Biopolymers-Based Materials Containing Silver Nanoparticles as Active Packaging for Food Applications–A Review
Abstract
:1. Introduction
2. Antimicrobial Properties of Edible Films and Coatings with Incorporated Silver Nanoparticles
3. Physical Properties of Edible Films with Incorporated Silver Nanoparticles
4. Practical Application of Edible Coating with Silver Nanoparticles
5. Release of Silver Nanoparticles from Edible Films and Coatings to Food
6. Future Potential for Use of Nanocomposites in Food Packaging in the Light of Consumer Concerns
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ali, A.; Ahmed, S. Recent advances in edible polymer based hydrogels as a sustainable alternation to conventional polymers. J. Agric. Food Chem. 2018, 66, 6940–6967. [Google Scholar] [CrossRef] [PubMed]
- Kraśniewska, K.; Gniewosz, M. Substances with antimicrobial activity in edible films-a review. Polish J. Food Nutr. Sci. 2012, 62, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Mihindukulasuriya, S.D.F.; Lim, L.-T. Nanotechnology development in food packaging: A review. Trends Food Sci. Tech. 2014, 40, 149–167. [Google Scholar] [CrossRef]
- Otoni, C.G.; Avena-Bustillos, R.J.; Azeredo, H.M.C.; Lorevice, M.V.; Moura, M.R.; Mattoso, L.H.C.; McHugh, T.H. Recent advances on edible films based on fruits and vegetables—A review. Compr. Rev. Food Sci. Food. Saf. 2017, 16, 1151–1169. [Google Scholar] [CrossRef] [Green Version]
- Vodnar, D.C.; Pop, O.L.; Dulf, F.V.; Socaciu, C. Antimicrobial efficiency of edible films in food industry. Not. Bot. Horti Agrobo. 2015, 43, 302–312. [Google Scholar] [CrossRef] [Green Version]
- Pop, O.L.; Pop, C.R.; Dufrechou, M.; Vodnar, D.C.; Socaci, S.A.; Dulf, F.V.; Minervini, F.; Suharosc, R. Edible Films and Coatings Functionalization by Probiotic Incorporation: A Review. Polymers 2020, 12, 12. [Google Scholar] [CrossRef] [Green Version]
- Kraśniewska, K.; Pobiega, K.; Gniewosz, M. Pullulan-Biopolymer with potential for use as food packaging. Int. J. Food Eng. 2019, 15. [Google Scholar] [CrossRef]
- Plaza, H. Antimicrobial Polymers with Metal Nanoparticles. Int. J. Mol. Sci. 2015, 16, 2099–2116. [Google Scholar] [CrossRef] [Green Version]
- Zambrano-Zaragoza, M.L.; González-Reza, R.; Mendoza-Muñoz, N.; Miranda-Linares, V.; Bernal-Couoh, T.F.; Mendoza-Elvira, S.; Quintanar-Guerrero, D. Nanosystem in edible coating: A novel strategy for food preservation. Int. J. Mol. Sci. 2018, 19, 705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liou, C.; Li, Y.; Tjong, S.C. Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci. 2019, 20, 449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhall, R.K. Advances in edible coating for fresh fruits and vegetables: a review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435–450. [Google Scholar] [CrossRef] [PubMed]
- Bankura, K.; Maity, D.; Mollick, M.M.; Mondal, D.; Bhowmick, B.; Bain, M.; Chakraborty, A.; Sarkar, J.; Acharya, K.; Chattopadhyay, D. Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carbohydr. Polym. 2012, 89, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Kanmani, P.; Lim, S.T. Synthesis and characterization of pullulan-mediated silver nanoparticles and its antimicrobial activities. Carbohydr. Polym. 2013, 97, 421–428. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.; Zhong, L.; Wu, G. Preparation of high-stable silver nanoparticle dispersion by using sodium alginate as a stabilizer under gamma radiation. Radiat. Phys. Chem. 2009, 78, 251–255. [Google Scholar] [CrossRef]
