Genome-Wide Characterization and Analysis of CIPK Gene Family in Two Cultivated Allopolyploid Cotton Species: Sequence Variation, Association with Seed Oil Content, and the Role of GhCIPK6
Abstract
:1. Introduction
2. Results
2.1. Identification of CIPK Genes in G. hirsutum and G. barbadense
2.2. Phylogenetic Classifications, Structural Features, and Conserved Motifs Analysis of Cotton CIPK Genes
2.3. Chromosomal Location and Gene Duplication of CIPK Genes in Two Gossypium Species
2.4. Analysis of Cis-Elements and Prediction of Transcription Factor Binding Sites in the Promoter Regions of GhCIPKs
2.5. Expression Profiling of GhCIPK Genes in Different Tissues and Under Various Stresses
2.6. Co-Localization and Sequence Variation of GhCIPK Genes with QTLs for Seed Oil and Protein Content
2.7. Predictions of Putative Molecular Regulatory Mechanisms of GhCIPKs
3. Discussion
3.1. Phylogenetic Analysis and Evolution of CIPK Genes in Gossypium
3.2. Expression Patterns of GhCIPK Gene Family and the Role of GhCIPK6
3.3. Putative Molecular Regulatory Mechanisms of GhCIPKs in Cotton
4. Materials and Methods
4.1. Identification of CIPK Genes in G. hirsutum and G. barbadense
4.2. Phylogenetic Analysis and Synteny Analysis
4.3. Prediction of Cis-Elements and Transcription Factor Binding Sites in the Promoter Region
4.4. Alternative Splicing Events Analysis and Potential microRNA Target Analysis
4.5. Plant Growth Conditions and Treatments
4.6. RNA Isolation and Expression Profiling Analysis
4.7. Identification of Single Nucleotide Polymorphisms (SNPs) for CIPK Genes and Correlation Analysis with Cottonseed Oil and Protein Content Traits
4.8. Genetic Transformation, Oil Content Detection, and Fatty Acid Composition Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Luan, S. The CBL-CIPK network in plant calcium signaling. Trends Plant Sci. 2009, 14, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Kudla, J.; Batistič, O.; Hashimoto, K. Calcium signals: The lead currency of plant information processing. Plant Cell 2010, 22, 541–563. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Ding, S.; Zhang, H.; Du, H.; An, L. CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Sci. 2011, 181, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Halford, N.G.; Hey, S.; Jhurreea, D.; Laurie, S.; Mckibbin, R.S.; Paul, M.; Zhang, Y. Metabolic signalling and carbon partitioning: Role of Snf1-related (SnRK1) protein kinase. J. Exp. Bot. 2003, 54, 467–475. [Google Scholar] [CrossRef] [Green Version]
- John, S.; Raymond, J.; Hongxian, H.; Quinn, Z.; Seung-Pyo, H. Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica. Appl. Environ. Microbiol. 2013, 79, 7360–7370. [Google Scholar]
- Albrecht, V.; Ritz, O.; Linder, S.; Harter, K.; Kudla, J. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J. 2014, 20, 1051–1063. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Halfter, U.; Ishitani, M.; Zhu, J.K. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 2001, 13, 1383–1399. [Google Scholar] [CrossRef] [Green Version]
- Masaru, O.; Yan, G.; Ursula, H.; Jian-Kang, Z. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc. Natl. Acad. Sci. USA 2003, 100, 11771–11776. [Google Scholar]
- Kolukisaoglu, Ü.; Weinl, S.; Blazevic, D.; Batistic, O.; Kudla, J. Calcium sensors and their interacting protein kinases: Genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol. 2004, 134, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Kanwar, P.; Sanyal, S.K.; Tokas, I.; Yadav, A.K.; Pandey, A.; Kapoor, S.; Pandey, G.K. Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice. Cell Calcium. 2014, 56, 81–95. [Google Scholar] [CrossRef]
- Chen, X.; Gu, Z.; Xin, D.; Hao, L.; Liu, C.; Huang, J.; Ma, B.; Zhang, H. Identification and characterization of putative CIPK genes in maize. J. Genet. Genom. 2011, 38, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Xia, X.; Yin, W.; Zhang, H. Comparative genomic analysis of CIPK gene family in Arabidopsis and Populus. Plant Growth Regul. 2007, 52, 101–110. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, B.; Liu, W.Z.; Li, H.; Wang, L.; Wang, B.; Deng, M.; Liang, W.; Deyholos, M.K.; Jiang, Y.Q. Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biol. 2014, 14, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, K.; Chen, F.; Liu, J.; Chen, X.; Hewezi, T.; Cheng, Z.M. Evolution of an intron-poor cluster of the CIPK gene family and expression in response to drought stress in soybean. Sci. Rep. 2016, 6, 28225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, Y.; Liu, J.; Dong, C.; Cheng, Z.M. The CBL and CIPK gene family in grapevine (Vitis vinifera): Genome-wide analysis and expression profiles in response to various abiotic stresses. Front. Plant Sci. 2017, 8, 978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, L.; Dong, B.; Song, Z.; Dong, M.; Fu, Y. Genome-wide identification and characterization of CIPK family and analysis responses to various stresses in apple (Malus domestica). Int. J. Mol. Sci. 2018, 19, 2131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Zheng, T.; Li, L.; Zhuo, X.; Jiang, L.; Wang, J.; Cheng, T.; Zhang, Q. Identification and comparative analysis of the CIPK gene family and characterization of the cold stress response in the woody plant Prunus mume. Peer J. 2019, 7, e6847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, T.; Wang, Y.; Wang, M.; Li, T.; Zhou, Y.; Wang, X.; Wei, S.; He, G.; Yang, G. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.). BMC Plant Biol. 2015, 15, 269. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lu, X.; Yin, Z.; Mu, M.; Zhao, X.; Wang, D.; Wang, S.; Fan, W.; Guo, L.; Ye, W. Genome-wide identification and expression analysis of CIPK genes in diploid cottons. Genet. Mol. Res. 2016, 15, 10.4238. [Google Scholar] [CrossRef]
- Kim, K.N.; Cheong, Y.H.; Grant, J.J.; Pandey, G.K.; Luan, S. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 2003, 15, 411–423. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Yang, X.; Wang, L.; Zhu, L.; Zhou, T.; Deng, J.; Zhang, X. Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochem. Biophys. Res. Commun. 2013, 435, 209–215. [Google Scholar] [PubMed]
- Tai, F.; Yuan, Z.; Li, S.; Qi, W.; Liu, F.; Wei, W. ZmCIPK8, a CBL-interacting protein kinase, regulates maize response to drought stress. Plant Cell Tiss. Org. Cul. 2016, 124, 459–469. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.; John, S.J.; Chen, M.; Chang, J.; Yang, G.; He, G. A CBL-interacting protein kinase TaCIPK27 confers drought tolerance and exogenous ABA sensitivity in transgenic Arabidopsis. Plant Physiol. Biochem. 2017, 123, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Shen, J.; Zheng, Z.; Yan, X.; Shou, J.; Wang, W.; Jiang, L.; Pan, J. Overexpression of the Tibetan Plateau annual wild barley (Hordeum spontaneum) HsCIPKs enhances rice tolerance to heavy metal toxicities and other abiotic stresses. Rice 2018, 11, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aslam, M.; Fakher, B.; Anandhan, S.; Pande, V.; Ahmed, Z.; Qin, Y. Ectopic expression of cold responsive LlaCIPK gene enhances cold stress tolerance in Nicotiana tabacum. Genes 2019, 10, 446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, L.; Abduweli, A.; Wang, Y.; Hua, J. Genetic analysis and QTL mapping of oil content and seed index using two recombinant inbred lines and two backcross populations in Upland cotton. Plant Breed. 2016, 135, 224–231. [Google Scholar] [CrossRef]
- Paterson, A.H.; Wendel, J.F.; Heidrun, G.; Hui, G.; Jerry, J.; Dianchuan, J.; Danny, L.; Showmaker, K.C.; Shengqiang, S.; Joshua, U.; et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 2012, 492, 423–427. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Liu, J.; Pei, W.; Ma, Q.; Wang, N.; Zhang, X.; Cui, Y.; Li, D.; Liu, G.; Wu, M.; et al. Genome-wide association study of the oil content in upland cotton (Gossypium hirsutum L.) and identification of GhPRXR1, a candidate gene for a stable QTLqOC-Dt5-1. Plant Sci. 2019, 286, 89–97. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, Y.; Gao, J.; Pu, Y.; Wang, N.; Shen, W.; Wen, J.; Yi, B.; Ma, C.; Tu, J. CIPK9 is involved in seed oil regulation in Brassica napus L. and Arabidopsis thaliana (L.) Heynh. Biotechnol. Biofuels 2018, 11, 124. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Z.; Li, F.; Ye, W.; Wang, J.; Song, G.; Yue, Z.; Cong, L.; Shang, H.; Zhu, S.; et al. The draft genome of a diploid cotton Gossypium raimondii. Nat. Genet. 2012, 44, 1098–1103. [Google Scholar]
