Early CSF Biomarkers and Late Functional Outcomes in Spinal Cord Injury. A Pilot Study
Abstract
:1. Introduction
2. Results
2.1. Participants and Biomarkers
2.2. Correlation Analysis
2.2.1. Neurological Level
2.2.2. Light Touch Score
2.2.3. Pin-Prick Score
2.2.4. Motor Score
2.2.5. SCIM
2.2.6. MAS Upper Limbs
2.2.7. MAS Lower Limbs
3. Discussion
4. Materials and Methods
4.1. Study Participants and Ethical Issues
4.2. CSF Sampling and Biochemical Analysis
4.3. Outcomes/Neurological Evaluations
4.4. Statistical Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AIS | American Spinal Injury Association (ASIA) Impairment Scale |
ASIA | American Spinal Injury Association |
BDNF | Brain Derived Neurotrophic Factor |
CSF | Cerebrospinal fluid |
CTACK | Cutaneous T cell-attracting chemokine |
GBD | Global Burden of Diseases, Injuries, and Risk Factors |
GROα | Growth-regulated oncogene-alpha |
HGF | Hepatic growth factor |
sICAM | Soluble intercellular adhesion molecule-1 |
IFNα2 | Interferon alpha-2 |
IL6 | Interleukin 6 |
IL8 | Interleukin 8 |
IL7 | Interleukin 7 |
IL9 | Interleukin 9 |
IL13 | Interleukin 13 |
IL15 | Interleukin 15 |
IL16 | Interleukin 16 |
IL18 | Interleukin 18 |
IL2Ra | Interleukin-2 receptor alpha chain |
IP10 | Interferon gamma-induced protein 10 |
ISNCSC | International Standards for Neurological Classification of Spinal Cord Injury |
MAS | Ashworth Modified Scale |
MCP1 | Monocyte chemoattractant protein 1 |
MIF | Macrophage migration inhibitory factor |
MIG | Monokine induced by gamma interferon |
MIP-1α | Macrophage Inflammatory Protein 1a |
MIP-1β | Macrophage Inflammatory Protein 1 b |
MPO | Myeloperoxidase |
NCAM | Neural cell adhesion molecule |
NLI | Neurological level of injury |
NSE | Neuron Specific Enolase |
NGF-β | Nerve Growth Factor-beta |
PAI1 | Plasminogen activator inhibitor-1 |
PDGF-AA | Platelet growth factor -AA |
PDGF-AB/BB | Platelet growth factor -ABBB |
RANTES | Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted) |
SCF | Stem cell factor |
SCGF-β | Stem Cell Growth Factor beta |
SCI | Spinal cord injury |
SCIM | Spinal Cord Independence Measure |
SDF-1α | Stromal cell-derived factor 1 |
pTAU | Phosphorylated tau protein |
tTAU | Total tau protein |
TNF-α | Tumor necrosis factor a |
TRAIL | Tumor necrosis factor (TNF)-Related Apoptosis Inducing Ligand |
sVCAM | Soluble Vascular Cell Adhesion Molecule-1 |
References
- Deuschl, G.; Beghi, E.; Fazekas, F.; Varga, T.; Christoforidi, K.A.; Sipido, E.; Bassetti, C.L.; Vos, T.; Feigin, V.L. The burden of neurological diseases in Europe: An analysis for the Global Burden of Disease Study. Lancet Public Health 2020, 5, e551–e567. [Google Scholar] [CrossRef]
- Roberts, T.T.; Leonard, G.R.; Cepela, D.J. Classifications in Brief: American Spinal Injury Association (ASIA) Impairment Scale. Clin. Orthop. Relat. Res. 2016, 475, 1499–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, A.J.; Clinical Trial Collaborators; Clark, J.M.; Ho, D.T.; Payne, C.J.; Nolan, S.; Goodes, L.M.; Harvey, L.A.; Marshall, R.; Galea, M.P.; et al. Achieving assessor accuracy on the International Standards for Neurological Classification of Spinal Cord Injury. Spinal Cord 2017, 55, 994–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhle, J.; Gaiottino, J.; Leppert, D.; Petzold, A.; Bestwick, J.P.; Malaspina, A.; Lu, C.-H.; Dobson, R.; Disanto, G.; Norgren, N.; et al. Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome. J. Neurol. Neurosurg. Psychiatry 2014, 86, 273–279. [Google Scholar] [CrossRef]