- Islam, M.S.; Yeum, J.H. Electrospun pullulan/poly(vinyl alcohol)/silver hybrid nanofibers: Preparation and property characterization for antibacterial activity. Colloid. Surf. A Physicochem. Eng. Asp. 2013, 436, 279–286. [Google Scholar] [CrossRef]
- Venkatesan, J.; Singh, S.K.; Anil, S.; Kim, S.-K.; Shim, M.S. Preparation, characterization and biological applications of biosynthesized silver nanoparticles with chitosan-fucoidan coating. Molecules 2018, 23, 1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssef, A.M.; Abou-Yousef, H.; El-Sayed, S.M.; Kamel, S. Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films. Int. J. Biol. Macromol. 2015, 76, 25–32. [Google Scholar] [CrossRef]
- Hettiarachchi, M.A.; Wickramarachchi, P.A.S.R. Synthesis of chitosan stabilized silver nanoparticles using gamma ray irradiation and characterization. J. Sci. Univ. Kelaniya. 2011, 6, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, M.; Nguyen, V.Q.; Mori, Y.; Nakamura, S.; Hattori, H. Adsorption of silver nanoparticles onto different surface structures of chitin/chitosan and correlations with antimicrobial activities. Int. J. Mol. Sci. 2015, 16, 13973–13988. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Luo, Y.; Teng, Z.; Zhang, B.; Zhou, B.; Wang, Q. Development of silver/titanium dioxide/chitosan adipate nanocomposite as an antibacterial coating for fruit storage. LWT-Food Sci. Technol. 2015, 63, 1206–1213. [Google Scholar] [CrossRef]
- De Moura, M.R.; Mattoso, L.H.C.; Zucolotto, V. Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J. Food Eng. 2012, 109, 520–524. [Google Scholar] [CrossRef]
- Bahrami, A.; Mokarram, R.R.; Khiabani, M.S.; Ghanbarzadeh, B.; Salehi, R. Physico-mechanical and antimicrobial properties of tragacanth/hydroxypropyl methylcellulose/beeswax edible films reinforced with silver nanoparticles. Int. J. Biol. Macromol. 2019, 129, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Incoronato, A.I.; Buonocore, G.G.; Conte, A.; Lavorgna, M.; Del Nobile, M.A. Active Systems Based on Silver-Montmorillonite Nanoparticles Embedded into Bio-Based Polymer Matrices for Packaging Applications. J. Food Prot. 2010, 73, 2256–2262. [Google Scholar] [CrossRef] [PubMed]
- Orsuwan, A.; Shankar, S.; Wang, L.-F.; Sothornvit, R.; Rhim, J.-W. One-step preparation of banana powder/silver nanoparticles composite films. J. Food Sci. Technol. 2017, 54, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhim, J.W.; Wang, L.F.; Hong, S.I. Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocoll. 2013, 33, 327–335. [Google Scholar] [CrossRef]
- Youssef, A.M.; Abdel-Aziz, M.S.; El-Sayed, S.M. Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus subtilis as packaging materials. Int. J. Biol. Macromol. 2014, 69, 185–191. [Google Scholar] [CrossRef]
- Cushen, M.; Kerry, J.; Morris, M.; Cruz-Romero, M.; Cummins, E. Migration and exposure assessment of silver from a PVC nanocomposite. Food Chem. 2013, 139, 389–397. [Google Scholar] [CrossRef]
