Cell Biol. 2006, 38, 317–332. [Google Scholar] [CrossRef]
- Pedersen, D.J.; Guilherme, A.; Danai, L.V.; Heyda, L.; Matevossian, A.; Cohen, J.; Nicoloro, S.M.; Straubhaar, J.; Noh, H.L.; Jung, D. A major role of insulin in promoting obesity-associated adipose tissue inflammation. Mol. Metab. 2015, 4, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Campos, S.; Baumann, H. Insulin is a prominent modulator of the cytokine-stimulated expression of acute-phase plasma protein genes. Mol. Cell. Biol. 1992, 12, 1789–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int. J. Obes. 2009, 33, 54–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushner, I. Regulation of the acute phase response by cytokines. Perspect. Biol. Med. 1993, 36, 611–622. [Google Scholar] [CrossRef]
- Samad, F.; Uysal, K.T.; Wiesbrock, S.M.; Pandey, M.; Hotamisligil, G.S.; Loskutoff, D.J. Tumor necrosis factor α is a key component in the obesity-linked elevation of plasminogen activator inhibitor 1. Proc. Natl. Acad. Sci. USA 1999, 96, 6902–6907. [Google Scholar] [CrossRef] [Green Version]
- Cinti, S.; Mitchell, G.; Barbatelli, G.; Murano, I.; Ceresi, E.; Faloia, E.; Wang, S.; Fortier, M.; Greenberg, A.S.; Obin, M.S. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 2005, 46, 2347–2355. [Google Scholar] [CrossRef] [Green Version]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef]
- Meier, B.; Radeke, H.; Selle, S.; Younes, M.; Sies, H.; Resch, K.; Habermehl, G. Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-α. Biochem. J. 1989, 263, 539–545. [Google Scholar] [CrossRef]
- Bandeira, D.M.; Da Fonseca, L.J.S.; Guedes, D.S.; Rabelo, L.A.; Goulart, M.O.; Vasconcelos, S.M.L. Oxidative stress as an underlying contributor in the development of chronic complications in diabetes mellitus. Int. J. Mol. Sci. 2013, 14, 3265–3284. [Google Scholar] [CrossRef]
- Downs, C.A.; Faulkner, M.S. Toxic stress, inflammation and symptomatology of chronic complications in diabetes. World J. Diabetes 2015, 6, 554. [Google Scholar] [CrossRef]
- Pliquett, R.; Fasshauer, M.; Blüher, M.; Paschke, R. Neurohumoral stimulation in type-2-diabetes as an emerging disease concept. Cardiovasc. Diabetol. 2004, 3, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafeh, R.; Viveiros, A.; Oudit, G.Y.; El-Yazbi, A.F. Targeting perivascular and epicardial adipose tissue inflammation: Therapeutic opportunities for cardiovascular disease. Clin. Sci. 2020, 134, 827–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etchegoyen, M.; Nobile, M.H.; Baez, F.; Posesorski, B.; González, J.; Lago, N.; Milei, J.; Otero-Losada, M. Metabolic syndrome and neuroprotection. Front. Neurosci. 2018, 12, 196. [Google Scholar] [CrossRef] [PubMed]
- Pop-Busui, R.; Ang, L.; Holmes, C.; Gallagher, K.; Feldman, E.L. Inflammation as a therapeutic target for diabetic neuropathies. Curr. Diabetes Rep. 2016, 16, 29. [Google Scholar] [CrossRef] [Green Version]
- Mauro, C.; De Rosa, V.; Marelli-Berg, F.; Solito, E. Metabolic syndrome and the immunological affair with the blood–brain barrier. Front. Immunol. 2015, 5, 677. [Google Scholar] [CrossRef] [Green Version]
- Van Dyken, P.; Lacoste, B. Impact of Metabolic Syndrome on Neuroinflammation and the Blood–Brain Barrier. Front. Neurosci. 2018, 12. [Google Scholar] [CrossRef]
- Thomsen, M.S.; Routhe, L.J.; Moos, T. The vascular basement membrane in the healthy and pathological brain. J. Cereb. Blood Flow Metab. 2017, 37, 3300–3317. [Google Scholar] [CrossRef]
- Muriach, M.; Flores-Bellver, M.; Romero, F.J.; Barcia, J.M. Diabetes and the brain: Oxidative stress, inflammation, and autophagy. Oxid. Med. Cell. Longev. 2014, 2014, 102158. [Google Scholar] [CrossRef] [Green Version]
- Fisher-Wellman, K.H.; Neufer, P.D. Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol. Metab. 2012, 23, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Sifuentes-Franco, S.; Pacheco-Moisés, F.P.; Rodríguez-Carrizalez, A.D.; Miranda-Díaz, A.G. The role of oxidative stress, mitochondrial function, and autophagy in diabetic polyneuropathy. J. Diabetes Res. 2017, 2017, 1673081. [Google Scholar] [CrossRef] [Green Version]