- Li, F.; Fan, G.; Wang, K.; Sun, F.; Yuan, Y.; Song, G.; Li, Q.; Ma, Z.; Lu, C.; Zou, C.; et al. Genome sequence of the cultivated cotton Gossypium arboreum. Nat. Genet. 2014, 46, 567–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, X.; Huang, G.; He, S.; Yang, Z.; Sun, G.; Ma, X.; Li, N.; Zhang, X.; Sun, J.; Liu, M.; et al. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat. Genet. 2018, 50, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Fan, G.; Lu, C.; Xiao, G.; Zou, C.; Kohel, R.J.; Ma, Z.; Shang, H.; Ma, X.; Wu, J.Y.; et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat. Biotechnol. 2015, 33, 524–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Hu, Y.; Jiang, W.; Fang, L.; Guan, X.; Chen, J.; Zhang, J.; Saski, C.A.; Scheffler, B.E.; Stelly, D.M.; et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat. Biotechnol. 2015, 33, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Chen, J.; Fang, L.; Zhang, Z.; Ma, W.; Niu, Y.; Ju, L.; Deng, J.; Zhao, T.; Lian, J.; et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat. Genet. 2019, 51, 739–748. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Tu, L.; Yuan, D.; Zhu, D.; Shen, C.; Li, J.; Liu, F.; Pei, L.; Wang, P.; Zhao, G.J.; et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat. Genet. 2019, 51, 224–229. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhao, B.; Zheng, H.-J.; Hu, Y.; Lu, G.; Yang, C.-Q.; Chen, J.-D.; Chen, J.-J.; Chen, D.-Y.; Zhang, L.; et al. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci. Rep. 2015, 5, 14139. [Google Scholar] [CrossRef]
- Yuan, D.; Tang, Z.; Wang, M.; Gao, W.; Tu, L.; Jin, X.; Chen, L.; He, Y.; Zhang, L.; Zhu, L.; et al. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci. Rep. 2015, 5, 17662. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, Y.; Chen, D.; Liu, D.; Hu, M.; Dong, J.; Zhang, X.; Song, L.; Shen, F. The catalase gene family in cotton: Genome-wide characterization and bioinformatics analysis. Cells 2019, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Liu, F.; Wang, Q.; Wang, K.; Jones, D.C.; Zhang, B. Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypium arboreum) fiber early development. Sci. Rep. 2016, 6, 21535. [Google Scholar] [CrossRef]
- Liu, J.; Osbourn, A.; Ma, P. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol. Plant 2015, 8, 689–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noman, A.; Aqeel, M.; Khalid, N.; Islam, W.; Sanaullah, T.; Anwar, M.; Khan, S.; Ye, W.; Lou, Y. Zinc finger protein transcription factors: Integrated line of action for plant antimicrobial activity. Microb. Pathog. 2019, 132, 141–149. [Google Scholar] [CrossRef]
- Mahapatra, M.; Mahanty, B.; Joshi, R.K. Genome wide identification and functional assignments of C2H2 Zinc-finger family transcription factors in Dichanthelium oligosanthes. Bioinformation 2019, 15, 689–696. [Google Scholar] [PubMed]
- Lyzenga, W.J.; Liu, H.; Schofield, A.; Muise-Hennessey, A.; Stone, S.L. Arabidopsis CIPK26 interacts with KEG, components of the ABA signalling network and is degraded by the ubiquitin-proteasome system. J. Exp. Bot. 2013, 64, 2779–2791. [Google Scholar] [CrossRef] [Green Version]
- Said, J.I.; Lin, Z.; Zhang, X.; Song, M.; Zhang, J. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genom. 2013, 14, 776. [Google Scholar] [CrossRef] [Green Version]
- Said, J.I.; Song, M.; Wang, H.; Lin, Z.; Zhang, X.; Fang, D.D.; Zhang, J. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol. Genet. Genom. 2015, 290, 1003–1025. [Google Scholar] [CrossRef]
- Ma, J.; Pei, W.; Ma, Q.; Geng, Y.; Liu, G.; Liu, J.; Cui, Y.; Zhang, X.; Wu, M.; Li, X.; et al. QTL analysis and candidate gene identification for plant height in cotton based on an interspecific backcross inbred line population of Gossypium hirsutum × Gossypium barbadense. Theor. Appl. Genet. 2019, 132, 2663–2676. [Google Scholar] [CrossRef]
- Cui, Y.; Ma, J.; Liu, G.; Wang, N.; Pei, W.; Wu, M.; Li, X.; Zhang, J.; Yu, J. Genome-wide identification, sequence variation and expression of the glycerol-3-phosphate acyltransferase (GPAT) gene family in Gossypium. Front. Genet. 2019, 10, 116. [Google Scholar] [CrossRef]
- Laloum, T.; Martín, G.; Duque, P. Alternative splicing control of abiotic stress responses. Trends Plant Sci. 2018, 23, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Marquez, Y.; Brown, J.W.S.; Simpson, C.; Barta, A.; Kalyna, M. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res. 2012, 22, 1184–1195. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Wang, P.; Liang, F.; Ye, Z.; Li, J.; Shen, C.; Pei, L.; Wang, F.; Hu, J.; Tu, L.; et al. A global survey of alternative splicing in allopolyploid cotton: Landscape, complexity and regulation. New Phytol. 