The Influence of Inflammation on Anemia in CKD Patients
Abstract
:1. Introduction
2. Anemia in CKD Patients
KDIGO Recommendations
3. Inflammation in CKD and Anemia of Inflammation
4. Anemia Treatment
4.1. Anemia Treatment with Iron
4.2. Anemia Treatment with ESA
4.3. New Strategies of Anemia Treatment
5. The Impact of Inflammation on Response to Iron Supplementation and ESAs
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cases, A.; Egocheaga, M.I.; Tranche, S.; Pallarés, V.; Ojeda, R.; Górriz, J.L.; Portolés, J.M. Anemia of chronic kidney disease: Protocol of study, management and referral to Nephrology. Nefrologia 2018, 38, 8–12. [Google Scholar] [CrossRef]
- Malyszko, J.; Mysliwiec, M. Hepcidin in anemia and inflammation in chronic kidney disease. Kidney Blood Press Res. 2007, 30, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Poole, S.; Bird, T.A.; Selkirk, S.; Gaines-Das, R.E.; Choudry, Y.; Stephenson, S.L.; Kenny, A.J.; Saklatvaa, J. Fate of injected interleukin-1 in rats: Sequestration and degradation in the kidney. Cytokine 1990, 2, 416–422. [Google Scholar] [CrossRef]
- Panichi, V.; Migliori, M.; De Pietro, S.; Taccola, D.; Bianchi, A.M.; Norpoth, M.; Metelli, M.R.; Giovannini, L.; Tetta, C.; Palla, R. C-reactive protein in patients with chronic renal diseases. Ren. Fail. 2001, 23, 551–562. [Google Scholar] [PubMed] [Green Version]
- Stenvinkel, P.; Heimburger, O.; Wang, T.; Lindholm, B.; Bergstrom, J.; Elinder, C.G. High serum hyaluronan indicates poor survival in renal replacement therapy. Am. J. Kidney Dis. 1999, 34, 1083–1088. [Google Scholar] [CrossRef]
- De Oliveira Júnior, W.V.; Sabino Ade, P.; Figueiredo, R.C.; Rios, D.R. Inflammation and poor response to treatment with erythropoietin in chronic kidney disease. J. Bras. Nefrol. 2015, 37, 255–263. [Google Scholar] [CrossRef]
- Căldăraru, C.D.; Tarta, D.I.; Gliga, M.L.; Tarta, C.; Caraşca, E.; Albu, S.; Huţanu, A.; Dogaru, M.; Dogaru, G. Comparative Analysis of Hepcidin-25 and Inflammatory Markers in Patients with Chronic Kidney Disease with and without Anemia. Acta Med. Marisiensis 2017, 63, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Babitt, J.L.; Lin, H.Y. Mechanisms of anemia in CKD. J. Am. Soc. Nephrol. 2012, 23, 1631–1634. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.Y.; McCulloch, C.E.; Curhan, G.C. Epidemiology of anemia associated with chronic renal insufficiency among adults in the United States: Results from the Third National Health and Nutrition Examination Survey. J. Am. Soc. Nephrol. 2002, 13, 504–510. [Google Scholar]
- Astor, B.C.; Muntner, P.; Levin, A.; Eustace, J.A.; Coresh, J. Association of kidney function with anemia: The Third National Health and Nutrition Examination Survey (1988–1994). Arch. Intern. Med. 2002, 162, 1401–1408. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, M.I.; Solak, Y.; Covic, A.; Goldsmith, D.; Kanbay, M. Renal Anemia of Inflammation: The Name Is Self-Explanatory. Blood Purif. 2011, 32, 220–225. [Google Scholar] [CrossRef] [PubMed]
- McFarlane, S.I.; Chen, S.C.; Whaley-Connell, A.T.; Sowers, J.R.; Vassalotti, J.A.; Salifu, M.O.; Kidney Early Evaluation Program Investigators; Li, S.; Wang, C.; Bakris, G.; et al. Prevalence and associations of anemia of CKD: Kidney Early Evaluation Program (KEEP) and National Health and Nutrition Examination Survey (NHANES) 1999–2004. Am. J. Kidney Dis. 2008, 51, S46–S55. [Google Scholar]
- Stauffer, M.E.; Fan, T. Prevalence of anemia in chronic kidney disease in the United States. PLoS ONE 2014, 9, e84943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coyne, D.W.; Goldsmith, D.; Macdougall, I.C. New options for the anemia of chronic kidney disease. Kidney Int. Suppl. 2017, 7, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Gilbertson, D.; Peng, Y.; Bradbury, B.; Ebben, J.; Collins, A. Hemoglobin level variability: Anemia management among variability groups. Am. J. Nephrol. 2009, 30, 491–498. [Google Scholar] [PubMed]
- Zadrazil, J.; Horak, P. Pathophysiology of anemia in chronic kidney diseases: A review. Biomed. Pap. Med. Fac. Univ. Olomouc. Czech Repub. 2015, 159, 197–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bataille, S.; Pelletier, M.; Sallée, M.; Berland, Y.; McKay, N.; Duval, A.; Gentile, S.; Mouelhi, Y.; Brunet, P.; Burtey, S. Indole 3-acetic acid, indoxyl sulfate and paracresyl-sulfate do not influence anemia parameters in hemodialysis patients. BMC Nephrol. BioMed. Cent. 2017, 18, 251. [Google Scholar] [CrossRef]
- Pfeffer, M.A.; Burdmann, E.A.; Chen, C.Y.; Cooper, M.E.; de Zeeuw, D.; Eckardt, K.U.; Feyzi, J.M.; Ivanovich, P.; Kewalramani, R.; Levey, A.S.; et al. TREAT Investigators; A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J. Med. 2009, 361, 2019–2032. [Google Scholar] [CrossRef] [Green Version]
- Macdougall, I.C. Role of uremic toxins in exacerbating anemia in renal failure. Kidney Int. Suppl. 2001, 78, S67–S72. [Google Scholar]
- Cotes, P.M. Erythropoietin: The developing story. Br. Med. J. (Clin. Res. Ed.) 1988, 296, 805–806. [Google Scholar]
- Besarab, A.; Ayyoub, F. Anemia in renal disease. In Diseases of the Kidney and Urinary Tract, 8th ed.; Schrier, R.W., Ed.; Lippincott Williams and Wilkins: Philadelphia, Pennsylvania, USA, 2007; pp. 2406–2430. [Google Scholar]