- Román-Pintos, L.M.; Villegas-Rivera, G.; Rodríguez-Carrizalez, A.D.; Miranda-Díaz, A.G.; Cardona-Muñoz, E.G. Diabetic polyneuropathy in type 2 diabetes mellitus: Inflammation, oxidative stress, and mitochondrial function. J. Diabetes Res. 2016, 2016, 3425617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Everard, A.; Cani, P.D. Diabetes, obesity and gut microbiota. Best Pract. Res. Clin. Gastroenterol. 2013, 27, 73–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilg, H.; Zmora, N.; Adolph, T.E.; Elinav, E. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 2019, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, A.L.; Bäckhed, F. Role of gut microbiota in atherosclerosis. Nat. Rev. Cardiol. 2017, 14, 79. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Cantone, E.; Cassarano, S.; Tuccinardi, D.; Barrea, L.; Savastano, S.; Colao, A. Gut microbiota: A new path to treat obesity. Int. J. Obes. Suppl. 2019, 9, 10–19. [Google Scholar] [CrossRef]
- Cani, P.D.; Van Hul, M.; Lefort, C.; Depommier, C.; Rastelli, M.; Everard, A. Microbial regulation of organismal energy homeostasis. Nat. Metab. 2019, 1, 34. [Google Scholar] [CrossRef]
- Lu, Y.-C.; Yeh, W.-C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine 2008, 42, 145–151. [Google Scholar] [CrossRef]
- Caesar, R.; Tremaroli, V.; Kovatcheva-Datchary, P.; Cani, P.D.; Bäckhed, F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 2015, 22, 658–668. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, O.; Hoshino, K.; Kawai, T.; Sanjo, H.; Takada, H.; Ogawa, T.; Takeda, K.; Akira, S. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999, 11, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Cani, P.D.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes 2008, 57, 1470–1481. [Google Scholar] [CrossRef] [Green Version]
- Laugerette, F.; Vors, C.; Géloën, A.; Chauvin, M.-A.; Soulage, C.; Lambert-Porcheron, S.; Peretti, N.; Alligier, M.; Burcelin, R.; Laville, M. Emulsified lipids increase endotoxemia: Possible role in early postprandial low-grade inflammation. J. Nutr. Biochem. 2011, 22, 53–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghoshal, S.; Witta, J.; Zhong, J.; De Villiers, W.; Eckhardt, E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J. Lipid Res. 2009, 50, 90–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics—A Step Beyond Pre-and Probiotics. Nutrients 2020, 12, 2189. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Roberfroid, M.B. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Ohland, C.L.; MacNaughton, W.K. Probiotic bacteria and intestinal epithelial barrier function. Am. J. Physiol.-Gastrointest. Liver Physiol. 2010, 298, G807–G819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, V.T.; Seifert, N.; Richard, N.; Raederstorff, D.; Steinert, R.E.; Prudence, K.; Mohajeri, M.H. The effects of fermentation products of prebiotic fibres on gut barrier and immune functions in vitro. PeerJ 2018, 6, e5288. [Google Scholar] [CrossRef]
- Gao, J.; Li, Y.; Wan, Y.; Hu, T.; Liu, L.; Yang, S.; Gong, Z.; Zeng, Q.; Wei, Y.; Yang, W.; et al. A Novel Postbiotic From Lactobacillus rhamnosus GG With a Beneficial Effect on Intestinal Barrier Function. Front. Microbiol. 2019, 10, 477. [Google Scholar] [CrossRef] [Green Version]
- Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 56, 1761–1772. [Google Scholar] [CrossRef] [Green Version]
- Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 2015, 11, 577. [Google Scholar] [CrossRef]
- Wilkins, L.J.; Monga, M.; Miller, A.W. Defining Dysbiosis for a Cluster of Chronic Diseases. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-A.; Gu, W.; Lee, I.-A.; Joh, E.-H.; Kim, D.-H. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS ONE 2012, 7, e47713. [Google Scholar] [CrossRef] [PubMed]