2018, 217, 163–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Coulombe-Huntington, J.; Kang, S.; Sheynkman, G.M.; Hao, T.; Richardson, A.; Sun, S.; Yang, F.; Shen, Y.A.; Murray, R.R. Widespread expansion of protein interaction capabilities by alternative splicing. Cell 2016, 164, 805–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Zhang, X.; Liu, G.; Guo, L.; Qi, T.; Zhang, M.; Li, X.; Wang, H.; Tang, H.; Qiao, X.; et al. A combined small RNA and transcriptome sequencing analysis reveal regulatory roles of miRNAs during anther development of Upland cotton carrying cytoplasmic male sterile Gossypium harknessii (D2) cytoplasm. Bmc Plant Biol. 2018, 18, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, M. Intron evolution as a population-genetic process. Proc. Natl. Acad. Sci. USA 2002, 99, 6118–6123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Campo, E.M.; Casano, L.M.; Eva, B. Evolutionary implications of intron-exon distribution and the properties and sequences of the RPL10A gene in eukaryotes. Mol. Phylogenet. Evol. 2013, 66, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Paterson, A.H.; Bowers, J.E.; Burow, M.D.; Draye, X.; Elsik, C.G.; Jiang, C.-X.; Katsar, C.S.; Lan, T.-H.; Lin, Y.-R.; Ming, R.; et al. Comparative genomics of plant chromosomes. Plant Cell 2000, 12, 1523–1539. [Google Scholar] [CrossRef] [PubMed]
- Wendel, J.F.; Cronn, R.C. Polyploidy and the evolutionary history of cotton. Adv. Agron. 2003, 78, 139. [Google Scholar]
- Senchina, D.S.; Alvarez, I.; Cronn, R.C.; Liu, B.; Rong, J.; Noyes, R.D.; Paterson, A.H.; Wing, R.A.; Wilkins, T.A.; Wendel, J.F. Rate variation among nuclear genes and the age of polyploidy in Gossypium. Mol. Biol. Evol. 2003, 20, 633–643. [Google Scholar] [CrossRef]
- Fraser, J.A.; Huang, J.C.; Pukkila-Worley, R.; Alspaugh, J.A.; Mitchell, T.G.; Heitman, J. Chromosomal translocation and segmental duplication in Cryptococcus neoformans. Eukaryot. Cell 2005, 4, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.M.; Takahasi, K.R.; Takano-Shimizu, T. Enhanced fixation and preservation of a newly arisen duplicate gene by masking deleterious loss-of-function mutations. Genet. Res. 2009, 91, 267–280. [Google Scholar] [CrossRef]
- Flagel, L.E.; Wendel, J.F. Gene duplication and evolutionary novelty in plants. New Phytol. 2009, 183, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Qian, G.; Qin, W.; Yang, Z.; Yuan, C.; Lu, L.; Ge, X.; Zhang, C.; Wu, Z.; Li, F. Genome-wide analysis of WOX genes in upland cotton and their expression pattern under different stresses. BMC Plant Biol. 2017, 17, 113. [Google Scholar] [CrossRef] [PubMed]
- Lehti-Shiu, M.D.; Panchy, N.; Wang, P.; Uygun, S.; Shiu, S.-H. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families. Biochim. Biophys. Acta 2017, 1860, 3–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luang, S.; Sornaraj, P.; Bazanova, N.; Jia, W.; Eini, O.; Hussain, S.S.; Kovalchuk, N.; Agarwal, P.K.; Hrmova, M.; Lopato, S. The wheat TabZIP2 transcription factor is activated by the nutrient starvation-responsive SnRK3/CIPK protein kinase. Plant Mol. Biol. 2018, 96, 543–561. [Google Scholar] [CrossRef] [PubMed]
- Jamsheer, K.M.; Jindal, S.; Laxmi, A. Evolution of TOR-SnRK dynamics in green plants and its integration with phytohormone signaling networks. J. Exp. Bot. 2019, 70, 2239–2259. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.J.; Sun, M.H.; Lu, J.; Liu, Y.J.; You, C.X.; Hao, Y.J. An apple CIPK protein kinase targets a novel residue of AREB transcription factor for ABA-dependent phosphorylation. Plant Cell Environ. 2017, 40, 2207–2219. [Google Scholar] [CrossRef]
- Sanyal, S.K.; Kanwar, P.; Yadav, A.K.; Sharma, C.; Kumar, A.; Pandey, G.K. Arabidopsis CBL interacting protein kinase 3 interacts with ABR1, an APETALA2 domain transcription factor, to regulate ABA responses. Plant Sci. 2017, 254, 48–59. [Google Scholar] [CrossRef]
- Xie, F.; Jones, D.C.; Wang, Q.; Sun, R.; Zhang, B. Small RNA sequencing identifies miRNA roles in ovule and fibre development. Plant Biotechnol. J. 2015, 13, 355–369. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Lu, D.; Mason, A.S.; Li, B.; Xiao, M.; An, S.; Fu, D. Non-coding RNAs and transposable elements in plant genomes: Emergence, regulatory mechanisms and roles in plant development and stress responses. Planta 2019, 250, 23–40. [Google Scholar] [CrossRef]
- Liu, G.; Wu, M.; Pei, W.; Li, X.; Wang, N.; Ma, J.; Zang, X.; Yu, S.; Zhang, J.; Yu, J. A comparative analysis of small RNAs between two Upland cotton backcross inbred lines with different fiber length: Expression and distribution. Crop J. 2019, 7, 198–208. [Google Scholar] [CrossRef]
- Yin, Z.; Li, Y.; Yu, J.; Liu, Y.; Li, C.; Han, X.; Shen, F. Difference in miRNA expression profiles between two cotton cultivars with distinct salt sensitivity. Mol. Biol. Rep. 2012, 39, 4961–4970. [Google Scholar] [CrossRef] [PubMed]