- Kushner, D.S.; Beckman, B.; Nguyen, L.; Chen, S.; Della Santina, C.; Husserl, F.; Rice, J.; Fisher, J.W. Polyamines in the anemia of end-stage renal disease. Kidney Int. 1991, 39, 725–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, C.K.; Tanaka, T.; Inagi, R.; Fujita, T.; Nangaku, M. Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Lab. Investig. 2011, 91, 1564–1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamano, H.; Ikeda, Y.; Watanabe, H.; Horinouchi, Y.; Izawa-Ishizawa, Y.; Imanishi, M.; Zamami, Y.; Takechi, K.; Miyamoto, L.; Ishizawa, K.; et al. The uremic toxin indoxyl sulfate interferes with iron metabolism by regulating hepcidin in chronic kidney disease. Nephrol. Dial. Transpl. 2018, 33, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Wu, I.-W.; Hsu, K.-H.; Sun, C.-Y.; Wu, M.S.; Lee, C.C.; Tsai, C.J. Oral adsorbent AST-120 potentiates the effect of erythropoietin-stimulating agents on Stage 5 chronic kidney disease patients: A randomized crossover study. Nephrol. Dial. Transplant. 2014, 29, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.S.; Abed, M.; Voelkl, J.; Lang, F. Triggering of suicidal erythrocyte death by uremic toxin indoxyl sulfate. BMC Nephrol. 2013, 4, 14–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vos, F.E.; Schollum, J.B.; Coulter, C.V.; Doyle, T.C.; Duffull, S.B.; Walker, R.J. Red blood cell survival in long-term dialysis patients. Am. J. Kidney Dis. 2011, 58, 591–598. [Google Scholar] [CrossRef]
- Bandeira, M.F.S. Consequências hematológicas da uremia. In Riella MC. Princípios de Nefrologia e Distúrbios Eletrolíticos, 4th ed.; Guanabara Koogan: Rio de Janeiro, Brazil, 2003; pp. 691–701. [Google Scholar]
- Weiss, G. Pathogenesis and treatment of anaemia of chronic disease. Blood Rev. 2002, 16, 87–96. [Google Scholar] [CrossRef]
- Wagner, M.; Ashby, D. Hepcidin—A well-known iron biomarker with prognostic implications in chronic kidney disease. Nephrol. Dial. Transpl. 2013, 28, 2936–2939. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, M.; Kim, J.; Roy, C.; Warady, B.; White, C.T.; Furth, S. Hepcidin and risk for anemia in CKD: A cross-sectional and longitudinal analysis in the CKiD Cohort. Pediatr. Nephrol. 2015, 30, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Gupta, J.; Mitra, N.; Kanetsky, P.A.; Devaney, J.; Wing, M.R.; Reilly, M.; Shah, V.O.; Balakrishnan, V.S.; Guzman, N.J.; Girndt, M.; et al. Association between Albuminuria, Kidney Function, and Inflammatory Biomarker Profile in CKD in CRIC. Clin. J. Am. Soc. Nephrol. 2012, 7, 1938–1946. [Google Scholar] [CrossRef] [Green Version]
- Fudin, R.; Jaichenko, J.; Shostak, A.; Bennett, M.; Gotloib, L. Correction of uremic iron deficiency anemia in hemodialyzed patients: A prospective study. Nephron 1998, 79, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Macdougall, I.C.; Tucker, B.; Thompson, J.; Tomson, C.R.; Baker, L.R.; Raine, A.E. A randomized controlled study of iron supplementation in patients treated with erythropoietin. Kidney Int. 1996, 50, 1694–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kooistra, M.P.; Niemantsverdriet, E.C.; van Es, A.; Mol-Beerman, N.M.; Struyvenberg, A.; Marx, J.J. Iron absorption in erythropoietin-treated haemodialysis patients: Effects of iron availability, inflammation and aluminium. Nephrol. Dial. Transpl. 1998, 13, 82–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowry, S.K.; Gatti, E. Impact of Hemodialysis Therapy on Anemia of Chronic Kidney Disease: The Potential Mechanisms. Blood Purif. 2011, 32, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Eleftheriadis, T.; Liaopoulos, V.; Antoniadi, G.; Kartsios, C.; Stefanidis, I. The role of hepcidin in iron homeostasis and anemia in hemodialysis patients. Semin. Dial. 2009, 22, 70–77. [Google Scholar] [CrossRef] [PubMed]
- De Francisco, A.L.M.; Stenvinkel, P.; Vaulot, S. Inflammation and its impact on anemia in chronic kidney disease: From haemoglobin variability to hyporesponsiveness. Nephrol. Dial. Transpl. Plus 2009, 2, i18–i26. [Google Scholar]
- Tozoni, S.S.; Dias, G.F.; Bohnen, G.; Grobe, N.; Pecoits-Filho, R.; Kotanko, P.; Moreno-Amaral, A.N. Uremia and Hypoxia Independently Induce Eryptosis and Erythrocyte Redox Imbalance. Cell. Physiol. Biochem. 2019, 53, 794–804. [Google Scholar]
- Bonomini, M.; Sirolli, V. Uremic toxicity and anemia. J. Nephrol. 2003, 16, 21–28. [Google Scholar]
- Kruse, A.; Uehlinger, D.E.; Gotch, F.; Kotanko, P.; Levin, N.W. Red blood cell lifespan, erythropoiesis and haemoglobin control. Contrib. Nephrol. 2008, 161, 247–254. [Google Scholar]
- KDIGO. Clinical Practice Guideline for anemia in chronic kidney disease. Kidney Int. Suppl. 2012, 2, 279–335. [Google Scholar]
- Icardi, A.; Paoletti, E.; De Nicola, L.; Mazzaferro, S.; Russo, R.; Cozzolino, M. Renal anaemia and EPO hyporesponsiveness associated with vitamin D deficiency: The potential role of inflammation. Nephrol. Dial. Transpl. 2013, 28, 1672–1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regidor, D.L.; Kopple, J.D.; Kovesdy, C.P. Associations between changes in hemoglobin and administered erythropoiesis-stimulating agent and survival in hemodialysis patients. J. Am. Soc. Nephrol. 2006, 17, 1181–1191. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P.; Trivedi, B.K.; Kalantar-Zadeh, K. Association of anemia with outcomes in men with moderate and severe chronic kidney disease. Kidney Int. 2006, 69, 560–564. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Israni, R.K.; Brunelli, S.M.; Joffe, M.M.; Fishbane, S.; Feldman, H.I. Hemoglobin Variability and Mortality in ESRD. J. Am. Soc. Nephrol. 2007, 18, 3164–3170. [Google Scholar] [CrossRef] [Green Version]
- Brunelli, S.M.; Joffe, M.M.; Israni, R.K.; Yang, W.; Fishbane, S.; Berns, J.S.; Feldman, H.I. History-adjusted marginal structural analysis of the association between hemoglobin variability and mortality among chronic hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2008, 3, 777–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishani, A.; Solid, C.A.; Weinhandl, E.D.; Gilbertson, D.T.; Foley, R.N.; Collins, A.J. Association between number of months below K/DOQI haemoglobin target and risk of hospitalization and death. Nephrol. Dial. Transplant. 2008, 23, 1682–1689. [Google Scholar] [CrossRef] [Green Version]
- Pisoni, R.L.; Bragg-Gresham, J.L.; Young, E.W.; Akizawa, T.; Asano, Y.; Locatelli, F.; Bommer, J.; Cruz, J.M.; Kerr, P.G.; Mendelssohn, D.C.; et al. Anemia management and outcomes from 12 countries in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis. 2004, 44, 94–111. [Google Scholar] [CrossRef]