- Kappel, B.A.; Federici, M. Gut microbiome and cardiometabolic risk. Rev. Endocr. Metab. Disord. 2019, 20, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Amedei, A.; Morbidelli, L. Circulating metabolites originating from gut microbiota control endothelial cell function. Molecules 2019, 24, 3992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onal, E.M.; Afsar, B.; Covic, A.; Vaziri, N.D.; Kanbay, M. Gut microbiota and inflammation in chronic kidney disease and their roles in the development of cardiovascular disease. Hypertens. Res. 2019, 42, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Xiao, X.; Hu, M.; Zhang, X. Interaction between gut microbiome and cardiovascular disease. Life Sci. 2018, 214, 153–157. [Google Scholar] [CrossRef]
- Bradley, D.; Liu, J.; Blaszczak, A.; Wright, V.; Jalilvand, A.; Needleman, B.; Noria, S.; Renton, D.; Hsueh, W. Adipocyte DIO2 Expression Increases in Human Obesity but Is Not Related to Systemic Insulin Sensitivity. J. Diabetes Res. 2018, 2018, 2464652. [Google Scholar] [CrossRef]
- Nemet, I.; Saha, P.P.; Gupta, N.; Zhu, W.; Romano, K.A.; Skye, S.M.; Cajka, T.; Mohan, M.L.; Li, L.; Wu, Y. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell 2020, 180, 862–877.e822. [Google Scholar] [CrossRef]
- Brial, F.; Le Lay, A.; Dumas, M.-E.; Gauguier, D. Implication of gut microbiota metabolites in cardiovascular and metabolic diseases. Cell. Mol. Life Sci. 2018, 75, 3977–3990. [Google Scholar] [CrossRef] [Green Version]
- Meyer, K.A.; Bennett, B.J. Diet and gut microbial function in metabolic and cardiovascular disease risk. Curr. Diabetes Rep. 2016, 16, 93. [Google Scholar] [CrossRef]
- Schiattarella, G.G.; Sannino, A.; Esposito, G.; Perrino, C. Diagnostics and therapeutic implications of gut microbiota alterations in cardiometabolic diseases. Trends Cardiovasc. Med. 2019, 29, 141–147. [Google Scholar] [CrossRef]
- Geurts, L.; Neyrinck, A.M.; Delzenne, N.M.; Knauf, C.; Cani, P.D. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: Novel insights into molecular targets and interventions using prebiotics. Benef. Microbes 2014, 5, 3–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziegler, D.; Strom, A.; Bönhof, G.; Püttgen, S.; Bódis, K.; Burkart, V.; Müssig, K.; Szendroedi, J.; Markgraf, D.F.; Roden, M. Differential associations of lower cardiac vagal tone with insulin resistance and insulin secretion in recently diagnosed type 1 and type 2 diabetes. Metabolism 2018, 79, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.-Z.; Hsieh, P.-S. Hyperinsulinemia instead of insulin resistance induces baroreflex dysfunction in chronic insulin-infused rats. Am. J. Hypertens. 2007, 20, 451–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Zhu, Y.; Yang, X.; Deng, H.; Yan, J.; Lin, S.; Yang, H.; Chen, H.; Weng, J. Glycemic variability is an important risk factor for cardiovascular autonomic neuropathy in newly diagnosed type 2 diabetic patients. Int. J. Cardiol. 2016, 215, 263–268. [Google Scholar] [CrossRef]
- Ceriello, A.; Esposito, K.; Piconi, L.; Ihnat, M.A.; Thorpe, J.E.; Testa, R.; Boemi, M.; Giugliano, D. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 2008, 57, 1349–1354. [Google Scholar] [CrossRef] [Green Version]
- Bhati, P.; Alam, R.; Moiz, J.A.; Hussain, M.E. Subclinical inflammation and endothelial dysfunction are linked to cardiac autonomic neuropathy in type 2 diabetes. J. Diabetes Metab. Disord. 2019, 18, 419–428. [Google Scholar] [CrossRef]
- Alaaeddine, R.; Elkhatib, M.A.; Mroueh, A.; Fouad, H.; Saad, E.I.; El-Sabban, M.E.; Plane, F.; El-Yazbi, A.F. Impaired endothelium-dependent hyperpolarization underlies endothelial dysfunction during early metabolic challenge: Increased ROS generation and possible interference with NO function. J. Pharmacol. Exp. Ther. 2019, 371, 567–582. [Google Scholar] [CrossRef]