- Grigor’eva, A.; Saranina, I.; Tikunova, N.; Safonov, A.; Timoshenko, N.; Rebrov, A.; Ryabchikova, E. Fine mechanisms of the interaction of silver nanoparticles with the cells of Salmonella typhimurium and Staphylococcus aureus. BioMetals 2013, 26, 479–488. [Google Scholar] [CrossRef]
- Sharma, S. Enhanced antibacterial efficacy of silver nanoparticles immobilized in a chitosan nanocarrier. Int. J. Biol. Macromol. 2017, 104, 1740–1745. [Google Scholar] [CrossRef]
- Khalaf, H.H.; Sharoba, A.M.; El-Tanahi, H.H.; Morsy, M.K. Stability of antimicrobial activity of pullulan edible films incorporated with nanoparticles and essential oils and their impact on turkey deli meat quality. J. Food Dairy Sci. 2013, 4, 557–573. [Google Scholar]
- Orsuwan, A.; Shankar, S.; Wang, L.-F.; Sothornvit, R.; Rhim, J.-W. Preparation of antimicrobial agar/banana powder blend films reinforced with silver nanoparticles. Food Hydrocoll. 2016, 60, 476–485. [Google Scholar] [CrossRef]
- Varsha, C.; Bajpai, S.K.; Navin, C. Investigation of water vapour permeation and antibacterial properties of nano silver loaded cellulose acetate film. Int. Food Res. J. 2010, 17, 623–639. [Google Scholar]
- Tankhiwale, R.; Bajpai, S.K. Silver-Nanoparticle-Loaded chitosan lactate films with fair antibacterial properties. J. Appl. Polym. Sci. 2010, 115, 1894–1900. [Google Scholar] [CrossRef]
- Arfat, Y.A.; Ahmed, J.; Jacob, H. Preparation and characterization of agar-based nanocomposite films reinforced with bimetallic (Ag-Cu) alloy nanoparticles. Carbohydr. Polym. 2017, 155, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Arfat, Y.A.; Ejaz, M.; Jacob, H.; Ahmed, J. Deciphering the potential of guar gum/Ag-Cu nanocomposite films asan active food packaging material. Carbohydr. Polym. 2017, 157, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Arfat, Y.A.; Ahmed, J.; Hiremath, N.; Auras, R.; Joseph, A. Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver-copper nanoparticles. Food Hydrocoll. 2017, 62, 191–202. [Google Scholar] [CrossRef]
- Shankar, S.; Tanomrod, N.; Rawdkuen, S.; Rhim, J.-W. Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties. Int. J. Biol. Macromol. 2016, 92, 842–849. [Google Scholar] [CrossRef]
- Pinto, R.J.B.; Almeida, A.; Fernandes, S.C.M.; Freire, C.S.R.; Silvestre, A.J.D.; Neto, C.P.; Trindade, T. Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloids Surf. B. Biointerfaces 2013, 103, 143–148. [Google Scholar] [CrossRef]
- Morsy, M.K.; Khalaf, H.H.; Sharoba, A.M.; El-Tanahi, H.H.; Cutter, C.N. Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. J. Food Sci. 2014, 79, M675–M684. [Google Scholar] [CrossRef]
- Mohammed Fayaz, A.; Balaji, K.; Girilal, M.; Kalaichelvan, P.T.; Venkatesan, R. Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J. Agric. Food Chem. 2009, 57, 6246–6252. [Google Scholar] [CrossRef]
- Sharma, S.; Sanpui, P.; Chattopadhyay, A.; Ghosh, S.S. Fabrication of antimicrobial silver nanoparticle-sodium alginate-chitosan composite films. RSC Adv. 2012, 2, 5837–5843. [Google Scholar] [CrossRef]
- Incoronato, A.L.; Conte, A.; Buonocore, G.G.; Del Nobile, M.A. Agar hydrogel with silver nanoparticles to prolong the shelf life of Fior di Latte cheese. J. Dairy Sci. 2011, 94, 1697–1704. [Google Scholar] [CrossRef] [PubMed]