- Kwon, B.K.; Streijger, F.; Fallah, N.; Noonan, V.K.; Belanger, L.; Ritchie, L.; Paquette, S.J.; Ailon, T.; Boyd, M.C.; Street, J.; et al. Cerebrospinal Fluid Biomarkers To Stratify Injury Severity and Predict Outcome in Human Traumatic Spinal Cord Injury. J. Neurotrauma 2017, 34, 567–580. [Google Scholar] [CrossRef]
- Pouw, M.H.; Hosman, A.J.F.; Van Middendorp, J.J.; Verbeek, M.M.; Vos, P.E.; Van De Meent, H. Biomarkers in spinal cord injury. Spinal Cord 2009, 47, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Yokobori, S.; Zhang, Z.; Moghieb, A.; Mondello, S.; Gajavelli, S.; Dietrich, W.D.; Bramlett, H.; Hayes, R.L.; Wang, M.; Wang, K.K.W.; et al. Acute Diagnostic Biomarkers for Spinal Cord Injury: Review of the Literature and Preliminary Research Report. World Neurosurg. 2015, 83, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Pouw, M.H.; Kwon, B.K.; Verbeek, M.M.; Vos, P.E.; Van Kampen, A.; Fisher, C.G.; Street, J.; Paquette, S.J.; Dvorak, M.F.; Boyd, M.C.; et al. Structural biomarkers in the cerebrospinal fluid within 24 h after a traumatic spinal cord injury: A descriptive analysis of 16 subjects. Spinal Cord 2014, 52, 428–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, M.; Baldassarro, V.A.; Capirossi, R.; Montevecchi, R.; Bonavita, J.; Cescatti, M.; Giovannini, T.; Giovannini, G.; Uneddu, M.; Giovanni, G.; et al. Possible Strategies to Optimize a Biomarker Discovery Approach to Correlate with Neurological Outcome in Patients with Spinal Cord Injury: A Pilot Study. J. Neurotrauma 2019, 37, 431–440. [Google Scholar] [CrossRef]
- Albayar, A.A.; Roche, A.; Swiatkowski, P.; Antar, S.; Ouda, N.; Emara, E.; Smith, D.H.; Ozturk, A.K.; Awad, B.I. Biomarkers in Spinal Cord Injury: Prognostic Insights and Future Potentials. Front. Neurol. 2019, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Kwon, B.K.; Bloom, O.; Wanner, I.-B.; Curt, A.; Schwab, J.M.; Fawcett, J.; Wang, K.K. Neurochemical biomarkers in spinal cord injury. Spinal Cord 2019, 57, 819–831. [Google Scholar] [CrossRef]
- Hulme, C.H.; Brown, S.J.; Fuller, H.R.; Riddell, J.; Osman, A.; Chowdhury, J.; Kumar, N.; Johnson, W.E.; Wright, K.T. The developing landscape of diagnostic and prognostic biomarkers for spinal cord injury in cerebrospinal fluid and blood. Spinal Cord 2016, 55, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.; Moura-Neto, V.; Spohr, T.C.L.d.S.E. Biomarkers in Spinal Cord Injury: From Prognosis to Treatment. Mol. Neurobiol. 2018, 55, 6436–6448. [Google Scholar] [CrossRef] [PubMed]
- Dalkilic, T.; Fallah, N.; Noonan, V.K.; Elizei, S.S.; Dong, K.; Belanger, L.; Ritchie, L.; Tsang, A.; Bourassa-Moreau, E.; Heran, M.K.; et al. Predicting Injury Severity and Neurological Recovery after Acute Cervical Spinal Cord Injury: A Comparison of Cerebrospinal Fluid and Magnetic Resonance Imaging Biomarkers. J. Neurotrauma 2018, 35, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-H.; Chen, X.; He, X. Platelet-derived growth factors and their receptors: Structural and functional perspectives. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2013, 1834, 2176–2186. [Google Scholar] [CrossRef] [Green Version]