- Alaaeddine, R.A.; Mroueh, A.; Gust, S.; Eid, A.H.; Plane, F.; El-Yazbi, A.F. Impaired cross-talk between NO and hyperpolarization in myoendothelial feedback: A novel therapeutic target in early endothelial dysfunction of metabolic disease. Curr. Opin. Pharmacol. 2019, 45, 33–41. [Google Scholar] [CrossRef]
- Matsutani, D.; Sakamoto, M.; Iuchi, H.; Minato, S.; Suzuki, H.; Kayama, Y.; Takeda, N.; Horiuchi, R.; Utsunomiya, K. Glycemic variability in continuous glucose monitoring is inversely associated with baroreflex sensitivity in type 2 diabetes: A preliminary report. Cardiovasc. Diabetol. 2018, 17, 36. [Google Scholar] [CrossRef] [Green Version]
- Tarvainen, M.P.; Laitinen, T.P.; Lipponen, J.A.; Cornforth, D.J.; Jelinek, H.F. Cardiac autonomic dysfunction in type 2 diabetes–effect of hyperglycemia and disease duration. Front. Endocrinol. 2014, 5, 130. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.; Alam, R.; Ahmad, I.; Singla, D.; Ali, K.; Hussain, M.E. Effect of glycemic control and disease duration on cardiac autonomic function and oxidative stress in type 2 diabetes mellitus. J. Diabetes Metab. Disord. 2018, 17, 149–158. [Google Scholar] [CrossRef]
- Vinagre, I.; Sánchez-Quesada, J.L.; Sánchez-Hernández, J.; Santos, D.; Ordoñez-Llanos, J.; De Leiva, A.; Pérez, A. Inflammatory biomarkers in type 2 diabetic patients: Effect of glycemic control and impact of LDL subfraction phenotype. Cardiovasc. Diabetol. 2014, 13, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakkar, N.-M.Z.; Mougharbil, N.; Mroueh, A.; Kaplan, A.; Eid, A.H.; Fares, S.; Zouein, F.A.; El-Yazbi, A.F. Worsening baroreflex sensitivity on progression to type 2 diabetes: Localized vs. systemic inflammation and role of antidiabetic therapy. Am. J. Physiol.-Endocrinol. Metab. 2020, 319, E835–E851. [Google Scholar] [CrossRef] [PubMed]
- Warram, J.H.; Martin, B.C.; Krolewski, A.S.; Soeldner, J.S.; Kahn, C.R. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann. Intern. Med. 1990, 113, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Angelis, K.D.; Senador, D.D.; Mostarda, C.; Irigoyen, M.C.; Morris, M. Sympathetic overactivity precedes metabolic dysfunction in a fructose model of glucose intolerance in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, R950–R957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, P.A.; Walsh, J.; Huang, C.; McLeod, J. The sympathetic nervous system in diabetic neuropathy: A clinical and pathological study. Brain 1975, 98, 341–356. [Google Scholar] [CrossRef] [PubMed]
- Sacre, J.W.; Franjic, B.; Jellis, C.L.; Jenkins, C.; Coombes, J.S.; Marwick, T.H. Association of cardiac autonomic neuropathy with subclinical myocardial dysfunction in type 2 diabetes. JACC Cardiovasc. Imaging 2010, 3, 1207–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thackeray, J.T.; Radziuk, J.; Harper, M.-E.; Suuronen, E.J.; Ascah, K.J.; Beanlands, R.S.; DaSilva, J.N. Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia. Cardiovasc. Diabetol. 2011, 10, 75. [Google Scholar] [CrossRef] [Green Version]
- Sleight, P.; La Rovere, M.T.; Mortara, A.; Pinna, G.; Maestri, R.; Leuzzi, S.; Bianchini, B.; Tavazzi, L.; Bernardi, L. Physiology and pathophysiology of heart rate and blood pressure variability in humans: Is power spectral analysis largely an index of baroreflex gain? Clin. Sci. 1995, 88, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Mellitus, D. Diagnosis and classification of diabetes mellitus. Diabetes Care 2005, 28, S5–S10. [Google Scholar]
- Poliakova, N.; Després, J.-P.; Bergeron, J.; Alméras, N.; Tremblay, A.; Poirier, P. Influence of obesity indices, metabolic parameters and age on cardiac autonomic function in abdominally obese men. Metabolism 2012, 61, 1270–1279. [Google Scholar] [CrossRef] [PubMed]