- Galus, S.; Kadzińska, J. Food applications of emulsion-based edible films and coatings. Trends Food Sci. Technol. 2015, 45, 273–283. [Google Scholar] [CrossRef]
- Fabra, M.J.; Busolo, M.A.; Lopez-Rubio, A.; Lagaron, J.M. Nanostructured biolayers in food packaging. Trends Food Sci. Technol. 2013, 31, 79–87. [Google Scholar] [CrossRef]
- Kurek, M.; Galus, S.; Debeaufort, F. Surface, mechanical and barrier properties of bio-based composite films based on chitosan and whey protein. Food Packag. Shelf Life 2014, 1, 56–67. [Google Scholar] [CrossRef]
- Souza, M.P.; Carneiro-da-Cunha, M.C. Nanotechnology in Edible Packaging. In Edible Films Packaging. Materials and Processing Technologies; Cerqueira, M.Â.P.R., Pereira, R.N.C., Ramos, Ó.L.S., Teixeira, J.A.C., Vincente, A.A., Eds.; CRC Press: Boca Raton, MA, USA, 2016; pp. 287–318. [Google Scholar]
- Roy, S.; Shankar, S.; Rhim, J.-W. Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films. Food Hydrocoll. 2019, 88, 237–246. [Google Scholar] [CrossRef]
- Kanmani, P.; Rhim, J.W. Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem. 2014, 148, 162–169. [Google Scholar] [CrossRef]
- Shankar, S.; Rhim, J.W. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydr. Polym. 2015, 130, 353–363. [Google Scholar] [CrossRef]
- Ortega, F.; Giannuzzi, L.; Arce, V.B.; García, M.A. Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocoll. 2017, 70, 152–162. [Google Scholar] [CrossRef]
- Yoksan, R.; Chirachanchai, S. Silver nanoparticle-loaded chitosan–starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties. Mater. Sci. Eng. C 2010, 30, 891–897. [Google Scholar] [CrossRef]
- Ji, N.; Liu, C.; Zhang, S.; Xiong, L.; Sun, Q. Elaboration and characterization of corn starch films incorporating silver nanoparticles obtained using short glucan chains. LWT-Food Sci. Technol. 2016, 74, 311–318. [Google Scholar] [CrossRef]
- Nunes, M.R.; de Souza Maguerroski Castilho, M.; de Lima Veeck, A.P.; da Rosa, C.G.; Noronha, C.M.; Maciel, M.V.O.B.; Barreto, P.M. Antioxidant and antimicrobial methylcellulose films containing Lippia alba extract and silver nanoparticles. Carbohydr. Polym. 2018, 192, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.R.; Jian, R.; Yu, J.; Ma, X. Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chem. 2010, 120, 736–740. [Google Scholar] [CrossRef]
- Kadam, D.; Momin, B.; Palamthodi, S.; Lele, S.S. Physicochemical and functional properties of chitosan-based nano-composite films incorporated with biogenic silver nanoparticles. Carbohydr. Polym. 2019, 211, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.B.; Alummoottil, N.; Moothandasserry, S.S. Chitosan-konjac glucomannan-cassava starch-nanosilver composite films with moisture resistant and antimicrobial properties for food-packaging applications. Starch 2017, 69, 1600210. [Google Scholar] [CrossRef]
- George, J.; Kumar, R.; Sajeevkumar, V.A.; Ramana, K.V.; Rajamanickam, R.; Abhishek, V.; Nadanasabapathy, S. Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles. Carbohydr. Polym. 2014, 105, 285–292. [Google Scholar] [CrossRef]
- Kanmani, P.; Rhim, J.W. Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocoll. 2014, 35, 644–652. [Google Scholar] [CrossRef]
- Cheviron, P.; Gouanve, F.; Espuche, E. Starch/silver nanocomposite: Effect of thermal treatment temperature on the morphology, oxygen and water transport properties. Carbohydr. Polym. 2015, 134, 635–645. [Google Scholar] [CrossRef]
