Seminal Plasma Proteomic Biomarkers of Oxidative Stress
Abstract
:1. Introduction
- OS damages the sperm cytoplasmic membrane, which is rich in phospholipids with (poly)unsaturated fatty acyl residues highly susceptible to radical damage. This leads to an alteration of sperm motility [12] and its ability to fertilize the oocytes.
- The excess of radicals causes sperm DNA fragmentation (SDF), resulting in impairment of the paternal genetic contribution to the embryo development [13].
2. Methods
2.1. Sources
2.2. Study Selection
3. Results
4. Seminal Plasma Proteome in Patients with Increased Oxidative Stress
5. Seminal Plasma Proteome in Patients with Diseases Typically Associated with Increased OS
5.1. Varicocele, Oxidative Stress, and Seminal Plasma Proteome
5.2. Male Accessory Gland Infections, Oxidative Stress, and Seminal Plasma Proteome
5.3. Cigarette Smoking, Oxidative Stress, and Seminal Plasma Proteome
5.4. Obesity, Oxidative Stress, and Seminal Plasma Proteome
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Report of the Meeting on the Prevention of Infertility at the Primary Health Care Levels 12–16 December 1983, Geneva; World Health Organization: Switzerland, Geneva, 1984. [Google Scholar]
- Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 2015, 13, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Punab, M.; Poolamets, O.; Paju, P.; Vihljajev, V.; Pomm, K.; Ladva, R.; Korrovits, P.; Laan, M. Causes of male infertility: A 9-year prospective monocentre study on 1737 patients with reduced total sperm counts. Hum. Reprod. 2017, 32, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Tüttelmann, F.; Ruckert, C.; Röpke, A. Disorders of spermatogenesis: Perspectives for novel genetic diagnostics after 20 years of unchanged routine. Med. Genet. 2018, 30, 2–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacone, F.; Cannarella, R.; Mongioì, L.M.; Alamo, A.; Condorelli, R.A.; Calogero, A.E.; La Vignera, S. Epigenetics of Male Fertility: Effects on Assisted Reproductive Techniques. World J. Mens. Health 2019, 37, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, A.; Gagnon, C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil. Steril. 1992, 57, 409–416. [Google Scholar] [CrossRef]
- Ochsendorf, F.R.; Thiele, J.; Fuchs, J.; Schuttau, H.; Freisleben, H.J.; Buslau, M.; Milbradt, R. Chemiluminescence in semen of infertile men. Andrologia 1994, 26, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Shekarriz, M.; Dewire, D.M.; Thomas, A.J., Jr.; Agarwal, A. A method of human semen centrifugation to minimize the iatrogenic sperm injuries caused by reactive oxygen species. Eur. Urol. 1995, 28, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Shekarriz, M.; Thomas, A.J., Jr.; Agarwal, A. Incidence and level of seminal reactive oxygen species in normal men. Urology 1995, 45, 103–107. [Google Scholar] [CrossRef]
- Tremellen, K. Oxidative stress and male infertility—A clinical perspective. Hum. Reprod. Update 2008, 14, 243–258. [Google Scholar] [CrossRef]
- Zini, A.; de Lamirande, E.; Gagnon, C. Reactive oxygen species in semen of infertile patients: Levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int. J. Androl. 1993, 16, 183–188. [Google Scholar] [CrossRef]
- Barbagallo, F.; La Vignera, S.; Cannarella, R.; Aversa, A.; Calogero, A.E.; Condorelli, R.A. Evaluation of Sperm Mitochondrial Function: A Key Organelle for Sperm Motility. J. Clin. Med. 2020, 9, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, A.; Durairajanayagam, D.; Halabi, J.; Peng, J.; Vazquez-Levin, M. Proteomics, oxidative stress and male infertility. Reprod. Biomed. Online 2014, 29, 32–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasinger, V.C.; Cordwell, S.J.; Poljak, A.; Yan, J.X.; Gooley, A.A.; Wilkins, M.R.; Duncan, M.W.; Harris, R.; Williams, K.L.; Humphery-Smith, I. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 1995, 16, 1090–1094. [Google Scholar] [CrossRef] [PubMed]