- Aggarwal, H.K.; Jain, D.; Chauda, R.; Bhatia, S.; Sehgal, R. Assessment of Malnutrition Inflammation Score in Different Stages of Chronic Kidney Disease. Pril. (Makedon. Akad. Nauk. Umet. Odd. Med. Nauk.) 2018, 39, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Stenvinkel, P.; Alvestrand, A. Inflammation in end-stage renal disease: Sources, consequences, and therapy. Semin. Dial. 2002, 15, 329–337. [Google Scholar] [CrossRef]
- Owen, W.F.; Lowrie, E.G. C-reactive protein as an outcome predictor for maintenance hemodialysis patients. Kidney Int. 1998, 54, 627–636. [Google Scholar] [CrossRef] [Green Version]
- Stenvinkel, P.; Barany, P.; Heimbürger, O.; Pecoits-Filho, R.; Lindholm, B. Mortality, malnutrition, and atherosclerosis in ESRD: What is the role of interleukin-6? Kidney Int. 2002, 61, S103–S108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeun, J.Y.; Levine, R.A.; Mantadilok, V.; Kaysen, G.A. C-Reactive protein predicts all-cause and cardiovascular mortality in hemodialysis patients. Am. J. Kidney Dis. 2000, 35, 469–476. [Google Scholar] [CrossRef]
- Kimmel, P.L.; Phillips, T.M.; Simmens, S.J.; Peterson, R.A.; Weihs, K.L.; Alleyne, S.; Cruz, I.; Yanovski, J.A.; Veis, J.H. Immunologic function and survival in hemodialysis patients. Kidney Int. 1998, 54, 236–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prakash, J.; Raja, R.; Mishra, R.N.; Vohra, R.; Sharma, N.; Wani, I.A.; Parekh, A. High prevalence of malnutrition and inflammation in undialyzed patients with chronic renal failure in developing countries: A single center experience from eastern India. Ren. Fail. 2007, 29, 811–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, R.; Davis, J.L.; Smith, L. Serum albumin is strongly associated with erythropoietin sensitivity in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2008, 3, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.A.; Breen, C.; Yaqoob, M.M.; Macdougall, I.C. Inhibition of CFU-E colony formation in uremic patients with inflammatory disease: Role of IFN-γ and TNF-α. J. Investig. Med. 1999, 47, 204–211. [Google Scholar]
- Goicoechea, M.; Martin, J.; de Sequera, P.; Quiroga, J.A.; Ortiz, A.; Carreno, V.; Caramelo, C. Role of cytokines in the response to erythropoietin in hemodialysis patients. Kidney Int. 1998, 54, 1337–1343. [Google Scholar] [CrossRef] [Green Version]
- Trey, J.E.; Kushner, I. The acute phase response and the hematopoietic system: The role of cytokines. Crit. Rev. Oncol. Hematol. 1995, 21, 1–18. [Google Scholar] [CrossRef]
- Faquin, W.C.; Schneider, T.J.; Goldberg, M.A. Effect of inflammatory cytokines on hypoxia-induced erythropoietin production. Blood 1992, 79, 1987–1994. [Google Scholar] [CrossRef] [Green Version]
- Ganz, T. Iron in innate immunity: Starve the invaders. Curr. Opin. Immunol. 2009, 21, 63–67. [Google Scholar] [CrossRef] [Green Version]
- De Domenico, I.; Ward, D.M.; Langelier, C.; Vaughn, M.B.; Nemeth, E.; Sundquist, W.I.; Ganz, T.; Musci, G.; Kaplan, J. The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol. Biol. Cell 2007, 18, 2569–2578. [Google Scholar] [CrossRef] [Green Version]
- Ganz, T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 2003, 102, 783–788. [Google Scholar] [CrossRef] [Green Version]
- Wrighting, D.M.; Andrews, N.C. Interleukin-6 induces hepcidin expression through STAT3. Blood 2006, 108, 3204–3209. [Google Scholar] [CrossRef]
- Dallalio, G.; Law, E.; Means, T. Hepcidin inhibits in vitro erythroid colony formation at reduced erythropoietin. Blood 2006, 107, 2702–2704. [Google Scholar] [CrossRef] [Green Version]
- Roy, C.N.; Mak, H.H.; Akpan, I.; Losyev, G.; Zurakowski, D.; Andrews, N.C. Hepcidin antimicrobial peptide transgenic mice exhibit features of the anemia of inflammation. Blood 2007, 109, 4038–4044. [Google Scholar] [CrossRef] [Green Version]
- Sasu, B.J.; Haniu, M.; Boone, T.C.; Bi, X.-J.; Lee, G.K.J.; Arvedson, T.; Winters, A.G.; Cooke, K.; Sheng, J.Z. Hepcidin, Hepcidin Antagonists and Methods of Use. U.S. Patent US2008213277 A1, 4 September 2008. [Google Scholar]
- Song, S.N.; Tomosugi, N.; Kawabata, H.; Ishikawa, T.; Nishikawa, T.; Yoshizaki, K. Down-regulation of hepcidin resulting from long-term treatment with an anti-IL-6 receptor antibody (tocilizumab) improves anemia of inflammation in multicentric Castleman’s disease (MCD). Blood 2010, 116, 3627–3634. [Google Scholar] [CrossRef] [Green Version]
- Ashby, D.R.; Gale, D.P.; Busbridge, M.; Murphy, K.G.; Duncan, N.D.; Cairns, T.D.; Taube, D.H.; Bloom, S.R.; Tam, F.W.; Chapman, R.; et al. Erythropoietin administration in humans causes a marked and prolonged reduction in circulating hepcidin. Haematologica 2010, 95, 505–508. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Brennan, M.L.; Hazen, S.L. Serum myeloperoxidase and mortality in maintenance hemodialysis patients. Am. J. Kidney Dis. 2006, 48, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Menon, V.; Greene, T.; Wang, X.; Pereira, A.A.; Marcovina, S.M.; Beck, G.J.; Kusek, J.W.; Collins, A.J.; Levey, A.S.; Sarnak, M.J. C-reactive protein and albumin as predictors of all-cause and cardiovascular mortality in chronic kidney disease. Kidney Int. 2005, 68, 766–772. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, J.; Herrlinger, S.; Pruy, A.; Metzger, T.; Wanner, C. Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int. 1999, 55, 648–658. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.R.; Alvestrand, A.; Divino-Filho, J.C.; Gutierrez, A.; Heimbürger, O.; Lindholm, B.; Bergström, J. Inflammation, malnutrition, and cardiac disease as predictors of mortality in hemodialysis patients. J. Am. Soc. Nephrol. 2002, 13, S28–S36. [Google Scholar]
- Besarab, A.; Coyne, D.W. Iron supplementation to treat anemia in patients with chronic kidney disease. Nat. Rev. Nephrol. 2010, 6, 699–710. [Google Scholar] [CrossRef]
- Begum, S.; Latunde-Dada, G.O. Anemia of Inflammation with An Emphasis on Chronic Kidney Disease. Nutrients 2019, 11, 2424. [Google Scholar] [CrossRef] [Green Version]
- National Institute for Health and Care Excellence. Chronic Kidney Disease: Managing Anaemia; NICE Guideline: London, UK, 2015.