- Kwak, P.B.; Wang, Q.Q.; Chen, X.S.; Qiu, C.X.; Yang, Z.M. Enrichment of a set of microRNAs during the cotton fiber development. BMC Genom. 2009, 10, 457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.; Tu, L.; Wang, L.; Hu, H.; Xu, J.; Zhang, X. MicroRNA 157-targeted SPL genes regulate floral organ size and ovule production in cotton. BMC Plant Biol. 2017, 17, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Liu, N.; Yang, X.; Tu, L.; Zhang, X. Small RNA-mediated responses to low-and high-temperature stresses in cotton. Sci. Rep. 2016, 6, 35558. [Google Scholar] [CrossRef]
- Zhu, T.; Liang, C.; Meng, Z.; Sun, G.; Meng, Z.; Guo, S.; Zhang, R. CottonFGD: An integrated functional genomics database for cotton. BMC Plant Biol. 2017, 17, 101. [Google Scholar] [CrossRef] [Green Version]
- Quevillon, E.; Silventoinen, V.; Pillai, S.; Harte, N.; Mulder, N.; Apweiler, R.; Lopez, R. InterProScan: Protein domains identifier. Nucleic Acids Res. 2005, 33, W116–W120. [Google Scholar] [CrossRef] [Green Version]
- Ivica, L.; Tobias, D.; Peer, B. SMART: Recent updates, new developments and status in 2015. Nucleic Acids Res. 2015, 43, 257–260. [Google Scholar]
- Larkin, M.A.; Blackshields, G.; Brown, N.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Jin, J.; Guo, A.-Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2014, 31, 1296–1297. [Google Scholar] [CrossRef] [Green Version]
- Voorrips, R. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Ren, Z.; Wang, Z.; Sun, K.; Pei, X.; Liu, Y.; He, K.; Zhang, F.; Song, C.; Zhou, X.; et al. Evolution and stress responses of Gossypium hirsutum SWEET genes. Int. J. Mol. Sci. 2018, 19, 769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozas, J.; Sánchez-DelBarrio, J.C.; Messeguer, X.; Rozas, R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003, 19, 2496–2497. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, Y.; Fang, X.; Yang, H.; Wang, J.; Kristiansen, K.; Wang, J. SNP detection for massively parallel whole-genome resequencing. Genome Res. 2009, 19, 1124–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Zhang, B.; Wang, Q. Cotton transformation via pollen tube pathway. Methods Mol. Biol. 2013, 958, 71–77. [Google Scholar] [PubMed]
- Yue, Z.; Liu, X.; Zhou, Z.; Hou, G.; Hua, J.; Zhao, Z. Development of a novel-type transgenic cotton plant for control of cotton bollworm. Plant Biotechnol. J. 2016, 14, 1747–1755. [Google Scholar] [CrossRef] [PubMed]
Species | Duplicated Gene 1 | Duplicated Gene 2 | Ka | Ks | Ka/Ks | Purifying Selection | Duplicate Type |
---|---|---|---|---|---|---|---|
G. hirsutum | GhCIPK1 | GhCIPK38 | 0 | 0.0296 | 0 | No | Segmental |
GhCIPK10 | GhCIPK47 | 0.0081 | 0 | 0 | No | Segmental | |
GhCIPK10 | GhCIPK30 | 0.0985 | 0.7646 | 0.1288 | Yes | Segmental | |
GhCIPK10 | GhCIPK68 | 0.0985 | 0.7646 | 0.1288 | Yes | Segmental | |
GhCIPK10 | GhCIPK55 | 0.0983 | 0.3954 | 0.2486 | Yes | Segmental | |
GhCIPK10 | GhCIPK16 | 0.0983 | 0.3474 | 0.283 | Yes | Segmental | |
GhCIPK11 | GhCIPK49 | 0.0165 | 0.0282 | 0.5851 | Yes | Segmental | |
GhCIPK11 | GhCIPK72 | 0.1436 | 0.5354 | 0.2682 | Yes | Segmental | |
GhCIPK12 | GhCIPK51 | 0 | 0.0619 | 0 | No | Segmental | |
GhCIPK13 | GhCIPK20 | 0.0905 | 0.7899 | 0.1146 | Yes | Segmental | |
GhCIPK13 | GhCIPK37 | 0.0959 | 0.7194 | 0.1333 | Yes | Segmental | |
GhCIPK13 | GhCIPK43 | 0.0822 | 0.9098 | 0.0903 | Yes | Segmental | |
GhCIPK13 | GhCIPK52 | 0 | 0 | 0 | No | Segmental | |
GhCIPK13 | GhCIPK59 | 0.0997 | 0.7138 | 0.1397 | Yes | Segmental | |
GhCIPK13 | GhCIPK74 | 0.1052 | 0.5893 | 0.1785 | Yes | Segmental | |
GhCIPK14 | GhCIPK53 | 0.0242 | 0.031 | 0.7806 | Yes | Segmental | |
GhCIPK15 | GhCIPK54 | 0.0163 | 0.0294 | 0.5544 | Yes | Segmental | |
GhCIPK16 | GhCIPK30 | 0.089 | 0.5674 | 0.1569 | Yes | Segmental | |
GhCIPK16 | GhCIPK55 | 0 | 0.0303 | 0 | No | Segmental | |
GhCIPK16 | GhCIPK68 | 0.089 | 0.4512 | 0.1973 | Yes | Segmental | |
GhCIPK18 | GhCIPK56 | 0.0082 | 0 | 0 | No | Segmental | |
GhCIPK19 | GhCIPK25 | 0.092 | 0.4042 | 0.2276 | Yes | Segmental | |
GhCIPK19 | GhCIPK57 | 0.016 | 0 | 0 | No | Segmental | |
GhCIPK19 | GhCIPK64 | 0.101 | 0.4042 | 0.2499 | Yes | Segmental | |
GhCIPK2 | GhCIPK39 | 0.008 | 0 | 0 | No | Segmental | |
GhCIPK20 | GhCIPK59 | 0.0081 | 0.0606 | 0.1337 | Yes | Segmental | |
GhCIPK20 | GhCIPK74 | 0.0765 | 0.7726 | 0.099 | Yes | Segmental | |
GhCIPK20 | GhCIPK43 | 0.0812 | 0.5899 | 0.1377 | Yes | Segmental | |
GhCIPK20 | GhCIPK52 | 0.0905 | 0.7899 | 0.1146 | Yes | Segmental | |
GhCIPK20 | GhCIPK37 | 0.0676 | 0.8566 | 0.0789 | Yes | Segmental | |
GhCIPK21 | GhCIPK44 | 0.1332 | 0.742 | 0.1795 | Yes | Segmental | |
GhCIPK21 | GhCIPK53 | 0.1358 | 0.7711 | 0.1761 | Yes | Segmental | |
GhCIPK21 | GhCIPK60 | 0 | 0.0289 | 0 | No | Segmental | |
GhCIPK22 | GhCIPK28 | 0.0673 | 0.3641 | 0.1848 | Yes | Segmental | |