- Batruch, I.; Lecker, I.; Kagedan, D.; Smith, C.R.; Mullen, B.J.; Grober, E.; Lo, K.C.; Drabovich, A.P.; Jarvi, K. Proteomic Analysis of Seminal Plasma from Normal Volunteers and Post-Vasectomy Patients Identifies over 2000 Proteins and Candidate Biomarkers of the Urogenital System. J. Proteome. Res. 2011, 10, 941–953. [Google Scholar] [CrossRef] [PubMed]
- Barranco, I.; Padilla, L.; Martinez, C.A.; Álvarez-Rodríguez, M.; Parrilla, I.; Lucas, X.; Ferreira-Dias, G.; Yeste, M.; Rodriguez-Martínez, H.; Roca, J. Seminal Plasma Modulates miRNA Expression by Sow Genital Tract Lining Explants. Biomolecules 2020, 10, 933. [Google Scholar] [CrossRef]
- Sullivan, R.; Mieusset, R. The human epididymis: Its function in sperm maturation. Hum. Reprod. Update 2016, 22, 574–587. [Google Scholar] [CrossRef] [Green Version]
- Trigg, N.A.; Eamens, A.L.; Nixon, B. The contribution of epididymosomes to the sperm small RNA profile. Reproduction 2019, 157, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Drabovich, A.P.; Dimitromanolakis, A.; Saraon, P.; Soosaipillai, A.; Batruch, I.; Mullen, B.; Jarvi, K.; Drabovich, A.P. Differential Diagnosis of Azoospermia with Proteomic Biomarkers ECM1 and TEX101 Quantified in Seminal Plasma. Sci. Transl. Med. 2013, 5, 212ra160. [Google Scholar] [CrossRef]
- Freour, T.; Com, E.; Barrière, P.; Bouchot, O.; Jean, M.; Masson, D.; Pineau, C. Comparative proteomic analysis coupled with conventional protein assay as a strategy to identify predictors of successful testicular sperm extraction in patients with non-obstructive azoospermia. Andrology 2013, 1, 414–420. [Google Scholar] [CrossRef]
- Cannarella, R.; Barbagallo, F.; Crafa, A.; La Vignera, S.; Condorelli, R.A.; Calogero, A.E. Seminal Plasma Transcriptome and Proteome: Towards a Molecular Approach in the Diagnosis of Idiopathic Male Infertility. Int. J. Mol. Sci. 2020, 21, 7308. [Google Scholar] [CrossRef]
- Intasqui, P.; Antoniassi, M.P.; Camargo, M.; Nichi, M.; Carvalho, V.M.; Cardozo, K.H.; Zylbersztejn, D.S.; Bertolla, R.P. Differences in the seminal plasma proteome are associated with oxidative stress levels in men with normal semen parameters. Fertil. Steril. 2015, 104, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Piomboni, P.; Stendardi, A.; Gambera, L.; Tatone, C.; Coppola, L.; De Leo, V.; Focarelli, R. Protein modification as oxidative stress marker in normal and pathological human seminal plasma. Redox. Rep. 2012, 17, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Barbăroșie, C. Ambar, R., Finelli, R. The Impact of Single- and Double-Strand DNA Breaks in Human Spermatozoa on Assisted Reproduction. Int. J. Mol. Sci. 2020, 21, 3882. [Google Scholar] [CrossRef] [PubMed]
- Aljabari, B.; Calogero, A.E.; Perdichizzi, A.; Vicari, E.; Karaki, R.; Lahloub, T.; Zatari, R.; El-Abed, K.; Nicoletti, F.; Miller, E.; et al. Imbalance in seminal fluid MIF indicates male infertility. Mol. Med. 2007, 13, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Agarwal, A.; Mohanty, G.; Du Plessis, S.S.; Gopalan, B.; Willard, B.; Yadav, S.P.; Sabanegh, E. Proteomic analysis of seminal fluid from men exhibiting oxidative stress. Reprod. Biol. Endocrinol. 2013, 11, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, A.; Ayaz, A.; Samanta, L.; Sharma, R.; Assidi, M.; Abuzenadah, A.M.; Sabanegh, E. Comparative proteomic network signatures in seminal plasma of infertile men as a function of reactive oxygen species. Clin. Proteom. 2015, 12, 23. [Google Scholar] [CrossRef] [Green Version]
- Antoniassi, M.P.; Belardin, L.B.; Camargo, M.; Intasqui, P.; Carvalho, V.M.; Cardozo, K.H.M.; Bertolla, R.P. Seminal plasma protein networks and enriched functions in varicocele: Effect of smoking. Andrologia 2020, 52, e13562. [Google Scholar] [CrossRef]