- Ellulu, M.S.; Khaza’ai, H.; Rahmat, A.; Patimah, I.; Abed, Y. Obesity can predict and promote systemic inflammation in healthy adults. Int. J. Cardiol. 2016, 215, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Kurajoh, M.; Koyama, H.; Kadoya, M.; Naka, M.; Miyoshi, A.; Kanzaki, A.; Kakutani-Hatayama, M.; Okazaki, H.; Shoji, T.; Moriwaki, Y. Plasma leptin level is associated with cardiac autonomic dysfunction in patients with type 2 diabetes: HSCAA study. Cardiovasc. Diabetol. 2015, 14, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigoropoulou, P.; Eleftheriadou, I.; Zoupas, C.; Makrilakis, K.; Papassotiriou, I.; Margeli, A.; Perrea, D.; Katsilambros, N.; Tentolouris, N. Effect of atorvastatin on baroreflex sensitivity in subjects with type 2 diabetes and dyslipidaemia. Diabetes Vasc. Dis. Res. 2014, 11, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Lieb, D.C.; Parson, H.K.; Mamikunian, G.; Vinik, A.I. Cardiac autonomic imbalance in newly diagnosed and established diabetes is associated with markers of adipose tissue inflammation. Exp. Diabetes Res. 2012, 2012, 878760. [Google Scholar] [CrossRef]
- Herder, C.; Schamarek, I.; Nowotny, B.; Carstensen-Kirberg, M.; Straßburger, K.; Nowotny, P.; Kannenberg, J.M.; Strom, A.; Püttgen, S.; Müssig, K. Inflammatory markers are associated with cardiac autonomic dysfunction in recent-onset type 2 diabetes. Heart 2017, 103, 63–70. [Google Scholar] [CrossRef]
- Hansen, C.S.; Vistisen, D.; Jørgensen, M.E.; Witte, D.R.; Brunner, E.J.; Tabák, A.G.; Kivimäki, M.; Roden, M.; Malik, M.; Herder, C. Adiponectin, biomarkers of inflammation and changes in cardiac autonomic function: Whitehall II study. Cardiovasc. Diabetol. 2017, 16, 153. [Google Scholar] [CrossRef] [Green Version]
- Al-Assi, O.; Ghali, R.; Mroueh, A.; Kaplan, A.; Mougharbil, N.; Eid, A.H.; Zouein, F.A.; El-Yazbi, A.F. Cardiac autonomic neuropathy as a result of mild hypercaloric challenge in absence of signs of diabetes: Modulation by antidiabetic drugs. Oxid. Med. Cell. Longev. 2018, 2018, 9389784. [Google Scholar] [CrossRef] [Green Version]
- Elkhatib, M.A.; Mroueh, A.; Rafeh, R.W.; Sleiman, F.; Fouad, H.; Saad, E.I.; Fouda, M.A.; Elgaddar, O.; Issa, K.; Eid, A.H. Amelioration of perivascular adipose inflammation reverses vascular dysfunction in a model of nonobese prediabetic metabolic challenge: Potential role of antidiabetic drugs. Transl. Res. 2019, 214, 121–143. [Google Scholar] [CrossRef]
- Rutkowsky, J.M.; Lee, L.L.; Puchowicz, M.; Golub, M.S.; Befroy, D.E.; Wilson, D.W.; Anderson, S.; Cline, G.; Bini, J.; Borkowski, K. Reduced cognitive function, increased blood-brain-barrier transport and inflammatory responses, and altered brain metabolites in LDLr-/-and C57BL/6 mice fed a western diet. PLoS ONE 2018, 13, e0191909. [Google Scholar] [CrossRef] [Green Version]
- Fakih, W.; Mroueh, A.; Salah, H.; Eid, A.H.; Obeid, M.; Kobeissy, F.; Darwish, H.; El-Yazbi, A.F. Dysfunctional cerebrovascular tone contributes to cognitive impairment in a non-obese rat model of prediabetic challenge: Role of suppression of autophagy and modulation by anti-diabetic drugs. Biochem. Pharmacol. 2020, 178, 114041. [Google Scholar] [CrossRef] [PubMed]
- Takagishi, M.; Waki, H.; Bhuiyan, M.E.; Gouraud, S.S.; Kohsaka, A.; Cui, H.; Yamazaki, T.; Paton, J.F.; Maeda, M. IL-6 microinjected in the nucleus tractus solitarii attenuates cardiac baroreceptor reflex function in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R183–R190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, S.; Stevens, M.J.; Sheng, H.; Hall, K.E.; Wiley, J.W. Serum from patients with type 2 diabetes with neuropathy induces complement-independent, calcium-dependent apoptosis in cultured neuronal cells. J. Clin. Investig. 1998, 102, 1454–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Towns, R.; Kabeya, Y.; Yoshimori, T.; Guo, C.; Shangguan, Y.; Hong, S.; Kaplan, M.; Klionsky, D.J.; Wiley, J.W. Sera from patients with type 2 diabetes and neuropathy induce autophagy and colocalization with mitochondria in SY5Y cells. Autophagy 2005, 1, 163–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, M.X.; Lamers, F.; Neijts, M.; Willemsen, G.; De Geus, E.J.; Penninx, B.W. Bidirectional prospective associations between cardiac autonomic activity and inflammatory markers. Psychosom. Med. 2018, 80, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Maestroni, G.J. Sympathetic nervous system influence on the innate immune response. Ann. N. Y. Acad. Sci. 2006, 1069, 195–207. [Google Scholar] [CrossRef]