GhCIPK22 | GhCIPK45 | 0.0495 | 0.4803 | 0.1031 | Yes | Segmental | |
GhCIPK22 | GhCIPK61 | 0.0081 | 0.0296 | 0.2736 | Yes | Segmental | |
GhCIPK22 | GhCIPK66 | 0.0585 | 0.4125 | 0.1418 | Yes | Segmental | |
GhCIPK23 | GhCIPK35 | 0.1488 | 0.405 | 0.3674 | Yes | Segmental | |
GhCIPK23 | GhCIPK62 | 0 | 0.0284 | 0 | No | Segmental | |
GhCIPK23 | GhCIPK73 | 0.1488 | 0.3597 | 0.4137 | Yes | Segmental | |
GhCIPK24 | GhCIPK63 | 0.0083 | 0.0541 | 0.1534 | Yes | Segmental | |
GhCIPK25 | GhCIPK57 | 0.0927 | 0.3908 | 0.2372 | Yes | Segmental | |
GhCIPK25 | GhCIPK64 | 0.024 | 0 | 0 | No | Segmental | |
GhCIPK26 | GhCIPK80 | 0.0159 | 0.1762 | 0.0902 | Yes | Segmental | |
GhCIPK27 | GhCIPK65 | 0 | 0.0586 | 0 | No | Segmental | |
GhCIPK28 | GhCIPK45 | 0.058 | 0.611 | 0.0949 | Yes | Segmental | |
GhCIPK28 | GhCIPK61 | 0.0757 | 0.422 | 0.1794 | Yes | Segmental | |
GhCIPK28 | GhCIPK66 | 0.0081 | 0.0929 | 0.0872 | Yes | Segmental | |
GhCIPK29 | GhCIPK67 | 0.0158 | 0 | 0 | No | Segmental | |
GhCIPK3 | GhCIPK32 | 0.6002 | 3.0016 | 0.2 | Yes | Segmental | |
GhCIPK3 | GhCIPK40 | 0.5373 | 0 | 0 | No | Segmental | |
GhCIPK3 | GhCIPK71 | 0.6244 | 2.6547 | 0.2352 | Yes | Segmental | |
GhCIPK30 | GhCIPK47 | 0.1077 | 0.7646 | 0.1409 | Yes | Segmental | |
GhCIPK30 | GhCIPK55 | 0.089 | 0.633 | 0.1406 | Yes | Segmental | |
GhCIPK30 | GhCIPK68 | 0 | 0.0609 | 0 | No | Segmental | |
GhCIPK31 | GhCIPK69 | 0 | 0.0296 | 0 | No | Segmental | |
GhCIPK32 | GhCIPK40 | 0.1707 | 0.3898 | 0.4379 | Yes | Segmental | |
GhCIPK32 | GhCIPK71 | 0.0078 | 0 | 0 | No | Segmental | |
GhCIPK33 | GhCIPK70 | 0.0081 | 0.0291 | 0.2784 | Yes | Segmental | |
GhCIPK34 | GhCIPK72 | 0.0166 | 0.0564 | 0.2943 | Yes | Segmental | |
GhCIPK35 | GhCIPK62 | 0.1488 | 0.4532 | 0.3283 | Yes | Segmental | |
GhCIPK35 | GhCIPK73 | 0.0167 | 0.027 | 0.6185 | Yes | Segmental | |
GhCIPK37 | GhCIPK43 | 0.0638 | 0.5677 | 0.1124 | Yes | Segmental | |
GhCIPK37 | GhCIPK52 | 0.0959 | 0.7194 | 0.1333 | Yes | Segmental | |
GhCIPK37 | GhCIPK59 | 0.0765 | 0.8566 | 0.0893 | Yes | Segmental | |
GhCIPK37 | GhCIPK74 | 0.0082 | 0.0574 | 0.1429 | Yes | Segmental | |
GhCIPK4 | GhCIPK42 | 0.0082 | 0 | 0 | No | Segmental | |
GhCIPK40 | GhCIPK71 | 0.1604 | 0.3953 | 0.4058 | Yes | Segmental | |
GhCIPK43 | GhCIPK52 | 0.0822 | 0.9098 | 0.0903 | Yes | Segmental | |
GhCIPK43 | GhCIPK59 | 0.0902 | 0.4754 | 0.1897 | Yes | Segmental | |
GhCIPK43 | GhCIPK74 | 0.0728 | 0.5677 | 0.1282 | Yes | Segmental | |
GhCIPK44 | GhCIPK53 | 0.1271 | 0.6696 | 0.1898 | Yes | Segmental | |
GhCIPK44 | GhCIPK60 | 0.1331 | 0.6735 | 0.1976 | Yes | Segmental | |
GhCIPK45 | GhCIPK61 | 0.0409 | 0.5525 | 0.074 | Yes | Segmental | |
GhCIPK45 | GhCIPK66 | 0.0494 | 0.6816 | 0.0725 | Yes | Segmental | |
GhCIPK47 | GhCIPK68 | 0.1077 | 0.7646 | 0.1409 | Yes | Segmental | |
GhCIPK48 | GhCIPK50 | 0.0418 | 0.1206 | 0.3466 | Yes | Segmental | |
GhCIPK48 | GhCIPK75 | 0 | 0.0574 | 0 | No | Segmental | |
GhCIPK48 | GhCIPK76 | 0.0418 | 0.189 | 0.2212 | Yes | Segmental | |
GhCIPK49 | GhCIPK72 | 0.1336 | 0.4847 | 0.2756 | Yes | Segmental | |
GhCIPK5 | GhCIPK41 | 0.0161 | 0.0305 | 0.5279 | Yes | Segmental | |
GhCIPK50 | GhCIPK75 | 0.0418 | 0.1206 | 0.3466 | Yes | Segmental | |
GhCIPK50 | GhCIPK76 | 0 | 0.0574 | 0 | No | Segmental | |
GhCIPK52 | GhCIPK59 | 0.0997 | 0.7138 | 0.1397 | Yes | Segmental | |
GhCIPK52 | GhCIPK68 | 0.3312 | 2.0206 | 0.1639 | Yes | Segmental | |
GhCIPK55 | GhCIPK74 | 0.3463 | 1.4874 | 0.2328 | Yes | Segmental | |
GhCIPK57 | GhCIPK64 | 0.1017 | 0.3908 | 0.2602 | Yes | Segmental | |
GhCIPK58 | GhCIPK77 | 0.0246 | 0.0908 | 0.2709 | Yes | Segmental | |
GhCIPK59 | GhCIPK74 | 0.0855 | 0.7726 | 0.1107 | Yes | Segmental | |
GhCIPK6 | GhCIPK13 | 0.0822 | 0.9098 | 0.0903 | Yes | Segmental | |
GhCIPK6 | GhCIPK20 | 0.0812 | 0.5899 | 0.1377 | Yes | Segmental | |
GhCIPK6 | GhCIPK37 | 0.0638 | 0.5677 | 0.1124 | Yes | Segmental | |
GhCIPK6 | GhCIPK43 | 0 | 0 | 0 | No | Segmental | |
GhCIPK6 | GhCIPK52 | 0.0822 | 0.9098 | 0.0903 | Yes | Segmental | |
GhCIPK6 | GhCIPK59 | 0.0902 | 0.4754 | 0.1897 | Yes | Segmental | |
GhCIPK6 | GhCIPK74 | 0.0728 | 0.5677 | 0.1282 | Yes | Segmental | |
GhCIPK61 | GhCIPK66 | 0.0669 | 0.4754 | 0.1407 | Yes | Segmental | |
GhCIPK62 | GhCIPK73 | 0.1488 | 0.405 | 0.3674 | Yes | Segmental | |
GhCIPK7 | GhCIPK21 | 0.1424 | 0.6837 | 0.2083 | Yes | Segmental | |
GhCIPK7 | GhCIPK44 | 0.0082 | 0.028 | 0.2929 | Yes | Segmental | |
GhCIPK7 | GhCIPK60 | 0.1423 | 0.76 | 0.1872 | Yes | Segmental | |
GhCIPK75 | GhCIPK76 | 0.0418 | 0.154 | 0.2714 | Yes | Segmental | |
GhCIPK78 | GhCIPK79 | 0 | 0 | 0 | No | Segmental | |