- Antoniassi, M.P.; Intasqui, P.; Camargo, M.; Zylbersztejn, D.S.; Carvalho, V.M.; Cardozo, K.H.; Bertolla, R.P. Analysis of the functional aspects and seminal plasma proteomic profile of sperm from smokers. BJU Int. 2016, 118, 814–822. [Google Scholar] [CrossRef] [Green Version]
- Camargo, M.; Intasqui, P.; Belardin, L.B.; Antoniassi, M.P.; Cardozo, K.H.M.; Carvalho, V.M.; Fraietta, R.; Bertolla, R.P. Molecular pathways of varicocele and its repair—A paired labelled shotgun proteomics approach. J. Proteom. 2019, 196, 22–32. [Google Scholar] [CrossRef]
- Camargo, M.; Intasqui Lopes, P.; Del Giudice, P.T.; Carvalho, V.M.; Cardozo, K.H.; Andreoni, C.; Fraietta, R.; Bertolla, R.P. Unbiased label-free quantitative proteomic profiling and enriched proteomic pathways in seminal plasma of adult men before and after varicocelectomy. Hum. Reprod. 2013, 28, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Del Giudice, P.T.; Belardin, L.B.; Camargo, M.; Zylbersztejn, D.S.; Carvalho, V.M.; Cardozo, K.H.; Bertolla, R.P.; Cedenho, A.P. Determination of testicular function in adolescents with varicocele—A proteomics approach. Andrology 2016, 4, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Del Giudice, P.T.; da Silva, B.F.; Lo Turco, E.G.; Fraietta, R.; Spaine, D.M.; Santos, L.F.; Pilau, E.J.; Gozzo, F.C.; Cedenho, A.P.; Bertolla, R.P. Changes in the seminal plasma proteome of adolescents before and after varicocelectomy. Fertil. Steril. 2013, 100, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Dias, T.R.; Samanta, L.; Agarwal, A.; Pushparaj, P.N.; PannerSelvam, M.K.; Sharma, R. Proteomic Signatures Reveal Differences in Stress Response, Antioxidant Defense and Proteasomal Activity in Fertile Men with High Seminal ROS Levels. Int. J. Mol. Sci. 2019, 20, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fariello, R.M.; Pariz, J.R.; Spaine, D.M.; Gozzo, F.C.; Pilau, E.J.; Fraietta, R.; Bertolla, R.P.; Andreoni, C.; Cedenho, A.P. Effect of smoking on the functional aspects of sperm and seminal plasma protein profiles in patients with varicocele. Hum. Reprod. 2012, 27, 3140–3149. [Google Scholar] [CrossRef] [Green Version]
- Ferigolo, P.C.; Ribeiro de Andrade, M.B.; Camargo, M.; Carvalho, V.M.; Cardozo, K.H.M.; Bertolla, R.P.; Fraietta, R. Sperm functional aspects and enriched proteomic pathways of seminal plasma of adult men with obesity. Andrology 2019, 7, 341–349. [Google Scholar] [CrossRef]
- Herwig, R.; Knoll, C.; Planyavsky, M.; Pourbiabany, A.; Greilberger, J.; Bennett, K.L. Proteomic analysis of seminal plasma from infertile patients with oligoasthenoteratozoospermia due to oxidative stress and comparison with fertile volunteers. Fertil. Steril. 2013, 100, 355–366.e2. [Google Scholar] [CrossRef]
- Kagedan, D.; Lecker, I.; Batruch, I.; Smith, C.; Kaploun, I.; Lo, K.; Grober, E.; Diamandis, E.P.; Jarvi, K.A. Characterization of the seminal plasma proteome in men with prostatitis by mass spectrometry. Clin. Proteom. 2012, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Panner Selvam, M.K.; Agarwal, A. Proteomic Profiling of Seminal Plasma Proteins in Varicocele Patients. World J. Mens. Health 2019. [Google Scholar] [CrossRef]
- Panner Selvam, M.K.; Agarwal, A.; Baskaran, S. Proteomic analysis of seminal plasma from bilateral varicocele patients indicates an oxidative state and increased inflammatory response. Asian J. Androl. 2019, 21, 544–550. [Google Scholar]
- Wang, J.; Wang, J.; Zhang, H.R.; Shi, H.J.; Ma, D.; Zhao, H.X.; Lin, B.; Li, R.S. Proteomic analysis of seminal plasma from asthenozoospermia patients reveals proteins that affect oxidative stress responses and semen quality. Asian. J. Androl. 2009, 11, 484–491. [Google Scholar] [CrossRef] [Green Version]