- Gupta, N.; Wish, J.B. Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors: A Potential New Treatment for Anemia in Patients With CKD. Am. J. Kidney Dis. 2017, 69, 815–826. [Google Scholar] [CrossRef] [Green Version]
- Karkar, A. Advances in Hemodialysis Techniques; Suzuki, H., Ed.; IntechOpen: London, UK, 2013; Available online: https://www.intechopen.com/books/hemodialysis/advances-in-hemodialysis-techniques#B31 (accessed on 20 April 2019). [CrossRef] [Green Version]
- Agarwal, R.; Rizkala, A.R.; Bastani, B.; Kaskas, M.O.; Leehey, D.J.; Besarab, A. A randomized controlled trial of oral versus intravenous iron in chronic kidney disease. Am. J. Nephrol. 2006, 26, 445–454. [Google Scholar] [CrossRef]
- Schaefer, R.M.; Schaefer, L. Iron monitoring and supplementation: How do we achieve the best results. Nephrol. Dial. Transpl. 1998, 13 (Suppl. 2), 9–12. [Google Scholar] [CrossRef] [Green Version]
- Besarab, A.; Amin, N.; Ahsan, M.; Vogel, S.E.; Zazuwa, G.; Frinak, S.; Zazra, J.J.; Anandan, J.V.; Gupta, A. Optimization of epoetin therapy with intravenous iron therapy in hemodialysis patients. J. Am. Soc. Nephrol. 2000, 11, 530–538. [Google Scholar]
- Besarab, A.; Kaiser, J.W.; Frinak, S. A study of parenteral iron regimens in hemodialysis patients. Am. J. Kidney Dis. 1999, 34, 21–28. [Google Scholar] [CrossRef]
- Ford, B.A.; Coyne, D.W.; Eby, C.S.; Scott, M.G. Variability of ferritin measurements in chronic kidney disease; implications for iron management. Kidney Int. 2009, 75, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Cançado, R.D.; Muñoz, M. Intravenous iron therapy: How far have we come? Rev. Bras. Hematol. Hemoter. 2011, 33, 461–469. [Google Scholar] [CrossRef]
- Pigeon, C.; Ilyin, G.; Courselaud, B.; Leroyer, P.; Turlin, B.; Brissot, P.; Loréal, O. A new mouse liver specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol. Chem. 2001, 276, 7811–7819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roger, S.D. Managing the anaemia of chronic kidney disease. Aust. Prescr. 2009, 32, 129–131. [Google Scholar] [CrossRef] [Green Version]
- KDIGO. Use of ESAs and other agents to treat anemia in CKD. Kidney Int. Sup. 2012, 2, 299–310. [Google Scholar] [CrossRef] [Green Version]
- Palmer, S.C.; Navaneethan, S.D.; Craig, J.C.; Johnson, D.W.; Tonelli, M.; Garg, A.X.; Pellegrini, F.; Ravani, P.; Jardine, M.; Perkovic, V.; et al. Meta-analysis: Erythropoiesis-stimulating agents in patients with chronic kidney disease. Ann. Intern. Med. 2010, 153, 23–33. [Google Scholar] [CrossRef]
- Besarab, A.; Bolton, W.K.; Browne, J.K.; Egrie, J.C.; Nissenson, A.R.; Okamoto, D.M.; Schwab, S.J.; Goodkin, D.A. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N. Engl. J. Med. 1998, 339, 584–590. [Google Scholar] [CrossRef]
- Hayat, A.; Haria, D.; Salifu, M.O. Erythropoietin stimulating agents in the management of anemia of chronic kidney disease. Patient Prefer. Adherence 2008, 2, 195–200. [Google Scholar]
- Nakhoul, G.; Simon, J.F. Anemia of chronic kidney disease: Treat it, but not too aggressively. Clevel. Clin. J. Med. 2016, 83, 613–624. [Google Scholar] [CrossRef] [Green Version]
- Association between recombinant human erythropoietin and quality of life and exercise capacity of patients receiving haemodialysis. Canadian Erythropoietin Study Group. BMJ 1990, 300, 573–578. [Google Scholar]
- Singh, A.K.; Szczech, L.; Tang, K.L.; Barnhart, H.; Sapp, S.; Wolfson, M.; Reddan, D.; CHOIR Investigators. Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl. J. Med. 2006, 355, 2085–2098. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.D.; Uno, H.; Lewis, E.F.; Eckardt, K.U.; Lin, J.; Burdmann, E.A.; de Zeeuw, D.; Ivanovich, P.; Levey, A.S.; Parfrey, P. Trial to Reduce Cardiovascular Events with Aranesp Therapy (TREAT) Investigators. Erythropoietic response and outcomes in kidney disease and type 2 diabetes. N. Engl. J. Med. 2010, 363, 1146–1155. [Google Scholar] [CrossRef] [Green Version]
- Szczech, L.A.; Barnhart, H.X.; Inrig, J.K.; Reddan, D.N.; Sapp, S.; Califf, R.M.; Patel, U.D.; Singh, A.K. Secondary analysis of the CHOIR trial epoetin-alpha dose and achieved hemoglobin outcomes. Kidney Int. 2008, 74, 791–798. [Google Scholar] [CrossRef] [Green Version]
- Horl, W.H. Clinical aspects of iron use in the anemia of kidney disease. J. Am. Soc. Nephrol. 2007, 18, 382–393. [Google Scholar] [CrossRef] [Green Version]
- Silverstein, D.M. Inflammation in chronic kidney disease: Role in the progression of renal and cardiovascular disease. Pediatr. Nephrol. 2009, 24, 1445–1452. [Google Scholar] [CrossRef]
- Atkinson, M.A.; White, C.T. Hepcidin in anemia of chronic kidney disease: Review for the pediatric nephrologist. Pediatr. Nephrol. 2012, 27, 33–40. [Google Scholar] [CrossRef]
- Lang, V.R.; Englbrecht, M.; Rech, J.; Nusslein, H.; Manger, K.; Schuch, F.; Tony, H.P.; Fleck, M.; Manger, B.; Schett, G.; et al. Risk of infections in rheumatoid arthritis patients treated with tocilizumab. Rheumatology 2012, 51, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Masajtis-Zagajewska, A.; Nowicki, M. Effect of atorvastatin on iron metabolism regulation in patients with chronic kidney disease—A randomized double blind crossover study. Ren. Fail. 2018, 40, 700–709. [Google Scholar] [CrossRef] [Green Version]
- Jelkmann, W. Activin receptor ligand traps in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2018, 27, 351–357. [Google Scholar] [CrossRef]
- Breda, L.; Rivella, S. Modulators of erythropoiesis: Emerging therapies for hemoglobinopathies and disorders of red cell production. Hematol. Clin. N. Am. 2014, 28, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Biggar, P.; Kim, G.H. Treatment of renal anemia: Erythropoiesis stimulating agents and beyond. Kidney Res. Clin. Pr. 2017, 36, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Iancu-Rubin, C.; Mosoyan, G.; Wang, J.; Kraus, T.; Sung, V.; Hoffman, R. Stromal cell-mediated inhibition of erythropoiesis can be attenuated by Sotatercept (ACE-011), an activin receptor type II ligand trap. Exp. Hematol. 2013, 41, 155–166. [Google Scholar] [CrossRef]
- Finberg, K.E.; Whittlesey, R.L.; Fleming, M.D.; Andrews, N.C. Down-regulation of Bmp/Smad signaling by Tmprss6 is required for maintenance of systemic iron homeostasis. Blood 2010, 115, 3817–3826. [Google Scholar] [CrossRef] [PubMed]
- A Phase 2 Study of Intravenous or Subcutaneous Dosing of Sotatercept (ACE-011) in Patients with End-Stage Kidney Disease on Hemodialysis 2013. Available online: https://www.clinicaltrials.gov/ct2/show/NCT01999582 (accessed on 2 January 2020).