- Straub, R.H.; Linde, H.J.; Männel, D.N.; Schölmerich, J.; Falk, W. A bacteria-induced switch of sympathetic effector mechanisms augments local inhibition of TNF-α and IL-6 secretion in the spleen. Faseb J. 2000, 14, 1380–1388. [Google Scholar]
- Bonaz, B.; Bazin, T.; Pellissier, S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front. Neurosci. 2018, 12, 49. [Google Scholar] [CrossRef] [Green Version]
- Santisteban, M.M.; Qi, Y.; Zubcevic, J.; Kim, S.; Yang, T.; Shenoy, V.; Cole-Jeffrey, C.T.; Lobaton, G.O.; Stewart, D.C.; Rubiano, A. Hypertension-linked pathophysiological alterations in the gut. Circ. Res. 2017, 120, 312–323. [Google Scholar] [CrossRef]
- Tanaka, M.; Itoh, H. Hypertension as a metabolic disorder and the novel role of the gut. Curr. Hypertens. Rep. 2019, 21, 63. [Google Scholar] [CrossRef] [Green Version]
- Cosola, C.; Rocchetti, M.T.; Sabatino, A.; Fiaccadori, E.; Di Iorio, B.R.; Gesualdo, L. Microbiota issue in CKD: How promising are gut-targeted approaches? J. Nephrol. 2019, 32, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Bryniarski, M.A.; Hamarneh, F.; Yacoub, R. The role of chronic kidney disease-associated dysbiosis in cardiovascular disease. Exp. Biol. Med. 2019, 244, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Bartolomaeus, H.; Markó, L.; Wilck, N.; Luft, F.C.; Forslund, S.K.; Muller, D.N. Precarious symbiosis between host and microbiome in cardiovascular health. Hypertension 2019, 73, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Richards, E.M.; Pepine, C.J.; Raizada, M.K. The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease. Nat. Rev. Nephrol. 2018, 14, 442–456. [Google Scholar] [CrossRef]
- Oliveira Andrade, J.M.; de Farias Lelis, D.; Mafra, V.; Cota, J. The Angiotensin Converting Enzyme 2 (ACE2), Gut Microbiota, and Cardiovascular Health. Protein Pept. Lett. 2017, 24, 827–832. [Google Scholar] [CrossRef]
- Ziegler, D.; Strom, A.; Kupriyanova, Y.; Bierwagen, A.; Bönhof, G.J.; Bódis, K.; Müssig, K.; Szendroedi, J.; Bobrov, P.; Markgraf, D.F. Association of lower cardiovagal tone and baroreflex sensitivity with higher liver fat content early in type 2 diabetes. J. Clin. Endocrinol. Metab. 2018, 103, 1130–1138. [Google Scholar] [CrossRef]
- Lai, Y.-R.; Huang, C.-C.; Chang, H.-W.; Chiu, W.-C.; Tsai, N.-W.; Cheng, B.-C.; Chen, J.-F.; Lu, C.-H. Severity of Cardiovascular Autonomic Neuropathy Is a Predictor Associated With Major Adverse Cardiovascular Events in Adults With Type 2 Diabetes Mellitus: A 6-year Follow-up Study. Can. J. Diabetes 2020. [Google Scholar] [CrossRef]
- Karagiannis, E.; Pfützner, A.; Forst, T.; Lübben, G.; Roth, W.; Grabellus, M.; Flannery, M.; Schöndorf, T. The IRIS V study: Pioglitazone improves systemic chronic inflammation in patients with type 2 diabetes under daily routine conditions. Diabetes Technol. Ther. 2008, 10, 206–212. [Google Scholar] [CrossRef]
- Nerla, R.; Pitocco, D.; Zaccardi, F.; Scalone, G.; Coviello, I.; Mollo, R.; Ghirlanda, G.; Lanza, G.A.; Crea, F. Effect of pioglitazone on systemic inflammation is independent of metabolic control and cardiac autonomic function in patients with type 2 diabetes. Acta Diabetol. 2010, 47, 117–122. [Google Scholar] [CrossRef]
- Oliveira, P.W.C.; de Sousa, G.J.; Birocale, A.M.; Gouvêa, S.A.; de Figueiredo, S.G.; de Abreu, G.R.; Bissoli, N.S. Chronic metformin reduces systemic and local inflammatory proteins and improves hypertension-related cardiac autonomic dysfunction. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 274–281. [Google Scholar] [CrossRef]