- Cannarella, R.; Calogero, A.E.; Condorelli, R.A.; Giacone, F.; Aversa, A.; La Vignera, S. Management and Treatment of Varicocele in Children and Adolescents: An Endocrinologic Perspective. J. Clin. Med. 2019, 8, 1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Vignera, S.; Condorelli, R.; Vicari, E.; D’Agata, R.; Calogero, A.E. Effects of varicocelectomy on sperm DNA fragmentation, mitochondrial function, chromatin condensation, and apoptosis. J. Androl. 2012, 33, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Zylbersztejn, D.S.; Andreoni, C.; Del Giudice, P.T.; Spaine, D.M.; Borsari, L.; Souza, G.H.; Bertolla, R.P.; Fraietta, R. Proteomic analysis of seminal plasma in adolescents with and without varicocele. Fertil. Steril. 2013, 99, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Liao, Q.; Kleeff, J.; Xiao, Y.; Guweidhi, A.; Schambony, A.; Töpfer-Petersen, E.; Zimmermann, A.; Büchler, M.W.; Friess, H. Preferential expression of cystein-rich secretory protein-3 (CRISP-3) in chronic pancreatitis. Histol. Histopathol. 2003, 18, 425–433. [Google Scholar] [PubMed]
- Belardin, L.B.; Del Giudice, P.T.; Camargo, M.; Intasqui, P.; Antoniassi, M.P.; Bertolla, R.P.; Cedenho, A.P. Alterations in the proliferative/apoptotic equilibrium in semen of adolescents with varicocele. J. Assist. Reprod. Genet. 2016, 33, 1657–1664. [Google Scholar] [CrossRef] [PubMed]
- La Vignera, S.; Vicari, E.; Condorelli, R.; D’Agata, R.; Calogero, A.E. Hypertrophic-congestive and fibro-sclerotic ultrasound variants of male accessory gland infection have different sperm output. J. Endocrinol. Invest. 2011, 34, 330–335. [Google Scholar] [CrossRef]
- Salmeri, M.; Valenti, D.; La Vignera, S.; Bellanca, S.; Morello, A.; Toscano, M.A.; Mastrojeni, S.; Calogero, A.E. Prevalence of Ureaplasmaurealyticum and Mycoplasma hominis infection in unselected infertile men. J. Chemother. 2012, 24, 81–86. [Google Scholar] [CrossRef]
- Murawski, M.; Saczko, J.; Marcinkowska, A.; Chwilkowska, A.; Grybos, M.; Banas, T. Evaluation of superoxide dismutase activity and its impact on semen quality parameters of infertile men. Folia. Histochem. Cytobiol. 2007, 45, 123–126. [Google Scholar]
- Shamsi, M.B.; Venkatesh, S.; Kumar, R.; Gupta, N.P.; Malhotra, N.; Singh, N.; Mittal, S.; Arora, S.; Arya, D.S.; Talwar, P.; et al. Antioxidant levels in blood and seminal plasma and their impact on sperm parameters in infertile men. Indian J. Biochem. Biophys. 2010, 47, 38–43. [Google Scholar]
- Yan, L.; Liu, J.; Wu, S.; Zhang, S.; Ji, G.; Gu, A. Seminal superoxide dismutase activity and its relationship with semen quality and SOD gene polymorphism. J. Assist. Reprod. Genet. 2014, 31, 549–554. [Google Scholar] [CrossRef] [Green Version]
- Macanovic, B.; Vucetic, M.; Jankovic, A.; Stancic, A.; Buzadzic, B.; Garalejic, E.; Korac, A.; Korac, B.; Otasevic, V. Correlation between sperm parameters and protein expression of antioxidative defense enzymes in seminal plasma: A pilot study. Dis. Markers 2015, 2015, 436236. [Google Scholar] [CrossRef]
- Grande, G.; Vincenzoni, F.; Mancini, F.; Baroni, S.; Luca, G.; Calafiore, R.; Marana, R.; Castagnola, M.; Pontecorvi, A.; Milardi, D. Semen Proteomics Reveals the Impact of Enterococcus faecalis on male Fertility. Protein Pept. Lett. 2018, 25, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Calogero, A.; Polosa, R.; Perdichizzi, A.; Guarino, F.; La Vignera, S.; Scarfia, A.; Fratantonio, E.; Condorelli, R.; Bonanno, O.; Barone, N.; et al. Cigarette smoke extract immobilizes human spermatozoa and induces sperm apoptosis. Reprod. Biomed. Online 2009, 19, 564–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Awwad, A.; Arafat, T.; Schmitz, O.J. Simultaneous determination of nicotine, cotinine, and nicotine N-oxide in human plasma, semen, and sperm by LC-Orbitrap MS. Anal. Bioanal. Chem. 2016, 408, 647–6481. [Google Scholar] [CrossRef] [PubMed]