GhCIPK8 | GhCIPK22 | 0.0495 | 0.4803 | 0.1031 | Yes | Segmental | |
GhCIPK8 | GhCIPK28 | 0.058 | 0.611 | 0.0949 | Yes | Segmental | |
GhCIPK8 | GhCIPK45 | 0 | 0 | 0 | No | Segmental | |
GhCIPK8 | GhCIPK61 | 0.0409 | 0.5525 | 0.074 | Yes | Segmental | |
GhCIPK8 | GhCIPK66 | 0.0494 | 0.6816 | 0.0725 | Yes | Segmental | |
GhCIPK9 | GhCIPK46 | 0.0329 | 0.0293 | 1.1229 | No | Segmental | |
G. barbadense | GbCIPK1 | GbCIPK37 | 0.0113 | 0.0325 | 0.3477 | Yes | Segmental |
GbCIPK2 | GbCIPK38 | 0.0228 | 0.0581 | 0.3924 | Yes | Segmental | |
GbCIPK4 | GbCIPK41 | 0.0069 | 0.0391 | 0.1765 | Yes | Segmental | |
GbCIPK5 | GbCIPK40 | 0.0113 | 0.0165 | 0.6848 | Yes | Segmental | |
GbCIPK6 | GbCIPK14 | 0.13 | 0.4949 | 0.2627 | Yes | Segmental | |
GbCIPK6 | GbCIPK36 | 0.104 | 0.435 | 0.2391 | Yes | Segmental | |
GbCIPK6 | GbCIPK42 | 0.0068 | 0.0241 | 0.2822 | Yes | Segmental | |
GbCIPK6 | GbCIPK51 | 0.13 | 0.5103 | 0.2548 | Yes | Segmental | |
GbCIPK6 | GbCIPK59 | 0.0948 | 0.571 | 0.166 | Yes | Segmental | |
GbCIPK6 | GbCIPK76 | 0.1015 | 0.4327 | 0.2346 | Yes | Segmental | |
GbCIPK6 | GbCIPK78 | 0.0974 | 0.5699 | 0.1709 | Yes | Segmental | |
GbCIPK7 | GbCIPK21 | 0.118 | 0.3925 | 0.3006 | Yes | Segmental | |
GbCIPK7 | GbCIPK43 | 0.0134 | 0.0258 | 0.5194 | Yes | Segmental | |
GbCIPK7 | GbCIPK60 | 0.1231 | 0.3939 | 0.3125 | Yes | Segmental | |
GbCIPK8 | GbCIPK22 | 0.0663 | 0.2358 | 0.2812 | Yes | Segmental | |
GbCIPK8 | GbCIPK44 | 0.0114 | 0.0078 | 1.4615 | No | Segmental | |
GbCIPK8 | GbCIPK61 | 0.0665 | 0.2545 | 0.2613 | Yes | Segmental | |
GbCIPK8 | GbCIPK67 | 0.0904 | 0.378 | 0.2392 | Yes | Segmental | |
GbCIPK9 | GbCIPK45 | 0.0113 | 0.0588 | 0.1922 | Yes | Segmental | |
GbCIPK10 | GbCIPK16 | 0.1053 | 0.3484 | 0.3022 | Yes | Segmental | |
GbCIPK10 | GbCIPK30 | 0.1323 | 0.477 | 0.2774 | Yes | Segmental | |
GbCIPK10 | GbCIPK46 | 0.009 | 0.0083 | 1.0843 | No | Segmental | |
GbCIPK10 | GbCIPK70 | 0.1322 | 0.4774 | 0.2769 | Yes | Segmental | |
GbCIPK11 | GbCIPK47 | 0.0023 | 0.0241 | 0.0954 | Yes | Segmental | |
GbCIPK11 | GbCIPK49 | 0.0442 | 0.2282 | 0.1937 | Yes | Segmental | |
GbCIPK11 | GbCIPK77 | 0.0466 | 0.2171 | 0.2146 | Yes | Segmental | |
GbCIPK12 | GbCIPK34 | 0.0948 | 0.3398 | 0.279 | Yes | Segmental | |
GbCIPK12 | GbCIPK48 | 0.0068 | 0.0161 | 0.4224 | Yes | Segmental | |
GbCIPK12 | GbCIPK74 | 0.0922 | 0.3275 | 0.2815 | Yes | Segmental | |
GbCIPK13 | GbCIPK50 | 0.0045 | 0 | 0 | No | Segmental | |
GbCIPK14 | GbCIPK36 | 0.1155 | 0.4284 | 0.2696 | Yes | Segmental | |
GbCIPK14 | GbCIPK42 | 0.1325 | 0.4982 | 0.266 | Yes | Segmental | |
GbCIPK14 | GbCIPK51 | 0 | 0.0158 | 0 | No | Segmental | |
GbCIPK14 | GbCIPK59 | 0.1209 | 0.5682 | 0.2128 | Yes | Segmental | |
GbCIPK14 | GbCIPK76 | 0.1103 | 0.4125 | 0.2674 | Yes | Segmental | |
GbCIPK14 | GbCIPK78 | 0.1263 | 0.5671 | 0.2227 | Yes | Segmental | |
GbCIPK15 | GbCIPK52 | 0.0067 | 0.0418 | 0.1603 | Yes | Segmental | |
GbCIPK16 | GbCIPK30 | 0.0985 | 0.5022 | 0.1961 | Yes | Segmental | |
GbCIPK16 | GbCIPK54 | 0.0067 | 0.0248 | 0.2702 | Yes | Segmental | |
GbCIPK16 | GbCIPK70 | 0.0933 | 0.5184 | 0.18 | Yes | Segmental | |
GbCIPK17 | GbCIPK27 | 0.0799 | 0.2076 | 0.3849 | Yes | Segmental | |
GbCIPK17 | GbCIPK55 | 0.0022 | 0.0257 | 0.0856 | Yes | Segmental | |
GbCIPK17 | GbCIPK66 | 0.0762 | 0.2021 | 0.377 | Yes | Segmental | |
GbCIPK18 | GbCIPK56 | 0.0022 | 0.1048 | 0.021 | Yes | Segmental | |
GbCIPK19 | GbCIPK57 | 0.0114 | 0.0656 | 0.1738 | Yes | Segmental | |
GbCIPK20 | GbCIPK58 | 0.0249 | 0.0339 | 0.7345 | Yes | Segmental | |
GbCIPK21 | GbCIPK43 | 0.1207 | 0.404 | 0.2988 | Yes | Segmental | |
GbCIPK21 | GbCIPK52 | 0.1214 | 0.4081 | 0.2975 | Yes | Segmental | |
GbCIPK21 | GbCIPK60 | 0.009 | 0.0163 | 0.5521 | Yes | Segmental | |
GbCIPK22 | GbCIPK44 | 0.4258 | 1.6158 | 0.2635 | Yes | Segmental | |
GbCIPK22 | GbCIPK61 | 0.0045 | 0.0317 | 0.142 | Yes | Segmental | |
GbCIPK22 | GbCIPK67 | 0.0953 | 0.3812 | 0.25 | Yes | Segmental | |
GbCIPK23 | GbCIPK35 | 0.0848 | 0.3013 | 0.2814 | Yes | Segmental | |
GbCIPK23 | GbCIPK62 | 0.0045 | 0.0082 | 0.5488 | Yes | Segmental | |
GbCIPK23 | GbCIPK75 | 0.0823 | 0.3137 | 0.2624 | Yes | Segmental | |
GbCIPK24 | GbCIPK63 | 0.009 | 0.0586 | 0.1536 | Yes | Segmental | |
GbCIPK25 | GbCIPK57 | 0.0812 | 0.3393 | 0.2393 | Yes | Segmental | |
GbCIPK25 | GbCIPK64 | 0.0068 | 0.0078 | 0.8718 | Yes | Segmental | |
GbCIPK26 | GbCIPK65 | 0.025 | 0.0593 | 0.4216 | Yes | Segmental | |
GbCIPK27 | GbCIPK55 | 0.0811 | 0.1914 | 0.4237 | Yes | Segmental | |
GbCIPK27 | GbCIPK66 | 0.0022 | 0.0081 | 0.2716 | Yes | Segmental | |
GbCIPK27 | GbCIPK71 | 0.1188 | 0.2344 | 0.5068 | Yes | Segmental | |