- Ishii, Y.; Hamashima, T.; Yamamoto, S.; Sasahara, M. Pathogenetic significance and possibility as a therapeutic target of platelet derived growth factor. Pathol. Int. 2017, 67, 235–246. [Google Scholar] [CrossRef]
- Calzà, L.; Baldassarro, V.A.; Fernández, M.; Giuliani, A.; Lorenzini, L.; Giardino, L. Thyroid Hormone and the White Matter of the Central Nervous System: From Development to Repair. Vitam. Horm. 2018, 253–281. [Google Scholar] [CrossRef]
- Aloe, L.; Calzà, L. NGF and Related Molecules in Health and Disease; Elsevier: Amsterdam, The Netherlands, 2004; Volume 146, pp. 1–544. [Google Scholar]
- Calzà, L.; Giardino, L.; Giuliani, A.; Aloe, L.; Levi-Montalcini, R. Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors. Proc. Natl. Acad. Sci. USA 2001, 98, 4160–4165. [Google Scholar] [CrossRef] [Green Version]
- Calzà, L.; Giardino, L.; Pozza, M.; Micera, A.; Aloe, L. Time-course changes of nerve growth factor, corticotropin-releasing hormone, and nitric oxide synthase isoforms and their possible role in the development of inflammatory response in experimental allergic encephalomyelitis. Proc. Natl. Acad. Sci. USA 1997, 94, 3368–3373. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci. 2016, 17, 22–35. [Google Scholar] [CrossRef]
- Tsitsopoulos, P.P.; Marklund, N. Amyloid-β Peptides and Tau Protein as Biomarkers in Cerebrospinal and Interstitial Fluid Following Traumatic Brain Injury: A Review of Experimental and Clinical Studies. Front. Neurol. 2013, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caprelli, M.T.; Mothe, A.J.; Tator, C.H. CNS Injury: Posttranslational Modification of the Tau Protein as a Biomarker. Neuroscientist 2017, 25, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.-F.; Wang, D.-L.; Tang, Y.; Liu, H.-L.; Min, L.-X.; Yuan, H.-S.; Guo, L.; Han, P.-B.; Lu, Y.-X. Serum and cerebrospinal fluid tau protein level as biomarkers for evaluating acute spinal cord injury severity and motor function outcome. Neural Regen. Res. 2019, 14, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Nakhjiri, E.; Vafaee, M.S.; Hojjati, S.M.M.; Shahabi, P.; Shahpasand, K. Tau Pathology Triggered by Spinal Cord Injury Can Play a Critical Role in the Neurotrauma Development. Mol. Neurobiol. 2020, 57, 4845–4855. [Google Scholar] [CrossRef] [PubMed]
- Kwon, B.K.; Stammers, A.M.; Belanger, L.; Bernardo, A.; Chan, D.; Bishop, C.M.; Slobogean, G.P.; Zhang, H.; Umedaly, H.; Giffin, M.; et al. Cerebrospinal Fluid Inflammatory Cytokines and Biomarkers of Injury Severity in Acute Human Spinal Cord Injury. J. Neurotrauma 2010, 27, 669–682. [Google Scholar] [CrossRef]
- Stoka, V.; Turk, V.; Turk, B. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res. Rev. 2016, 32, 22–37. [Google Scholar] [CrossRef]
- Roselli, F.; Chandrasekar, A.; Morganti-Kossmann, M.C. Interferons in Traumatic Brain and Spinal Cord Injury: Current Evidence for Translational Application. Front. Neurol. 2018, 9, 458. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.; Wei, T.; Boring, L.; Charo, I.F.; Ransohoff, R.M.; Jakeman, L.B. Monocyte recruitment and myelin removal are delayed following spinal cord injury in mice with CCR2 chemokine receptor deletion. J. Neurosci. Res. 2002, 68, 691–702. [Google Scholar] [CrossRef]