- Condorelli, R.A.; La Vignera, S.; Giacone, F.; Iacoviello, L.; Vicari, E.; Mongioi, L.; Calogero, A.E. In vitro effects of nicotine on sperm motility and bio-functional flow cytometry sperm parameters. Int. J. Immunopathol. Pharmacol. 2013, 26, 739–746. [Google Scholar] [CrossRef] [Green Version]
- Condorelli, R.A.; La Vignera, S.; Giacone, F.; Iacoviello, L.; Mongioì, L.M.; Li Volti, G.; Barbagallo, I.; Avola, R.; Calogero, A.E. Nicotine Effects and Receptor Expression on Human Spermatozoa: Possible Neuroendocrine Mechanism. Front. Physiol. 2017, 8, 177. [Google Scholar] [CrossRef] [Green Version]
- Sofikitis, N.; Takenaka, M.; Kanakas, N.; Papadopoulos, H.; Yamamoto, Y.; Drakakis, P.; Miyagawa, I. Effects of cotinine on sperm motility, membrane function, and fertilizing capacity in vitro. Urol. Res. 2000, 28, 370–375. [Google Scholar] [CrossRef]
- Ehrchen, J.M.; Sunderkötter, C.; Foell, D.; Vogl, T.; Roth, J. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J. Leukoc. Biol. 2009, 86, 557–566. [Google Scholar] [CrossRef]
- La Vignera, S.; Condorelli, R.A.; Vicari, E.; Calogero, A.E. Negative effect of increased body weight on sperm conventional and nonconventional flow cytometric sperm parameters. J. Androl. 2012, 33, 53–58. [Google Scholar] [CrossRef]
- Sermondade, N.; Faure, C.; Fezeu, L.; Shayeb, A.G.; Bonde, J.P.; Jensen, T.K.; Van Wely, M.; Cao, J.; Martini, A.C.; Eskandar, M.; et al. BMI in relation to sperm count: An updated systematic review and collaborative meta-analysis. Hum. Reprod. Update 2013, 19, 221–231. [Google Scholar] [CrossRef]
- Hu, Q.; Lu, Y.; Hu, F.; He, S.; Xu, X.; Niu, Y.; Zhang, H.; Li, X.; Su, Q. Resistant dextrin reduces obesity and attenuates adipose tissue inflammation in high-fat diet-fed mice. Int. J. Med. Sci. 2020, 17, 2611–2621. [Google Scholar] [CrossRef] [PubMed]
- Tunc, O.; Bakos, H.W.; Tremellen, K. Impact of body mass index on seminal oxidative stress. Andrologia 2011, 43, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ding, Z. Obesity, a serious etiologic factor for male subfertility in modern society. Reproduction 2017, 154, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
SP protein | Reference | Function |
---|---|---|
Aldose reductase | [37] | It converts glucose to sorbitol during the polyol pathway of glucose metabolism |
α1-chymotrypsin | [37] | It has proteolytic activity against the chymotrypsin-specific substrate N-Succinyl-Ala-Ala-Pro-Phe-p-nitroanilide. It is released by granulocytes. |
DJ-1 | [41] | DJ-1 activation is catalyzed by ROS. When active, DJ-1 inhibits removal of NFκB signal |
Haptoglobin | [34] | It is a late positive acute phase protein of inflammation |
Mucin 5B | [22] | It increases the SP viscosity and correlates with inflammation, hypoxia, and OS |
Peroxiredoxin 4 | [34] | Belongs to a family of peroxide-degrading enzymes, involved in cellular OS control |
Prolactin-induced protein | [26] | Extracellular matrix protein that can mediate tissue responses to inflammation |
Protein S100A9 | [34] | It plays an important role in cell differentiation and OS response |
Tubulin folding cofactor β | [37] | It acts in the development of α/β-tubulin heterodimers, which are critical for the normal growth of mammalian cells. It acts in the development of hypoxic-ischemic injury |
Reference | Disease | Proteins | Expression Pattern | Function |
---|---|---|---|---|
[39] | Bilateral Varicocele | Aldose reductase | Overexpressed | Responsible for the induction of the sperm capacitation process |
Annexin 1 | Overexpressed | Protein with anti-inflammatory properties | ||
PRDX1 | Overexpressed | Involved in response to ROS and OS | ||