- Fedotova, A.V.; Snezhko, A.G.; Sdobnikova, O.A.; Samoilova, L.G.; Smurova, T.A.; Revina, A.A.; Khailova, E.E. Packaging materials manufactured from natural polymers modified with silver nanoparticles. Int. Polym. Sci. Technol. 2009, 37, 59–64. [Google Scholar] [CrossRef]
- Sharanya Devadiga, B.; Shetty, D.; Lakshmi, G.M.S.; Packiyam, J.E.; Bhat, R.P. Synthesis of Chitosan Silver nanoparticles from Chitin of Crustacean shells and Its Applications. Int. J. Curr. Res. Chem. Pharm. Sci. 2016, 3, 1–5. [Google Scholar]
- Moussa, S.H.; Tayel, A.A.; Alsohim, A.S.; Abdallah, R.R. Botryticidal activity of nanosized silver-chitosan composite and its application for the control of gray mold in strawberry. J. Food Sci. 2013, 78, M1589–M1594. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Duarte, G.; Pérez-Cabrera, L.E.; Artés-Hernández, F.; Martínez-Hernández, G.B. Ag-chitosan nanocomposites in edible coating affect the quality of fresh-cut melon. Postharvest Biol. Technol. 2019, 147, 174–184. [Google Scholar] [CrossRef]
- Jiang, T.; Feng, L.; Wang, Y. Effect of alginate/nano-Ag coating on microbial and physicochemical characteristics of shiitake mushroom (Lentinus edodes) during cold storage. Food Chem. 2013, 141, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Conte, A.; Buonocore, G.G.; Lavorgna, M.; Del Nobile, M.A. Calcium-alginate coating loaded with silver-montmorillonite nanoparticles to prolong the shelf-life of fresh-cut carrots. Food Res. Int. 2012, 48, 164–169. [Google Scholar] [CrossRef]
- Hedayati, S.; Niakousari, M. Effect of coating of silver nanoparticles and gum arabic on physicochemical and microbial properties of green bell pepper (Capsum annuum). J. Food Process. Preserv. 2015, 39, 2001–2007. [Google Scholar] [CrossRef]
- Shah, S.W.A.; Jahangir, M.; Qaisar, M.; Khan, S.A.; Mahmood, T.; Saeed, M.; Farid, A.; Liaquat, M. Storage stability of kinnow fruit (Citrus reticulata) as affected by cmc and guar gum-based silver nanoparticle coatings. Molecules 2015, 20, 22645–22661. [Google Scholar] [CrossRef] [Green Version]
- Gudadhe, J.A.; Yadav, A.; Gade, A.; Marcato, P.D.; Durán, N.; Rai, M. Preparation of an agar-silver nanoparticles (A-AgNp) film for increasing the shelf-life of fruits. IET Nanobiotechnol. 2014, 8, 190–195. [Google Scholar] [CrossRef]
- Zimoch-Korzycka, A.; Jarmoluk, A. The use of chitosan, lysozyme, and the nano-silver as antimicrobial ingredients of edible protective hydrosols applied into the surface of meat. J. Food Sci. Technol. 2014, 52, 5996–6002. [Google Scholar] [CrossRef] [Green Version]
- Marchiore, N.G.; Manso, I.J.; Kaufmann, K.C.; Lemes, G.F.; de Oliveira Pizolli, A.P.; Droval, A.A.; Bracht, L.; Gonçalves, O.H.; Leimann, F.V. Migration evaluation of silver nanoparticles from antimicrobial edible coating to sausages. LWT-Food Sci. Technol. 2017, 76, 203–208. [Google Scholar] [CrossRef]
- Gammariello, D.; Conte, A.; Buonocore, G.G.; Del Nobile, M.A. Bio-based nanocomposite coating to preserve quality of Fior di latte cheese. J. Dairy Sci. 2011, 94, 5298–5304. [Google Scholar] [CrossRef] [Green Version]