- Maurer, M.; Von Stebut, E. Macrophage inflammatory protein. Int. J. Biochem. Cell Biol. 2004, 36, 1882–1886. [Google Scholar] [CrossRef]
- Saini, V.; Loers, G.; Kaur, G.; Schachner, M.; Jakovcevski, I. Impact of neural cell adhesion molecule deletion on regeneration after mouse spinal cord injury. Eur. J. Neurosci. 2016, 44, 1734–1746. [Google Scholar] [CrossRef]
- Elyaman, W.; Khoury, S.J. Th9 cells in the pathogenesis of EAE and multiple sclerosis. Semin. Immunopathol. 2017, 39, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-L.; Huang, Y.; Zhou, Y.-L.; Teng, R.-H.; Zhou, S.-Z.; Lin, J.-P.; Yang, Y.; Zhu, S.-M.; Xu, H.; Yao, Y.-X. C-X-C Motif Chemokine 10 Contributes to the Development of Neuropathic Pain by Increasing the Permeability of the Blood–Spinal Cord Barrier. Front. Immunol. 2020, 11, 477. [Google Scholar] [CrossRef] [PubMed]
- Mordillo-Mateos, L.; Sánchez-Ramos, A.; Coperchini, F.; Bustos-Guadamillas, I.; Alonso-Bonilla, C.; Vargas-Baquero, E.; Rodriguez-Carrión, I.; Rotondi, M.; Oliviero, A. Development of chronic pain in males with traumatic spinal cord injury: Role of circulating levels of the chemokines CCL2 and CXCL10 in subacute stage. Spinal Cord 2019, 57, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Kwiecien, J.M.; Dabrowski, W.; Dąbrowska-Bouta, B.; Sulkowski, G.; Oakden, W.; Kwiecien-Delaney, C.J.; Yaron, J.R.; Zhang, L.; Schutz, L.; Marzec-Kotarska, B.; et al. Prolonged inflammation leads to ongoing damage after spinal cord injury. PLoS ONE 2020, 15, e0226584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bighinati, A.; Focarete, M.L.; Gualandi, C.; Pannella, M.; Giuliani, A.; Beggiato, S.; Ferraro, L.; Lorenzini, L.; Giardino, L.; Calzà, L. Improved Functional Recovery in Rat Spinal Cord Injury Induced by a Drug Combination Administered with an Implantable Polymeric Delivery System. J. Neurotrauma 2020, 37, 1708–1719. [Google Scholar] [CrossRef] [PubMed]
- Kwiecien, J.M.; Dabrowski, W.; Kwiecien-Delaney, B.J.; Kwiecien-Delaney, C.J.; Siwicka-Gieroba, D.; Yaron, J.R.; Zhang, L.; Delaney, K.H.; Lucas, A.R. Neuroprotective Effect of Subdural Infusion of Serp-1 in Spinal Cord Trauma. Biomedicines 2020, 8, 372. [Google Scholar] [CrossRef]
- Borjini, N.; Fernández, M.; Giardino, L.; Calzà, L. Cytokine and chemokine alterations in tissue, CSF, and plasma in early presymptomatic phase of experimental allergic encephalomyelitis (EAE), in a rat model of multiple sclerosis. J. Neuroinflamm. 2016, 13, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Borjini, N.; Sivilia, S.; Giuliani, A.; Fernandez, M.; Giardino, L.; Facchinetti, F.; Calzà, L. Potential biomarkers for neuroinflammation and neurodegeneration at short and long term after neonatal hypoxic-ischemic insult in rat. J. Neuroinflamm. 2019, 16, 1–18. [Google Scholar] [CrossRef]
- Harvey, L.A.; Anderson, K.D. The Spinal Cord Independence Measure. J. Physiother. 2015, 61, 99. [Google Scholar] [CrossRef] [Green Version]
- Meseguer-Henarejos, A.-B.; Sánchez-Meca, J.; Pina, J.A.L.; Carles-Hernández, R. Inter- and intra-rater reliability of the Modified Ashworth Scale: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2017, 54, 576–590. [Google Scholar]
- Harb, A.; Kishner, S. Modified Ashworth Scale. StatPearls Publishing. Available online: http://www.ncbi.nlm.nih.gov/pubmed/32119459 (accessed on 23 November 2020).