- Bassaganya-Riera, J.; Misyak, S.; Guri, A.J.; Hontecillas, R. PPAR γ is highly expressed in F4/80hi adipose tissue macrophages and dampens adipose-tissue inflammation. Cell. Immunol. 2009, 258, 138–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bijland, S.; Mancini, S.J.; Salt, I.P. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin. Sci. 2013, 124, 491–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AlZaim, I.; Hammoud, S.H.; Al-Koussa, H.; Ghazi, A.; Eid, A.H.; El-Yazbi, A.F. Adipose Tissue Immunomodulation: A Novel Therapeutic Approach in Cardiovascular and Metabolic Diseases. Front. Cardiovasc. Med. 2020, 7, 277. [Google Scholar] [CrossRef]
- Madhavi, Y.; Gaikwad, N.; Yerra, V.G.; Kalvala, A.K.; Nanduri, S.; Kumar, A. Targeting AMPK in diabetes and diabetic complications: Energy homeostasis, autophagy and mitochondrial health. Curr. Med. Chem. 2019, 26, 5207–5229. [Google Scholar] [CrossRef]
- Syngle, A.; Verma, I.; Krishan, P.; Garg, N.; Syngle, V. Minocycline improves peripheral and autonomic neuropathy in type 2 diabetes: MIND study. Neurol. Sci. 2014, 35, 1067–1073. [Google Scholar] [CrossRef]
- Leigh, S.-J.; Kaakoush, N.O.; Westbrook, R.F.; Morris, M.J. Minocycline-induced microbiome alterations predict cafeteria diet-induced spatial recognition memory impairments in rats. Transl. Psychiatry 2020, 10, 92. [Google Scholar] [CrossRef]
- Marketou, M.; Zacharis, E.; Koukouraki, S.; Stathaki, M.; Arfanakis, D.; Kochiadakis, G.; Chlouverakis, G.; Karkavitsas, N.; Vardas, P. Effect of angiotensin-converting enzyme inhibitors on systemic inflammation and myocardial sympathetic innervation in normotensive patients with type 2 diabetes mellitus. J. Hum. Hypertens. 2008, 22, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Kontopoulos, A.G.; Athyros, V.G.; Didangelos, T.P.; Papageorgiou, A.A.; Avramidis, M.J.; Mayroudi, M.C.; Karamitsos, D.T. Effect of chronic quinapril administration on heart rate variability in patients with diabetic autonomic neuropathy. Diabetes Care 1997, 20, 355–361. [Google Scholar] [CrossRef]
- Didangelos, T.; Tziomalos, K.; Margaritidis, C.; Kontoninas, Z.; Stergiou, I.; Tsotoulidis, S.; Karlafti, E.; Mourouglakis, A.; Hatzitolios, A.I. Efficacy of administration of an angiotensin converting enzyme inhibitor for two years on autonomic and peripheral neuropathy in patients with diabetes mellitus. J. Diabetes Res. 2017, 2017, 6719239. [Google Scholar] [CrossRef] [Green Version]
- Manolis, A.J.; Iraklianou, S.; Pittaras, A.; Zairis, M.; Tsioufis, K.; Psaltiras, G.; Psomali, D.; Foussas, S.; Gavras, I.; Gavras, H. Arterial compliance changes in diabetic normotensive patients after angiotensin-converting enzyme inhibition therapy. Am. J. Hypertens. 2005, 18, 18–22. [Google Scholar] [CrossRef] [Green Version]
- Yvan-Charvet, L.; Quignard-Boulangé, A. Role of adipose tissue renin–angiotensin system in metabolic and inflammatory diseases associated with obesity. Kidney Int. 2011, 79, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Pahlavani, M.; Kalupahana, N.S.; Ramalingam, L.; Moustaid-Moussa, N. Regulation and Functions of the Renin-Angiotensin System in White and Brown Adipose Tissue. Compr. Physiol. 2017, 7, 1137–1150. [Google Scholar] [CrossRef] [PubMed]
- Takeda, T.; Hoshida, S.; Nishino, M.; Tanouchi, J.; Otsu, K.; Hori, M. Relationship between effects of statins, aspirin and angiotensin II modulators on high-sensitive C-reactive protein levels. Atherosclerosis 2003, 169, 155–158. [Google Scholar] [CrossRef]
- Anan, F.; Takahashi, N.; Nakagawa, M.; Ooie, T.; Saikawa, T.; Yoshimatsu, H. High-sensitivity C-reactive protein is associated with insulin resistance and cardiovascular autonomic dysfunction in type 2 diabetic patients. Metabolism 2005, 54, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Dwaib, H.S.; Taher, M.F.; Mougharbil, N.; Obeid, O.F.; El-Yazbi, A.F. Therapeutic fasting mitigates metabolic and cardiovascular dysfunction in a prediabetic rat model: Possible role of adipose inflammation. Faseb J. 2020, 34. [Google Scholar] [CrossRef]