- Mastromatteo, M.; Conte, A.; Lucera, A.; Saccotelli, M.A.; Buonocore, G.G.; Zambrini, A.V. Packaging solutions to prolong the shelf life of Fior di latte cheese: Bio-based nanocomposite coating and modified atmosphere packaging. LWT-Food Sci. Technol. 2015, 60, 230–237. [Google Scholar] [CrossRef]
- Hassan, B.; Chatha, S.A.S.; Hussain, A.I.; Zia, K.M.; Akhtar, N. Recent advances on polysaccharides, lipids and protein based edible films and coating: A review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Echegoyen, Y.; Nerín, C. Nanoparticle release from nano-silver antimicrobial food containers. Food Chem. Toxicol. 2013, 62, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Kuorwel, K.K.; Cran, M.J.; Orbell, J.D.; Buddhadasa, S.; Bigger, S.W. Review of mechanical properties, migration and potential application in active food packaging system containing nanoclays and nanosilver. Compr. Rev. Food Sci. Food Saf. 2015, 14, 411–430. [Google Scholar] [CrossRef] [Green Version]
- Donglu, F.; Wenjian, Y.; Kimatu, B.M.; Mariga, A.M.; Liyan, Z.; Xinxin, A.; Qiuhui, H. Effect of nanocomposite-based packaging on storage stability of mushrooms (Flammulina velutipes). Innov. Food Sci. Emerg. Technol. 2016, 33, 489–497. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No. 450/2009. Off. J. Eur. Union L 2009, 135, 3–11. [Google Scholar]
- European Commission. Commission regulation (EU) no 10/2011. Off. J. Eur. Union L 2011, 12, 1–89. [Google Scholar]
- Cushen, M.; Kerry, J.; Morris, M.; Cruz-Romero, M.; Cummins, E. Evaluation and simulation of silver and copper nanoparticle migration from polyethylene nanocomposites to food and an associated exposure assessment. J. Agric. Food Chem. 2014, 62, 1403–1411. [Google Scholar] [CrossRef]
- Metak, A.M.; Nabhani, F.; Connolly, S.N. Migration of engineered nanoparticles from packaging into food products. LWT-Food Sci. Technol. 2015, 64, 781–787. [Google Scholar] [CrossRef]
- Šimon, P.; Chaudhry, Q.; Bakoš, D. Migration of engineered nanoparticles from polymer packaging to food—A physicochemical view. J. Food Nutr. Res. 2008, 47, 105–113. [Google Scholar]
- Cameron, S.J.; Hosseinian, F.; Willmore, W.G. A current overview of the biological and cellular effects of nanosilver. Int. J. Mol. Sci. 2018, 19, 2030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regiel-Futyra, A.; Kus-Liśkiewicz, M.; Sebastian, V.; Irusta, S.; Arruebo, M.; Kyzioł, A.; Stochel, G. Development of noncytotoxic silver–chitosan nanocomposites for efficient control of biofilm forming microbes. RSC Adv. 2017, 7, 52398–52413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jena, P.; Mohanty, S.; Mallicki, R.; Jacob, B.; Sonawane, A. Toxicity and antibacterial assessment of chitosancoated silver nanoparticles on human pathogens and macrophage cells. Int. J. Nanomed. 2012, 7, 1805–1818. [Google Scholar]
Polymer Matrices | Approach | Size of Silver Nanoparticles (nm) | Concentration of AgNO3/AgNPs in Film-Forming Solution | Tested Strains | Antimicrobial Effects of Nanocomposite Films | Reference |
---|---|---|---|---|---|---|
agar/banana | in-situ | (a) 100 (b) 150–200 | AgNO3: 1 mM | L. monocytogenes ATCC 15313 E. coli O157:H7 ATCC 43895 | L. monocytogenes (a), (b) bacteriostatic activity E. coli (a) bacteriostatic activity (b) bactericidal activity | [31] |