- Bonomini, M.; Del Vecchio, L.; Sirolli, V.; Locatelli, F. New Treatment Approaches for the Anemia of CKD. Am. J. Kidney Dis. 2016, 67, 133–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suragani, R.N.; Cadena, S.M.; Cawley, S.M.; Sako, D.; Mitchell, D.; Li, R.; Davies, M.V.; Alexander, M.J.; Devine, M.; Loveday, K.S.; et al. Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat. Med. 2014, 20, 408–414. [Google Scholar] [CrossRef]
- Attie, K.M.; Allison, M.J.; McClure, T.; Boyd, I.E.; Wilson, D.M.; Pearsall, A.E.; Sherman, M.L. A phase 1 study of ACE-536, a regulator of erythroid differentiation, in healthy volunteers. Am. J. Hematol. 2014, 89, 766–770. [Google Scholar] [CrossRef] [Green Version]
- Sasu, B.J.; Cooke, K.S.; Arvedson, T.L.; Plewa, C.; Ellison, A.R.; Sheng, J.; Winters, A.; Juan, T.; Li, H.; Begley, C.G.; et al. Antihepcidin antibody treatment modulates iron metabolism and is effective in a mouse model of inflammation-induced anemia. Blood 2010, 115, 3616–3624. [Google Scholar] [CrossRef]
- Bolignano, D.; D’Arrigo, G.; Pisano, A.; Coppolino, G. Pentoxifylline for Anemia in Chronic Kidney Disease: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0134104. [Google Scholar] [CrossRef]
- Chen, N.; Hao, C.; Peng, X.; Lin, H.; Yin, A.; Hao, L.; Tao, Y.; Liang, X.; Liu, Z.; Xing, C. Roxadustat for Anemia in Patients with Kidney Disease Not Receiving Dialysis. N. Engl. J. Med. 2019, 381, 1001–1010. [Google Scholar] [CrossRef]
- Besarab, A.; Provenzano, R.; Hertel, J.; Zabaneh, R.; Klaus, S.J.; Lee, T.; Leong, R.; Hemmerich, S.; Yu, K.H.; Neff, T.B. Randomized placebo-controlled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in nondialysis-dependent chronic kidney disease (NDD-CKD) patients. Nephrol. Dial. Transpl. 2015, 30, 1665–1673. [Google Scholar] [CrossRef]
- Besarab, A.; Chernyavskaya, E.; Motylev, I.; Shutov, E.; Kumbar, L.M.; Gurevich, K.; Chan, D.T.; Leong, R.; Poole, L.; Zhong, M. Roxadustat (FG-4592): Correction of anemia in incident dialysis patients. J. Am. Soc. Nephrol. 2016, 27, 1225–1233. [Google Scholar] [CrossRef] [Green Version]
- Provenzano, R.; Besarab, A.; Sun, C.H.; Diamond, S.A.; Durham, J.H.; Cangiano, J.L.; Aiello, J.R.; Novak, J.E.; Lee, T.; Leong, R.; et al. Oral hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) for the treatment of anemia in patients with CKD. Clin. J. Am. Soc. Nephrol. 2016, 11, 982–991. [Google Scholar] [CrossRef]
- Provenzano, R.; Besarab, A.; Wright, S.; Dua, S.; Zeig, S.; Nguyen, P.; Poole, L.; Saikali, K.G.; Saha, G.; Hemmerich, S.; et al. Roxadustat (FG-4592) versus epoetin alfa for anemia in patients receiving maintenance hemodialysis: A phase 2, randomized, 6- to 19-week, open-label, active-comparator, dose-ranging, safety and exploratory efficacy study. Am. J. Kidney Dis. 2016, 67, 912–924. [Google Scholar] [CrossRef] [Green Version]
- Ganz, T.; Nemeth, E. Hepcidin and iron homeostasis. Biochim. Biophys. Acta 2012, 1823, 1434–1443. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Qian, J.; Chen, J.; Yu, X.; Mei, C.; Hao, C.; Jiang, G.; Lin, H.; Zhang, X.; Zuo, L.; et al. Phase 2 studies of oral hypoxia-inducible factor prolyl hydroxylase inhibitor FG-4592 for treatment of anemia in China. Nephrol. Dial. Transpl. 2017, 32, 1373–1386. [Google Scholar] [CrossRef]
- Macdougall, I.C.; Akizawa, T.; Berns, J.S.; Bernhardt, T.; Krueger, T. Effects of Molidustat in the Treatment of Anemia in CKD. Clin. J. Am. Soc. Nephrol. 2019, 14, 1524. [Google Scholar] [CrossRef] [Green Version]
- Flamme, I.; Oehme, F.; Ellinghaus, P.; Jeske, M.; Keldenich, J.; Thuss, U. Mimicking hypoxia to treat anemia: HIF-stabilizer BAY 85-3934 (Molidustat) stimulates erythropoietin production without hypertensive effects. PLoS ONE 2014, 9, e111838. [Google Scholar] [CrossRef] [Green Version]
- Akizawa, T.; Macdougall, I.C.; Berns, J.S.; Bernhardt, T.; Staedtler, G.; Taguchi, M.; Iekushi, K.; Krueger, T. Long-Term Efficacy and Safety of Molidustat for Anemia in Chronic Kidney Disease: DIALOGUE Extension Studies. Am. J. Nephrol. 2019, 49, 271–280. [Google Scholar] [CrossRef]
- Akizawa, T.; Taguchi, M.; Matsuda, Y.; Iekushi, K.; Yamada, T.; Akizawa, T. Molidustat for the treatment of renal anaemia in patients with dialysis-dependent chronic kidney disease: Design and rationale of three phase III studies. BMJ Open 2019, 9, e026602. [Google Scholar] [CrossRef]
- Böttcher, M.; Lentini, S.; Arens, E.R.; Kaiser, A.; van der Mey, D.; Thuss, U.; Kubitza, D.; Wensing, G. First-in-man-proof of concept study with molidustat: A novel selective oral HIF-prolyl hydroxylase inhibitor for the treatment of renal anaemia. Br. J. Clin. Pharm. 2018, 84, 1557–1565. [Google Scholar] [CrossRef] [Green Version]
- Akizawa, T.; Macdougall, I.C.; Berns, J.S.; Yamamoto, H.; Taguchi, M.; Iekushi, K.; Bernhardt, T. Iron Regulation by Molidustat, a Daily Oral Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor, in Patients with Chronic Kidney Disease. Nephron 2019, 143, 243–254. [Google Scholar] [CrossRef]
- Sanghani, N.S.; Haase, V.H. Hypoxia-inducible factor activators in renal anemia: Current clinical experience. Adv. Chronic Kidney Dis. 2019, 26, 253–266. [Google Scholar] [CrossRef]
- Ramirez, R.; Carracedo, J.; Merino, A.; Nogueras, S.; Alvarez-Lara, M.A.; Rodríguez, M.; Martin-Malo, A.; Tetta, C.; Aljama, P. Microinflammation induces endothelial damage in hemodialysis patients: The role of convective transport. Kidney Int. 2007, 72, 108–113. [Google Scholar] [CrossRef] [Green Version]
- Benbernou, N.; Esnault, S.; Potron, G.; Guenounou, M. Regulatory effects of pentoxifylline on T-helper cell-derived cytokine production in human blood cells. J. Cardiovas. Pharm. 1995, 25, 75–79. [Google Scholar] [CrossRef]
- Pergola, P.E.; Spinowitz, B.S.; Hartman, C.S.; Maroni, B.J.; Haase, V.H. Vadadustat, a novel oral HIF stabilizer, provides effective anemia treatment in nondialysis-dependent chronic kidney disease. Kidney Int. 2016, 90, 1115–1122. [Google Scholar] [CrossRef] [Green Version]
- Holdstock, L.; Meadowcroft, A.M.; Maier, R.; Johnson, B.M.; Jones, D.; Rastogi, A.; Zeig, S.; Lepore, J.J.; Cobitz, A.R. Four-week studies of oral hypoxia-inducible factor-prolyl hydroxylase inhibitor GSK1278863 for treatment of anemia. J. Am. Soc. Nephrol. 2016, 27, 1234–1244. [Google Scholar] [CrossRef]
- Brigandi, R.A.; Johnson, B.; Oei, C.; Westerman, M.; Olbina, G.; de Zoysa, J.; Roger, S.D.; Sahay, M.; Cross, N.; McMahon, L.; et al. A novel hypoxia-inducible factor-prolyl hydroxylase inhibitor (GSK1278863) for anemia in CKD: A 28-day, phase 2A randomized trial. Am. J. Kidney Dis. 2016, 67, 861–871. [Google Scholar] [CrossRef] [Green Version]