Phase | Maneuver | Hemodynamic Change |
---|---|---|
1 | Onset of forced expiration | BP increases HR decreases (reflex) |
2—shortest R–R interval | Continued forced exhalation | BP increases Reflex tachycardia (R–R decreases), SNS activation |
3 | Release of forced expiration | BP decreases HR increases |
4—longest R–R interval | Continued release of forced expiration | BP increases Reflex bradycardia (R–R increases), PSNS activation |
Heart Rate Variability (HRV) | Description | Clinical Significance |
---|---|---|
Time-domain analysis [2] standard deviations (SDs) | SD: SD of N–N intervals | Overall |
SDNN: SD of difference between successive N–N intervals | Overall autonomic function | |
SDANN: SD of average of differences between successive N–N intervals | Overall autonomic function | |
percentNN50: percentage occurrence of N–N intervals above 50 ms | Parasympathetic function | |
RMSSD: Root mean square of the differences between successive N–N intervals | Parasympathetic function | |
Valsalva ratio | Longest: after release of the maneuver (phase 4: reflex bradycardia, parasympathetic) Shortest: during the maneuver (phase 2: reflex tachycardia, sympathetic) | |
Frequency-domain analysis | Very low frequency (VLF) | Sympathetic |
Low frequency (LF) | Parasympathetic and sympathetic, reflective of BRS | |
High frequency (HF) | Parasympathetic | |
Low/high frequency ratio (LF/HF) | Sympatho-vagal balance |
Parameter | Test | Methodology |
---|---|---|
Insulin secretion [2] (hypo- vs. hyperinsulinemia) | ΔC peptide | Before and 6 min after glucagon intravenous (IV) injection |
Fasting C-peptide | ||
Stimulated C-peptide | ||
Insulin sensitivity: hyperinsulinemic–euglycemic clamp [2] | Incremental area under the curve (iAUC) | |
Whole-body insulin sensitivity | M-value [2] | |
Whole-body insulin resistance | Homeostatic model assessment for insulin resistance (HOMA-IR) [11,74] | At basal state |
Oral glucose tolerance test [18] | OGTT | 2 h after oral administration of 75 g of glucose |
Insulin sensitivity: frequently sampled intravenous glucose tolerance test [18] | FSIVGTT |
Normal glucose tolerance (NGT) | FPG < 5.6 mmol/L (100 mg/dL) 2 h PG < 7.8 mmol/L (<140 mg/dL) |
Isolated impaired fasting glucose (iIFG) | FPG: 5.6–6.9 mmol/L (100–125 mg/dL) 2 h PG < 7.8 mmol/L (<140 mg/dL) |
Impaired glucose tolerance (IGT) | FPG < 7.0 mmol/L (126 mg/dL) 2 h PG: 7.8–11.1 mmol/L (140–199 mg/dL) |
Newly diagnosed diabetes (NDD) | FPG ≥ 7.0 mmol/L (126 mg/dL) 2 h PG ≥ 11.1 mmol/L (≥200 mg/dL) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakkar, N.-M.Z.; Dwaib, H.S.; Fares, S.; Eid, A.H.; Al-Dhaheri, Y.; El-Yazbi, A.F. Cardiac Autonomic Neuropathy: A Progressive Consequence of Chronic Low-Grade Inflammation in Type 2 Diabetes and Related Metabolic Disorders. Int. J. Mol. Sci. 2020, 21, 9005. https://doi.org/10.3390/ijms21239005
Bakkar N-MZ, Dwaib HS, Fares S, Eid AH, Al-Dhaheri Y, El-Yazbi AF. Cardiac Autonomic Neuropathy: A Progressive Consequence of Chronic Low-Grade Inflammation in Type 2 Diabetes and Related Metabolic Disorders. International Journal of Molecular Sciences. 2020; 21(23):9005. https://doi.org/10.3390/ijms21239005
Chicago/Turabian StyleBakkar, Nour-Mounira Z., Haneen S. Dwaib, Souha Fares, Ali H. Eid, Yusra Al-Dhaheri, and Ahmed F. El-Yazbi. 2020. "Cardiac Autonomic Neuropathy: A Progressive Consequence of Chronic Low-Grade Inflammation in Type 2 Diabetes and Related Metabolic Disorders" International Journal of Molecular Sciences 21, no. 23: 9005. https://doi.org/10.3390/ijms21239005
APA StyleBakkar, N. -M. Z., Dwaib, H. S., Fares, S., Eid, A. H., Al-Dhaheri, Y., & El-Yazbi, A. F. (2020). Cardiac Autonomic Neuropathy: A Progressive Consequence of Chronic Low-Grade Inflammation in Type 2 Diabetes and Related Metabolic Disorders. International Journal of Molecular Sciences, 21(23), 9005. https://doi.org/10.3390/ijms21239005