agar/banana | in-situ | 100–300 | AgNO3: (a) 0.5 mM (b) 1.0 mM (c) 2.0 mM | L. monocytogenes ATCC 15313 E. coli O157:H7 ATCC 43895 | L. monocytogenes (a) no inhibitory activity (b), (c) bacteriostatic activity E. coli (a) bacteriostatic activity (b) and (c) bacteriocidal activity | [24] |
cellulose | in-situ | 10–130 | – | E. coli | Inhibition zone (mm) E. coli: 20–25 | [32] |
chitosan/HEC | in-situ | – | – | L. monocytogenes, S. aureus, B. cereus, E. coli, S. Typhimurium | Inhibition zone (mm): L. monocytogenes: 10–11 S. aureus: 10–11 B. cereus: 12 E. coli: 12–14 S. Typhimurium: 13–15 | [17] |
chitosan/ fucoidan | in-situ | 73 ± 9.54 | AgNO3: 100 µg/mL | S. aureus E. coli | Inhibition zone (mm): S. aureus: 2 E. coli: 3 | [16] |
chitosan adipate/TiO2 | in-situ | 50–100 | AgNO3: 10 mg/mL | E. coli O157:H7 ATCC 700728 | E. coli Inhibition zone (mm): 12.2 ± 0.7 Reduction level of bacteria count: 6 log CFU/mL | [20] |
chitosan | in-situ | 75–250 | – | E. coli | E. coli bactericidal effect | [33] |
agar | ex-situ: AgNPs pre-synthesis by chemical methods | 21.3–23.8 | AgNPs (a) 0.2% (b) 0.5% (c) 1.0% (d) 2% | L. monocytogenes ATCC 19111 E. coli O157:H7 ATCC 11775 | L. monocytogenes and E. coli (a) and (b) no inhibitory effect; (c) bacteriostatic effect (d) bactericidal effect | [25] |
agar | ex-situ: AgNPs commercial product purchased from Sigma Aldrich Ag-Cu | <100 | Ag-CuNPs (a) 15 mg (b) 30 mg (c) 60 mg (d) 120 mg | L. monocytogenes ATCC 19114 S. Typhimurium ATCC 14028 | Reduction level of bacteria count L. monocytogenes (a) 1.5 log CFU/mL (b) 3.0 log CFU/mL (c) 3.5 log CFU/mL (d) 4.5 log CFU/mL S. Typhimurium (a) 2.0 log/mL (b) 3.5 log/mL (c) 4.5 log/mL (d) 6.0 log/mL | [34] |
chitosan | ex-situ: AgNPs pre-synthesis by biological methods | 10–25 | AgNPs: (a) 0.5% (b) 1% (c) 2% | S. aureus, P. aeruginosa, Candida albicans, A. niger | Inhibition zone (mm): S. aureus (a); (b) 10; (c) 18 P. aeruginosa (a) 11; (b) 12; (c) 15 C. albicans (a) 12; (b) 12; (c) 19 A. niger (a) 10; (b) 8; (c) 9 | [26] |
guar gum | ex-situ: AgNPs commercial product purchased from Sigma Aldrich Ag-Cu | <100 | AgNPs: (a) 7.5 mg (b) 15 mg (c) 30 mg | L. monocytogenes ATCC 19114 S. Typhimurium ATCC 14028 | Reduction level of bacteria count L. monocytogenes (a) 0.5 log CFU/mL (b) 2.0 log CFU/mL (c) 3.5 log CFU/mL S. Typhimurium (a) 1.5 log CFU/mL (b) 2.5 log CFU/mL (c) 4.5 log CFU/mL | [35] |
gelatin | ex-situ: AgNPs commercial product purchased from Sigma Aldrich Ag-Cu | <100 | AgNPs: (a) 0.5% (b) 1.0% (c) 2.0% (d) 4.0% | L. monocytogenes ATCC 19114 S. Typhimurium ATCC 14028 | Reduction level of bacteria count L. monocytogenes: (a)‒(d) 0.5‒3.5 log CFU/mL S. Typhimurium (a) no inhibition effect (b)‒(d) reduction upper 7 log CFU/mL | [36] |
HPMC | ex-situ: AgNPs pre-synthesis by chemical methods | (a) 41 (b) 100 | - | S. aureus ATCC 25922 E. coli ATCC 25923 | Inhibition zone (mm): S. aureus: (a) 3.11; (b) 1.35 E. coli: (a) 2.75; (b) 1.05 | [21] |
tragacanth/ HPMC/ beeswax | ex-situ: AgNPs commercial product purchased from US Research Nanomaterials Inc. | 8–10 | AgNPs: 2, 4, 8% | L. monocytogenes ATCC 7644, S. aureus ATCC 25923, B. cereus ATCC 1247, S. pneumoniae ATCC 49615, E. coli ATCC 8739, S. Typhimurium ATCC 14028, P. aeruginosa ATCC 9027, K. pneumoniae ATCC10031 | observed inhibitory effects against all strains of bacteria; higher percentage of AgNPs into biopolymer matrix caused greater inhibitory zones diameter | [22] |