- Martin, E.R.; Smith, M.T.; Maroni, B.J.; Zuraw, Q.C.; deGoma, E.M. Clinical trial of Vadadustat in patients with anemia secondary to stage 3 or 4 chronic kidney disease. Am. J. Nephrol. 2017, 45, 380–388. [Google Scholar] [CrossRef]
- Bacchetta, J.; Zaritsky, J.; Lisse, T.; Sea, J.; Chun, R.; Nemeth, E.; Ganz, T.; Westerman, M.; Hewison, M. Vitamin D as a New Regulator of Iron Metabolism: Vitamin D Suppresses Hepcidin in Vitro and In Vivo. J. Am. Soc. Nephrol. 2011, 22, 564–572. [Google Scholar]
- Zughaier, S.M.; Alvarez, J.A.; Sloan, J.H.; Konrad, R.J.; Tangpricha, V. The role of vitamin D in regulating the iron-hepcidin-ferroportin axis in monocytes. J. Clin. Transl. Endocrinol. 2014, 1, 19–25. [Google Scholar] [CrossRef]
- Panwar, B.; McCann, D.; Olbina, G.; Westerman, M.; Gutierrez, O.M. Effect of calcitriol on serum hepcidin in individuals with chronic kidney disease: A randomized controlled trial. BMC Nephrol. 2018, 19, 35. [Google Scholar] [CrossRef] [Green Version]
- Usberti, M.; Gerardi, G.; Micheli, A.; Tira, P.; Bufano, G.; Gaggia, P.; Movilli, E.; Cancarini, G.C.; De Marinis, S.; D’Avolio, G.; et al. Effects of a vitamin E-bonded membrane and of glutathione on anemia and erythropoietin requirements in hemodialysis patients. J. Nephrol. 2002, 15, 558–564. [Google Scholar]
- Ayesh Haj Yousef, M.H.; Bataineh, A.; Elamin, E.; Khader, Y.; Alawneh, K.; Rababah, M. Adequate hemodialysis improves anemia by enhancing glucose-6-phosphate dehydrogenase activity in patients with end-stage renal disease. BMC Nephrol. 2014, 15, 155. [Google Scholar] [CrossRef] [Green Version]
- Ifudu, O.; Uribarri, J.; Rajwani, I.; Vlacich, V.; Reydel, K.; Delosreyes, G.; Friedman, E.A. Adequacy of dialysis and differences in haematocrit among dialysis facilities. Am. J. Kidney Dis. 2000, 36, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Movilli, E.; Cancarini, G.C.; Zani, R.; Camerini, C.; Sandrini, M.; Maiorca, R. Adequacy of dialysis reduces the dose of recombinant erythropoietin independently from the use biocompatible membranes in haemodialysis patients. Nephrol. Dial. Transplant. 2001, 16, 111–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Kidney Foundation. Kidney Dialysis Outcome Quality Initiative (K/DOQI): Clinical Practice Guidelines for Hemodialysis Adequacy: Update 2000. Available online: http://www.kidney.org/professionals/kdoqi/guidelines_updates/doqi_uptoc.html#hd (accessed on 5 September 2019).
- Locatelli, F.; Andrulli, S.; Pecchini, F.; Pedrini, L.; Agliata, S.; Lucchi, L.; Farina, M.; La Milia, V.; Grassi, C.; Borghi, M.; et al. Effect of high-flux dialysis on the anaemia of haemodialysis patients. Nephrol. Dial. Transpl. 2000, 15, 1399–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedrini, L.A.; Zawada, A.M.; Winter, A.C.; Pham, J.; Klein, G.; Wolf, M.; Feuersenger, A.; Ruggiero, P.; Feliciani, A.; Barbieri, C.; et al. Effects of high-volume online mixed-hemodiafiltration on anemia management in dialysis patients. PLoS ONE 2019, 14, e0212795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedrini, L.A.; Cozzi, G.; Faranna, P.; Mercieri, A.; Ruggiero, P.; Zerbi, S.; Feliciani, A.; Riva, A. Transmembrane pressure modulation in high-volume mixed hemodiafiltration to optimize efficiency and minimize protein loss. Kidney Int. 2006, 69, 573–579. [Google Scholar] [CrossRef] [Green Version]
- Pedrini, L.A.; Wiesen, G. Overcoming the limitations of post-dilution on-line hemodiafiltration: Mixed dilution hemodiafiltration. Contrib. Nephrol. 2011, 175, 129–140. [Google Scholar] [CrossRef]
- Maduell, F.; del Pozo, C.; Garcia, H.; Sanchez, L.; Hdez-Jaras, J.; Albero, M.D.; Calvo, C.; Torregrosa, I.; Navarro, V. Change from conventional haemodiafiltration to on-line haemodiafiltration. Nephrol. Dial. Transpl. 1999, 14, 1202–1207. [Google Scholar] [CrossRef] [Green Version]
- Stefansson, B.V.; Abramson, M.; Nilsson, U.; Haraldsson, B. Hemodiafiltration improves plasma 25-hepcidin levels: A prospective, randomized, blinded, cross-over study comparing hemodialysis and hemodiafiltration. Nephron Extra 2012, 2, 55–65. [Google Scholar] [CrossRef]
- Adamson, J.W. Hyporesponsiveness to erythropoiesis stimulating agents in chronic kidney disease: The many faces of inflammation. Adv. Chronic Kidney Dis. 2009, 16, 76–82. [Google Scholar] [CrossRef]
- Wiecek, A.; Piecha, G. Is haemodiafiltration more favourable than haemodialysis for treatment of renal anaemia? Nephrol. Dial. Transpl. 2015, 30, 523–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- den Hoedt, C.H.; Bots, M.L.; Grooteman, M.P.; van der Weerd, N.C.; Mazairac, A.H.; Penne, E.L.; Levesque, R.; ter Wee, P.M.; Nubé, M.J.; Blankestijn, P.J.; et al. Online hemodiafiltration reduces systemic inflammation compared to low-flux hemodialysis. Kidney Int. 2014, 86, 423–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panichi, V.; Rizza, G.M.; Paoletti, S.; Bigazzi, R.; Aloisi, M.; Barsotti, G.; Rindi, P.; Donati, G.; Antonelli, A.; Panicucci, E.; et al. Chronic inflammation and mortality in haemodialysis: Effect of different renal replacement therapies. Results from the RISCAVID study. Nephrol. Dial. Transpl. 2008, 23, 2337–2343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcelli, D.; Bayh, I.; Merello, J.I.; Ponce, P.; Heaton, A.; Kircelli, F.; Chazot, C.; Di Benedetto, A.; Marelli, C.; Ladanyi, E.; et al. Dynamics of the erythropoiesis stimulating agent resistance index in incident hemodiafiltration and high-flux hemodialysis patients. Kidney Int. 2016, 90, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Panichi, V.; Scatena, A.; Rosati, A.; Giusti, R.; Ferro, G.; Malagnino, E.; Capitanini, A.; Piluso, A.; Conti, P.; Bernabini, G.; et al. High-volume online haemodiafiltration improves erythropoiesis-stimulating agent (ESA) resistance in comparison with low-flux bicarbonate dialysis: Results of the REDERT study. Nephrol. Dial. Transpl. 2015, 30, 682–689. [Google Scholar] [CrossRef] [Green Version]
- Oates, T.; Pinney, J.H.; Davenport, A. Haemodiafiltration versus high-flux haemodialysis: Effects on phosphate control and erythropoietin response. Am. J. Nephrol. 2011, 33, 70–75. [Google Scholar] [CrossRef]