ID | Gender | Age | A.I.S. Grade | Neurological Level | Comorbidities | Associated Injuries |
---|---|---|---|---|---|---|
3 | Male | 68 | A | T6 | metabolic, cardiological | thoracic |
4 | Male | 35 | B | T4 | none | thoracic |
5 | Male | 74 | D | C5 | metabolic, gastrointestinal | none |
6 | Male | 42 | A | T7 | hematological | thoracic |
7 | Male | 73 | D | C5 | metabolic, cardiological, gastrointestinal | scalp |
9 * | Female | 41 | A | T8 | none | brain, hip |
10 | Male | 63 | D | C5 | osteoarticular, metabolic | brain, abdominal, thoracic |
13 ** | Male | 53 | A | C4 | cardiological, metabolic, respiratory | thoracic |
14 | Female | 53 | B | T11 | none | brain |
16 | Male | 53 | B | C4 | psychological | brain |
17 | Male | 55 | A | T3 | none | brain, thoracic |
Cytokines and Chemokines | CTACK, IFN-α2, IL-13, IL-15, IL-16, IL-18, IL-2r-α, IL-6, IL-7, IL-8, IL-9, IP-10, MCP-1, MIP-1α, MIP-1β, RANTES, TNF-α, TRAIL |
---|---|
Growth and other factors | BDNF, GRO-α, HGF, NGF-β, PDGF-AA, PDGF-AA/BB, SCF, SCGF-β, SDF-1α |
Soluble cell adhesion molecules | sVCAM, sICAM, NCAM |
Neurological biomarkers | NSE, p-TAU, t-TAU |
Other biomarkers | MIG, MIF, cathepsin D, MPO, PAI-1 |
Biomarker | Neurological Level | Light Touch Score | Pin Prick Score | Motor Score | SCIM | MAS Upper Limbs | MAS Lower Limbs |
---|---|---|---|---|---|---|---|
CTACK | −0.390 | −0.267 | −0.167 | 0.170 | 0.117 | 0.000 | −0.234 |
IFN-α2 | 0.068 | −0.850 | −0.650 | −0.644 | −0.483 | 0.518 | 0.061 |
IL-13 | −0.339 | −0.550 | −0.617 | −0.153 | −0.067 | 0.207 | 0.017 |
IL-15 | 0.356 | −0.333 | −0.267 | −0.610 | −0.250 | 0.207 | 0.234 |
IL-16 | 0.424 | −0.167 | 0.000 | −0.356 | 0.000 | 0.104 | 0.043 |
IL-18 | 0.509 | −0.083 | 0.167 | −0.085 | −0.017 | 0.104 | −0.624 |
IL-2rα | −0.271 | −0.233 | −0.267 | −0.085 | −0.500 | 0.104 | −0.407 |
IL-6 | 0.170 | −0.300 | −0.133 | −0.526 | −0.367 | 0.104 | −0.052 |
IL-7 | 0.197 | 0.067 | 0.135 | −0.180 | −0.420 | −0.365 | −0.319 |
IL-8 | 0.203 | −0.217 | -0.167 | −0.593 | −0.367 | 0.000 | 0.260 |
IL-9 | 0.661 | −0.200 | −0.167 | −0.559 | −0.083 | 0.207 | 0.321 |
IP-10 | −0.187 | −0.033 | −0.067 | −0.407 | -0.383 | −0.414 | −0.009 |
MCP-1 | 0.559 | −0.300 | −0.267 | −0.746 | −0.450 | 0.414 | 0.234 |
MIP-1α | 0.644 | −0.267 | −0.250 | −0.661 | −0.250 | 0.207 | 0.303 |
MIP-1β | 0.763 | −0.233 | −0.100 | −0.356 | 0.133 | 0.311 | 0.217 |
TNF-α | 0.237 | −0.267 | −0.150 | −0.526 | −0.267 | 0.104 | 0.113 |
TRAIL | 0.392 | −0.268 | 0.008 | −0.247 | −0.142 | 0.052 | −0.344 |