GbCIPK28 | GbCIPK68 | 0.0046 | 0.0076 | 0.6053 | Yes | Segmental | |
GbCIPK29 | GbCIPK69 | 0.0228 | 0.0245 | 0.9306 | Yes | Segmental | |
GbCIPK3 | GbCIPK32 | 0.1067 | 0.433 | 0.2464 | Yes | Segmental | |
GbCIPK3 | GbCIPK39 | 0.0136 | 0.0409 | 0.3325 | Yes | Segmental | |
GbCIPK3 | GbCIPK73 | 0.099 | 0.4178 | 0.237 | Yes | Segmental | |
GbCIPK30 | GbCIPK46 | 0.1268 | 0.4942 | 0.2566 | Yes | Segmental | |
GbCIPK30 | GbCIPK54 | 0.1062 | 0.5344 | 0.1987 | Yes | Segmental | |
GbCIPK30 | GbCIPK70 | 0.0068 | 0.0238 | 0.2857 | Yes | Segmental | |
GbCIPK31 | GbCIPK71 | 0.0045 | 0.0081 | 0.5556 | Yes | Segmental | |
GbCIPK32 | GbCIPK72 | 0.4802 | 1.8172 | 0.2643 | Yes | Segmental | |
GbCIPK33 | GbCIPK73 | 0.0114 | 0.0315 | 0.3619 | Yes | Segmental | |
GbCIPK34 | GbCIPK48 | 0.0998 | 0.3671 | 0.2719 | Yes | Segmental | |
GbCIPK34 | GbCIPK74 | 0.0091 | 0.0406 | 0.2241 | Yes | Segmental | |
GbCIPK35 | GbCIPK62 | 0.0848 | 0.3013 | 0.2814 | Yes | Segmental | |
GbCIPK35 | GbCIPK75 | 0.0067 | 0.0257 | 0.2607 | Yes | Segmental | |
GbCIPK36 | GbCIPK42 | 0.1065 | 0.4237 | 0.2514 | Yes | Segmental | |
GbCIPK36 | GbCIPK51 | 0.1155 | 0.4284 | 0.2696 | Yes | Segmental | |
GbCIPK36 | GbCIPK59 | 0.1143 | 0.4103 | 0.2786 | Yes | Segmental | |
GbCIPK36 | GbCIPK76 | 0.0183 | 0.0158 | 1.1582 | No | Segmental | |
GbCIPK36 | GbCIPK78 | 0.1222 | 0.4095 | 0.2984 | Yes | Segmental | |
GbCIPK39 | GbCIPK73 | 0.1041 | 0.4619 | 0.2254 | Yes | Segmental | |
GbCIPK42 | GbCIPK51 | 0.4678 | 1.2446 | 0.3759 | Yes | Segmental | |
GbCIPK42 | GbCIPK59 | 0.4547 | 1.5066 | 0.3018 | Yes | Segmental | |
GbCIPK42 | GbCIPK76 | 0.4425 | 1.2039 | 0.3676 | Yes | Segmental | |
GbCIPK42 | GbCIPK78 | 0.4591 | 1.5003 | 0.306 | Yes | Segmental | |
GbCIPK43 | GbCIPK60 | 0.1206 | 0.4054 | 0.2975 | Yes | Segmental | |
GbCIPK44 | GbCIPK61 | 0.0639 | 0.2674 | 0.239 | Yes | Segmental | |
GbCIPK44 | GbCIPK67 | 0.0928 | 0.3942 | 0.2354 | Yes | Segmental | |
GbCIPK46 | GbCIPK70 | 0.1268 | 0.4946 | 0.2564 | Yes | Segmental | |
GbCIPK47 | GbCIPK49 | 0.0418 | 0.1971 | 0.2121 | Yes | Segmental | |
GbCIPK47 | GbCIPK77 | 0.0442 | 0.1865 | 0.237 | Yes | Segmental | |
GbCIPK48 | GbCIPK74 | 0.0972 | 0.3542 | 0.2744 | Yes | Segmental | |
GbCIPK49 | GbCIPK77 | 0.0045 | 0.0158 | 0.2848 | Yes | Segmental | |
GbCIPK51 | GbCIPK59 | 0.1209 | 0.5516 | 0.2192 | Yes | Segmental | |
GbCIPK51 | GbCIPK76 | 0.1103 | 0.4125 | 0.2674 | Yes | Segmental | |
GbCIPK51 | GbCIPK78 | 0.1263 | 0.5505 | 0.2294 | Yes | Segmental | |
GbCIPK54 | GbCIPK70 | 0.101 | 0.5514 | 0.1832 | Yes | Segmental | |
GbCIPK55 | GbCIPK66 | 0.0786 | 0.1809 | 0.4345 | Yes | Segmental | |
GbCIPK57 | GbCIPK64 | 0.0761 | 0.354 | 0.215 | Yes | Segmental | |
GbCIPK59 | GbCIPK78 | 0.0113 | 0 | 0 | No | Segmental | |
GbCIPK59 | GbCIPK76 | 0.1092 | 0.4081 | 0.2676 | Yes | Segmental | |
GbCIPK61 | GbCIPK67 | 0.0905 | 0.4023 | 0.225 | Yes | Segmental | |
GbCIPK62 | GbCIPK75 | 0.0823 | 0.3137 | 0.2624 | Yes | Segmental | |
GbCIPK66 | GbCIPK71 | 0.1162 | 0.2235 | 0.5199 | Yes | Segmental | |
GbCIPK76 | GbCIPK78 | 0.1171 | 0.4074 | 0.2874 | Yes | Segmental |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Su, Y.; Wang, J.; Jia, B.; Wu, M.; Pei, W.; Zhang, J.; Yu, J. Genome-Wide Characterization and Analysis of CIPK Gene Family in Two Cultivated Allopolyploid Cotton Species: Sequence Variation, Association with Seed Oil Content, and the Role of GhCIPK6. Int. J. Mol. Sci. 2020, 21, 863. https://doi.org/10.3390/ijms21030863
Cui Y, Su Y, Wang J, Jia B, Wu M, Pei W, Zhang J, Yu J. Genome-Wide Characterization and Analysis of CIPK Gene Family in Two Cultivated Allopolyploid Cotton Species: Sequence Variation, Association with Seed Oil Content, and the Role of GhCIPK6. International Journal of Molecular Sciences. 2020; 21(3):863. https://doi.org/10.3390/ijms21030863
Chicago/Turabian StyleCui, Yupeng, Ying Su, Junjuan Wang, Bing Jia, Man Wu, Wenfeng Pei, Jinfa Zhang, and Jiwen Yu. 2020. "Genome-Wide Characterization and Analysis of CIPK Gene Family in Two Cultivated Allopolyploid Cotton Species: Sequence Variation, Association with Seed Oil Content, and the Role of GhCIPK6" International Journal of Molecular Sciences 21, no. 3: 863. https://doi.org/10.3390/ijms21030863
APA StyleCui, Y., Su, Y., Wang, J., Jia, B., Wu, M., Pei, W., Zhang, J., & Yu, J. (2020). Genome-Wide Characterization and Analysis of CIPK Gene Family in Two Cultivated Allopolyploid Cotton Species: Sequence Variation, Association with Seed Oil Content, and the Role of GhCIPK6. International Journal of Molecular Sciences, 21(3), 863. https://doi.org/10.3390/ijms21030863