- van der Weerd, N.C.; Den Hoedt, C.H.; Blankestijn, P.J.; Bots, M.L.; van den Dorpel, M.A.; Levesque, R.; Mazairac, A.H.; Nubé, M.J.; Penne, E.L.; ter Wee, P.M.; et al. Resistance to erythropoiesis stimulating agents in patients treated with online hemodiafiltration and ultrapure low-flux hemodialysis: Results from a randomized controlled trial (CONTRAST). PLoS ONE 2014, 9, e94434. [Google Scholar] [CrossRef] [Green Version]
- Ayli, D.; Ayli, M.; Azak, A.; Yüksel, C.; Kosmaz, G.P.; Atilgan, G.; Dede, F.; Abayli, E.; Camlibel, M. The effect of high-flux hemodialysis on renal anemia. J. Nephrol. 2004, 17, 701–706. [Google Scholar]
- Ueda, N.; Takasawa, K. Impact of Inflammation on Ferritin, Hepcidin and the Management of Iron Deficiency Anemia in Chronic Kidney Disease. Nutrients 2018, 10, 1173. [Google Scholar] [CrossRef] [Green Version]
- Gangat, N.; Wolanskyj, A.P. Anemia of chronic disease. Semin. Hematol 2013, 50, 232–238. [Google Scholar] [CrossRef]
- Susantitaphong, P.; Alqahtani, F.; Jaber, B.L. Efficacy and safety of intravenous iron therapy for functional iron deficiency anemia in hemodialysis patients: A meta-analysis. Am. J. Nephrol. 2014, 39, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Jairam, A.; Das, R.; Aggarwal, P.K.; Kohli, H.S.; Gupta, K.L.; Sakhuja, V.; Jha, V. Iron status, inflammation and hepcidin in ESRD patients: The confounding role of intravenous iron therapy. Indian J. Nephrol. 2010, 20, 125–131. [Google Scholar] [PubMed]
- Nakanishi, T.; Kuragano, T.; Kaibe, S.; Nagasawa, Y.; Hasuike, Y. Should we reconsider iron administration based on prevailing ferritin and hepcidin concentrations? Clin. Exp. Nephrol. 2012, 16, 819–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunnell, J.; Yeun, J.Y.; Depner, T.A.; Kaysen, G.A. Acute-phase response predicts erythropoietin resistance in haemodialysis and PD patients. Am. J. Kidney Dis. 1999, 33, 63–72. [Google Scholar] [CrossRef]
- Stenvinkel, P. Inflammation in end-stage renal failure: Could it be treated? Nephrol. Dial. Transpl. 2002, 17, 33–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nand, N.; Chauhan, V.; Seth, S.; Batra, N.; Dsouza, S. Inflammation and erythropoietin hyporesponsiveness: Role of pentoxifylline, an anti TNF-α agent. JIACM 2016, 17, 16–20. [Google Scholar]
- National Kidney Foundation. KDOQI clinical practice guidelines for chronic kidney disease, evaluation, classification, and stratification. Am. J. Kidney Dis. 2002, 39, 1–266. [Google Scholar]
- Santos, E.J.F.; Hortegal, E.V.; Serra, H.O.; Lages, J.S.; Salgado-Filho, N.; dos Santos, A.M. Epoetin alfa resistance in hemodialysis patients with chronic kidney disease: A longitudinal study. Braz. J. Med. Biol. Res. 2018, 51, e7288. [Google Scholar] [CrossRef]
- Macdougall, I.C.; Cooper, A.C. Erythropoietin resistance: The role of inflammation and pro-inflammatory cytokines. Nephrol. Dial. Transpl. 2002, 17, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Kalantar-Zadeh, K.; McAllister, C.J.; Lehn, R.S.; Lee, G.H.; Nissenson, A.R.; Kopple, J.D. Effect of malnutrition-inflammation complex syndrome on EPO hyporesponsiveness in maintenance hemodialysis patients. Am. J. Kidney Dis. 2003, 42, 761–773. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, N.; Prchal, J.T. Anemia of chronic disease (anemia of inflammation). Acta Haematol. 2009, 122, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Barany, P.; Divino, J.C.; Bergström, J. High C-reactive protein is a strong predictor of resistance to erythropoietin in hemodialysis patients. Am. J. Kidney Dis. 1997, 29, 565–568. [Google Scholar] [CrossRef]
- Hung, S.C.; Lin, Y.P.; Tarng, D.C. Erythropoiesis-stimulating agents in chronic kidney disease: What have we learned in 25 years? J. Med. Assoc. 2014, 113, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locatelli, F.; Andrulli, S.; Memoli, B.; Maffei, C.; Del Vecchio, L.; Aterini, S.; De Simone, W.; Mandalari, A.; Brunori, G.; Amato, M.; et al. Nutritional-inflammation status and resistance to erythropoietin therapy in haemodialysis patients. Nephrol. Dial. Transpl. 2006, 21, 991–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, J.F.; Mora, C.; Garcia, J. Rivero, A.; Macía, M.; Gallego, E.; Méndez, M.L.; Chahin, J.. Effects of pentoxifylline on the hematologic status in anaemic patients with advanced renal failure. J. Urol. Nephrol. 1999, 33, 121–125. [Google Scholar]
- Goicoechea, M.; de Vinuesa, S.G.; Quiroga, B.; Verdalles, U.; Barraca, D.; Yuste, C.; Panizo, N.; Verde, E.; Muñoz, M.A.; Luño, J. Effects of pentoxifylline on inflammatory parameters in chronic kidney disease patients: A randomised trial. J. Nephrol. 2012, 25, 969–975. [Google Scholar] [CrossRef]
- Tavazoe, M.; Balali, A.; Shahbazian, H.; Ghorbani, A. Pentoxifylline and Improvement of Anaemia in End-Stage Renal Disease. Iran. J. Kidney Dis. 2009, 3, 302. [Google Scholar]
- Locatelli, F.; Aljama, P.; Barany, P.; Canaud, B.; Carrera, F.; Eckardt, K.U.; Hörl, W.H.; Macdougal, I.C.; Macleod, A.; Wiecek, A.; et al. Revised European best practice guidelines for the management of anaemia in patients with chronic renal failure. Nephrol. Dial. Transplant. 2004, 19 (Suppl. 2), ii1–ii47. [Google Scholar]
Study Name | Study Type | Drug Name | Most Important Findings | Ref |
---|---|---|---|---|
DIALOGUE 1 (D1) (n = 121) | 3 phase 2b, 16-week, randomized, double-blind, placebo-controlled, fixed-dose trial (25, 50, and 75 mg once daily; 25 and 50 mg twice daily) study of molidustat for the treatment of anemia in patients with CKD not previously treated with an analog of rhEPO, and who were not receiving dialysis treatment | Molidustat | Molidustat treatment was associated with estimated increases in mean hemoglobin levels of 1.4–2.0 g/dl | [120] |
DIALOGUE 2 (n = 124) | Open-label, variable-dose trials, in which treatment was switched from darbepoetin to molidustat or continued with the original agents. Starting molidustat doses ranged between 25–75 mg daily | Molidustat | Hemoglobin levels were maintained within the target range after switching to molidustat, with an estimated difference in mean change in hemoglobin levels between molidustat and darbepoetin treatments of up to 0.6 g/dL. | [120] |
DIALOGUE 4 (n = 199) | Open-label, variable-dose trials, in which treatment was switched from epoetin to molidustat or continued with the original agents. Starting molidustat ranged between 25–150 mg daily | Molidustat | Hemoglobin levels were maintained within the target range after switching to molidustat 75 and 150 mg, with estimated differences in mean change between molidustat and epoetin treatment of −0.1 and 0.4 g/dL. Molidustat was generally well tolerated, and most adverse events were mild or moderate in severity. | [120] |