RANTES | −0.220 | 0.217 | 0.450 | 0.305 | 0.250 | −0.518 | −0.277 |
BDNF | −0.220 | 0.700 | 0.683 | 0.678 | 0.417 | −0.518 | −0.520 |
NGF-β | 0.060 | 0.126 | 0.193 | −0.145 | −0.361 | −0.365 | −0.743 |
GRO-α | 0.390 | 0.100 | 0.100 | −0.288 | 0.100 | 0.000 | 0.095 |
HGF | −0.017 | −0.367 | −0.183 | −0.136 | 0.033 | −0.104 | 0.052 |
PDGF-AA | −0.373 | 0.800 | 0.717 | 0.712 | 0.333 | −0.725 | −0.425 |
PDGF-AB/BB | −0.187 | 0.200 | 0.283 | 0.051 | −0.033 | −0.414 | −0.537 |
SCF | −0.034 | −0.600 | −0.517 | −0.475 | −0.450 | 0.207 | 0.104 |
SCGF-β | −0.085 | −0.417 | −0.350 | −0.017 | 0.250 | 0.207 | −0.156 |
SDF-1α | 0.034 | 0.150 | 0.217 | 0.000 | −0.183 | −0.311 | −0.633 |
sVCAM | −0.119 | −0.133 | −0.017 | −0.119 | −0.267 | −0.414 | −0.494 |
NCAM | −0.034 | 0.433 | 0.433 | 0.746 | 0.583 | −0.311 | −0.295 |
sICAM | 0.017 | −0.233 | −0.150 | −0.170 | −0.167 | 0.207 | −0.667 |
NSE | 0.119 | −0.517 | −0.450 | −0.475 | −0.083 | 0.311 | 0.572 |
t-TAU | −0.051 | 0.762 | 0.644 | 0.613 | 0.469 | −0.676 | −0.109 |
p-TAU | −0.187 | 0.650 | 0.550 | 0.763 | 0.700 | −0.518 | 0.130 |
PAI-1 | −0.017 | −0.233 | −0.167 | −0.424 | −0.233 | 0.000 | −0.113 |
Cathepsin-D | −0.034 | 0.383 | 0.333 | 0.695 | 0.867 | −0.104 | 0.173 |
MIF | 0.254 | −0.117 | −0.067 | −0.153 | 0.333 | 0.104 | 0.598 |
MIG | −0.441 | 0.200 | 0.417 | 0.305 | 0.017 | −0.621 | −0.511 |
MPO | 0.119 | 0.200 | 0.467 | 0.339 | 0.500 | −0.311 | 0.009 |
Biomarker | Neurological Level | Light Touch Score | Pin Prick Score | Motor Score | SCIM | MAS Lower Limbs |
---|---|---|---|---|---|---|
CTACK | −0.330 | −0.209 | 0.231 | 0.340 | 0.185 | −0.164 |
IFN-α2 | −0.267 | 0.017 | −0.169 | −0.400 | −0.227 | −0.265 |
IL-13 | 0.134 | 0.226 | −0.053 | 0.009 | −0.261 | −0.475 |
IL-15 | 0.312 | 0.067 | −0.106 | −0.635 | −0.017 | −0.201 |
IL-16 | 0.312 | −0.276 | −0.222 | −0.522 | 0.311 | −0.274 |
IL-18 | 0.267 | −0.352 | −0.576 | −0.392 | 0.177 | −0.575 |
IL-2rα | −0.339 | 0.368 | −0.195 | 0.174 | −0.630 | −0.110 |
IL-6 | −0.045 | −0.126 | −0.177 | −0.400 | 0.067 | −0.155 |
IL-7 | 0.143 | 0.126 | 0.053 | −0.505 | −0.067 | −0.009 |
IL-8 | 0.238 | 0.190 | −0.380 | −0.290 | −0.386 | −0.295 |
IL-9 | 0.561 | 0.176 | 0.124 | −0.827 | −0.017 | −0.146 |
IP-10 | 0.223 | 0.201 | 0.036 | −0.218 | −0.118 | −0.201 |
MCP-1 | 0.080 | 0.343 | 0.248 | −0.740 | −0.269 | 0.164 |
MIP-1α | 0.508 | 0.343 | 0.204 | −0.870 | −0.210 | −0.119 |
MIP-1β | 0.454 | −0.042 | 0.169 | −0.749 | 0.160 | −0.164 |
TNF-α | 0.134 | −0.075 | −0.142 | −0.479 | 0.084 | −0.155 |
TRAIL | 0.018 | −0.231 | −0.058 | −0.402 | 0.122 | −0.321 |