PRDX2 | Overexpressed | Involved in response to ROS and OS | ||
FN1 | Under-expressed | Involved in seminal gel formation and stimulates sperm capacitation | ||
alpha-1 antitrypsin | Under-expressed | Acute-phase protein responsible for the inhibition of proteases involved in stimulating the inflammatory response | ||
[40] | Varicocele | APO A2 | Under-expressed | Involved in pathways such as OS response, lipid peroxidation, and SDF |
[44] | Varicocele | SEMG1 | Overexpressed | Involved in semen coagulation. Its increasing in varicocele may reflect a strategy to counteract ROS and lipid peroxidation |
[31] | Varicocele pre-treatment | Clusterin | Overexpressed | Related to preservation of the damage caused by oxidative reactions |
Varicocele post-treatment | DJ-1 | Overexpressed | Linked to ROS response | |
SOD | Overexpressed | Linked to ROS response | ||
S100A9 | Overexpressed | It plays an important role in cell differentiation and OS response | ||
GAPDH | Exclusive expression in post-treated patients | Linked to ROS response, NAD-binding function, and gluconeogenesis | ||
MDH | Exclusive expression in post-treated patients | Linked to ROS response, NAD-binding function, and gluconeogenesis | ||
[38] | MAGI | Cystatin proteases | Overexpressed | Protease inhibitors involved in inflammatory response |
alpha-1 antitrypsin | Overexpressed | Protease inhibitors involved in inflammatory response | ||
SOD 3 | Under-expressed | Linked to ROS response | ||
[29] | Cigarette smoke | S100A9 | Overexpressed | It binds pro-inflammatory receptors to initiate the inflammatory cascade |
[35] | Cigarette smoke | SODE | Exclusive expression in moderate smokers | Antioxidant role removing superoxide radicals |
[36] | Obesity | ADP ribosyl cyclase | Overexpressed | Antioxidant activity, cellular response to superoxide anion, and detoxification of hydrogen peroxide |
Ceruloplasmin, | Overexpressed | Antioxidant activity, cellular response to superoxide anion, and detoxification of hydrogen peroxide | ||
Glutathione peroxidase | Overexpressed | Antioxidant activity, cellular response to superoxide anion, and detoxification of hydrogen peroxide | ||
Clusterin | Overexpressed | Antioxidant activity, cellular response to superoxide anion, and detoxification of hydrogen peroxide | ||
Mitochondrial glutathione reductase | Overexpressed | Antioxidant activity, cellular response to superoxide anion, and detoxification of hydrogen peroxide | ||
HP | Overexpressed | It is a late positive acute-phase protein of inflammation | ||
S100A9 | Overexpressed | It plays an important role in cell differentiation and OS response |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cannarella, R.; Crafa, A.; Barbagallo, F.; Mongioì, L.M.; Condorelli, R.A.; Aversa, A.; Calogero, A.E.; La Vignera, S. Seminal Plasma Proteomic Biomarkers of Oxidative Stress. Int. J. Mol. Sci. 2020, 21, 9113. https://doi.org/10.3390/ijms21239113
Cannarella R, Crafa A, Barbagallo F, Mongioì LM, Condorelli RA, Aversa A, Calogero AE, La Vignera S. Seminal Plasma Proteomic Biomarkers of Oxidative Stress. International Journal of Molecular Sciences. 2020; 21(23):9113. https://doi.org/10.3390/ijms21239113
Chicago/Turabian StyleCannarella, Rossella, Andrea Crafa, Federica Barbagallo, Laura M. Mongioì, Rosita A. Condorelli, Antonio Aversa, Aldo E. Calogero, and Sandro La Vignera. 2020. "Seminal Plasma Proteomic Biomarkers of Oxidative Stress" International Journal of Molecular Sciences 21, no. 23: 9113. https://doi.org/10.3390/ijms21239113
APA StyleCannarella, R., Crafa, A., Barbagallo, F., Mongioì, L. M., Condorelli, R. A., Aversa, A., Calogero, A. E., & La Vignera, S. (2020). Seminal Plasma Proteomic Biomarkers of Oxidative Stress. International Journal of Molecular Sciences, 21(23), 9113. https://doi.org/10.3390/ijms21239113