(n = 116) | Randomized placebo-controlled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in nondialysis-dependent chronic kidney disease (NDD-CKD) patients | Roxadustat | In roxadustat-treated subjects, Hb levels increased from baseline in a dose-related manner. Maximum ΔHb within the first 6 weeks was significantly higher in the 1.5 and 2.0 mg/kg groups than in the placebo subjects. Hb responder rates were dose dependent and ranged from 30% in the 0.7 mg/kg BIW group to 100% in the 2.0 mg/kg BIW and TIW groups versus 13% in placebo. | [114] |
(n = 143) | Randomized, cohort study with varying roxadustat starting doses and frequencies followed by hemoglobin maintenance with roxadustat one to three times weekly. Treatment duration was 16 or 24 weeks. | Roxadustat | 92% of patients achieved hemoglobin response. Higher compared with lower starting doses led to earlier achievement of hemoglobin response. Roxadustat-induced Hb increases were independent of baseline C-reactive protein levels and iron repletion status. Over the first 16 treatment weeks, hepcidin levels decreased by 16.9% (p = 0.004), reticulocyte hemoglobin content was maintained, and hemoglobin increased by a mean (±SD) of 1.83 (±0.09) g/dl (p < 0.001). | [116] |
(n = 60) | Open-label, phase IIb study of ESA-naïve incident PD and HD participants (total n = 60) with severe anemia (mean Hb 8.3 g/dl at baseline) who were randomized to receive no iron, oral iron, or IV iron during the treatment with roxadustat for 12 weeks | Roxadustat | Roxadustat at titrated doses increased mean Hb by ≥2.0 g/dL within 7 weeks regardless of baseline iron repletion status, C-reactive protein level, iron regimen, or dialysis modality. In groups receiving oral or IV iron, ΔHb(max) was similar and larger than in the no-iron group. Hb response (increase in Hb of ≥1.0 g/dL from baseline) was achieved in 96% of efficacy-evaluable patients. Mean serum hepcidin decreased significantly 4 weeks into study: by 80% in HD patients receiving no iron (n = 22), 52% in HD and PD patients receiving oral iron (n = 21), and 41% in HD patients receiving IV iron (n = 9). | [115] |
(n = 154) | Phase 3 trial, CKD patients randomly assigned to receive roxadustat or placebo three times a week for 8 weeks in a double-blind manner. The randomized phase of the trial was followed by an 18-week open-label period in which all the patients received roxadustat. | Roxadustat | Hemoglobin level increased by 1.9 ± 1.2 g/dL in the roxadustat group and decreased by 0.4 ± 0.8 g/dl in the placebo group (p < 0.001). The mean reduction from baseline in the hepcidin level was 56.14 ± 63.40 ng/mL in the roxadustat group and 15.10 ± 48.06 ng/mL in the placebo group. Hyperkalemia and metabolic acidosis occurred more frequently in the roxadustat group than in the placebo group. | [113] |
(n = 93) | Phase 2a, multicenter, randomized, double-blind, placebo-controlled, dose-ranging trial (NCT01381094) of adults with anemia secondary to CKD stage 3 or 4. Patients were randomized to 5 groups: 240, 370, 500, or 630 mg of once-daily oral vadadustat or placebo for 6 weeks. All of them received low-dose supplemental oral iron (50 mg daily). | Vadadustat | Vadadustat significantly increased Hb after 6 weeks in a dose-dependent manner in comparison to placebo (p < 0.0001). It also increased total iron-binding capacity and reduced ferritin and hepcidin levels. | [132] |
20-week, double-blind, randomized, placebo-controlled, phase 2b study of efficacy and safety of once-daily vadadustat in patients with stages 3a to 5 non-dialysis-dependent CKD | Vadadustat | 54.9% of patients on vadadustat and 10.3% of patients on placebo achieved or maintained either a mean hemoglobin level of 11.0 g/dL or more or a mean increase in hemoglobin of 1.2 g/dL or more. Significant rise in reticulocytes and total iron-binding capacity and significant drop in serum hepcidin and ferritin levels were observed in patients on vadadustat compared with placebo. The incidence of adverse events was comparable between the 2 groups. | [129] | |
(non-dialysis n = 71; HD n = 80) | Two phase 2a studies to explore the relationship between the dose of daprodustat and hemoglobin response in: - patients with anemia of CKD (baseline hemoglobin 8.5–11.0 g/dL) not undergoing dialysis and not receiving recombinant human erythropoietin (non-dialysis study) - patients with anemia of CKD (baseline hemoglobin 9.5–12.0 g/dL) on hemodialysis and being treated with stable doses of recombinant human erythropoietin (hemodialysis study). Patients were randomized to a once-daily oral dose of daprodustat (0.5 mg, 2 mg, or 5 mg) or placebo for the non-dialysis study; continuing on recombinant human erythropoietin for the hemodialysis study) for 4 weeks, with a 2-week follow-up | Daprodustat | In the non-dialysis study, daprodustat influenced hemoglobin in a dose-dependent (administration of the highest dose resulted in a mean increase of 1 g/dL at week 4)In the hemodialysis study, treatment with daprodustat mean hemoglobin concentrations were maintained in the 5-mg arm after the switch from recombinant human erythropoietin; in lower-dose arms mean hemoglobin decreased. In both studies, the effects on hemoglobin occurred with elevations in endogenous erythropoietin within the range usually observed in the respective populations and markedly lower than those in the recombinant human erythropoietin control arm in the hemodialysis study, and without clinically significant elevations in plasma vascular endothelial growth factor concentrations. | [130] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gluba-Brzózka, A.; Franczyk, B.; Olszewski, R.; Rysz, J. The Influence of Inflammation on Anemia in CKD Patients. Int. J. Mol. Sci. 2020, 21, 725. https://doi.org/10.3390/ijms21030725
Gluba-Brzózka A, Franczyk B, Olszewski R, Rysz J. The Influence of Inflammation on Anemia in CKD Patients. International Journal of Molecular Sciences. 2020; 21(3):725. https://doi.org/10.3390/ijms21030725
Chicago/Turabian StyleGluba-Brzózka, Anna, Beata Franczyk, Robert Olszewski, and Jacek Rysz. 2020. "The Influence of Inflammation on Anemia in CKD Patients" International Journal of Molecular Sciences 21, no. 3: 725. https://doi.org/10.3390/ijms21030725
APA StyleGluba-Brzózka, A., Franczyk, B., Olszewski, R., & Rysz, J. (2020). The Influence of Inflammation on Anemia in CKD Patients. International Journal of Molecular Sciences, 21(3), 725. https://doi.org/10.3390/ijms21030725