RANTES | −0.232 | −0.653 | 0.089 | 0.313 | 0.672 | −0.055 |
BDNF | −0.036 | −0.352 | 0.018 | 0.557 | 0.437 | 0.046 |
NGF-β | 0.126 | 0.156 | −0.009 | −0.158 | −0.195 | −0.359 |
GRO-α | 0.445 | −0.025 | 0.186 | −0.470 | 0.277 | −0.082 |
HGF | 0.169 | −0.301 | −0.257 | −0.183 | 0.210 | −0.456 |
PDGF-AA | −0.027 | −0.226 | 0.018 | 0.653 | 0.303 | 0.119 |
PDGF-AB/BB | −0.054 | −0.176 | 0.222 | 0.131 | 0.277 | −0.173 |
SCF | 0.036 | 0.126 | −0.488 | −0.313 | −0.370 | −0.383 |
SCGF-β | 0.241 | −0.176 | −0.053 | −0.070 | 0.219 | −0.575 |
SDF-1α | 0.018 | 0.084 | 0.186 | −0.035 | −0.076 | −0.210 |
sVCAM | 0.294 | −0.059 | −0.505 | −0.131 | −0.118 | −0.694 |
NCAM | 0.267 | −0.352 | −0.364 | 0.392 | 0.294 | −0.256 |
sICAM | −0.062 | 0.025 | 0.062 | −0.096 | −0.034 | −0.383 |
NSE | 0.089 | −0.034 | 0.018 | −0.400 | 0.067 | −0.055 |
t-TAU | 0.336 | −0.084 | 0.196 | 0.319 | 0.270 | 0.101 |
p-TAU | 0.160 | −0.276 | 0.257 | 0.514 | 0.471 | 0.219 |
PAI-1 | 0.196 | −0.092 | −0.275 | −0.296 | 0.109 | −0.374 |
Cathepsin-D | 0.205 | −0.418 | 0.177 | 0.383 | 0.622 | 0.073 |
MIF | 0.276 | −0.243 | 0.204 | −0.313 | 0.445 | 0.064 |
MIG | −0.401 | −0.527 | 0.009 | 0.470 | 0.445 | −0.100 |
MPO | −0.009 | −0.812 | −0.098 | 0.104 | 0.832 | −0.055 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capirossi, R.; Piunti, B.; Fernández, M.; Maietti, E.; Rucci, P.; Negrini, S.; Giovannini, T.; Kiekens, C.; Calzà, L. Early CSF Biomarkers and Late Functional Outcomes in Spinal Cord Injury. A Pilot Study. Int. J. Mol. Sci. 2020, 21, 9037. https://doi.org/10.3390/ijms21239037
Capirossi R, Piunti B, Fernández M, Maietti E, Rucci P, Negrini S, Giovannini T, Kiekens C, Calzà L. Early CSF Biomarkers and Late Functional Outcomes in Spinal Cord Injury. A Pilot Study. International Journal of Molecular Sciences. 2020; 21(23):9037. https://doi.org/10.3390/ijms21239037
Chicago/Turabian StyleCapirossi, Rita, Beatrice Piunti, Mercedes Fernández, Elisa Maietti, Paola Rucci, Stefano Negrini, Tiziana Giovannini, Carlotte Kiekens, and Laura Calzà. 2020. "Early CSF Biomarkers and Late Functional Outcomes in Spinal Cord Injury. A Pilot Study" International Journal of Molecular Sciences 21, no. 23: 9037. https://doi.org/10.3390/ijms21239037
APA StyleCapirossi, R., Piunti, B., Fernández, M., Maietti, E., Rucci, P., Negrini, S., Giovannini, T., Kiekens, C., & Calzà, L. (2020). Early CSF Biomarkers and Late Functional Outcomes in Spinal Cord Injury. A Pilot Study. International Journal of Molecular Sciences, 21(23), 9037. https://doi.org/10.3390/ijms21239037