pectin | ex-situ: AgNPs pre-synthesis by biological methods | 20–80 | AgNPs: 100 µg/mL | L. monocytogenes ATCC 15313 E. coli O157:H7 ATCC 43895 | Zone of inhibition (mm): L. monocytogenes: 3.9 E. coli: 8.4 | [37] |
pullulan | ex-situ: AgNPs pre-synthesis by chemical methods | 6–18 | AgNPs: (a) 0.156 mg/g (b) 0.317 mg/g (c) 0.803 mg/g (d) 1.710 mg/g | Aspergillus niger | Fungal growth inhibition (%) (a) 12; (b) 22; (c) 45; (d) 76 | [38] |
pullulan | ex-situ: AgNPs commercial product purchased from Sigma Aldrich | 100 | AgNPs: 0.02 (v/v) | L. monocytogenes ATCC 94229 S. aureus ATCC 11988 E. coli O157:H7 ATCC 43895 S. Typhimurium ATCC 14028 | inhibitory effect against L. monocytogenes and S. aureus was observed no inhibition effect against E. coli O157:H7 and S. Typhimurium was observed | [39] |
pullulan | ex-situ: AgNPs commercial product purchased from Sigma Aldrich | 100 | AgNPs: 2% | L. monocytogenes ATCC 94229 S. aureus ATCC 11988 | Inhibition zone (mm): L. monocytogenes: 25‒30 S. aureus 15–23 | [30] |
pullulan/PVA | ex-situ: AgNPs commercial product purchased from Sigma Aldrich Miji Tech., Korea | 15–30 | AgNPs: 1–4% | S. aureus ATCC 6538 E. coli ATCC 25922 | bactericidal effect regardless of concentration against both tested strains of bacteria | [15] |
sodium alginate | ex-situ: AgNPs pre-synthesis by biological methods | 5–40 | – | S. aureus ATCC 8739 E. coli ATCC 6538 | inhibitory effect against both tested strains of bacteria was observed | [40] |
sodium alginate/ chitosan | ex-situ: AgNPs pre-synthesis by biological methods | 5–21 | – | B. cereus MTCC 1305, E. faecalis MTCC 439, E. coli, E. aerogenes MTCC 2822, P. aeruginosa MTCC 2488 | Inhibition zone (mm): B. cereus: 6.0 E. faecalis: 5.1 E. coli: 1.9 E. aerogenes: 1.5 P.aeroginosa: 3.1 | [41] |
agar | ex-situ | Ag-MTT NPs (a) 10 mg; (b) 15 mg; (c) 20 mg | Pseudomonas spp. | Reduction level of bacteria count (a) 1.88 log CFU/g (b) 2.09 log CFU/g (c) 3.59 log CFU/g | [42] | |
zein | ex-situ | Ag-MTT NPs (a) 10 mg; (b) 15 mg; (c) 20 mg | Pseudomonas spp. | (a) 1.53 log CFU/g (b) 1.83 log CFU/g (c) 2.12 log CFU/g | [23] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraśniewska, K.; Galus, S.; Gniewosz, M. Biopolymers-Based Materials Containing Silver Nanoparticles as Active Packaging for Food Applications–A Review. Int. J. Mol. Sci. 2020, 21, 698. https://doi.org/10.3390/ijms21030698
Kraśniewska K, Galus S, Gniewosz M. Biopolymers-Based Materials Containing Silver Nanoparticles as Active Packaging for Food Applications–A Review. International Journal of Molecular Sciences. 2020; 21(3):698. https://doi.org/10.3390/ijms21030698
Chicago/Turabian StyleKraśniewska, Karolina, Sabina Galus, and Małgorzata Gniewosz. 2020. "Biopolymers-Based Materials Containing Silver Nanoparticles as Active Packaging for Food Applications–A Review" International Journal of Molecular Sciences 21, no. 3: 698. https://doi.org/10.3390/ijms21030698
APA StyleKraśniewska, K., Galus, S., & Gniewosz, M. (2020). Biopolymers-Based Materials Containing Silver Nanoparticles as Active Packaging for Food Applications–A Review. International Journal of Molecular Sciences, 21(3), 698. https://doi.org/10.3390/ijms21030698