Precision Psychiatry Applications with Pharmacogenomics: Artificial Intelligence and Machine Learning Approaches
Abstract
:1. Introduction
2. Applications in Treatment Prediction
3. Applications in Prognosis Prediction
4. Applications in Diagnosis Prediction
5. Detection of Potential Biomarkers
6. Limitations
7. Other Relevant Studies in Psychiatric Disorders
8. Conclusion and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Torres, E.B.; Isenhower, R.W.; Nguyen, J.; Whyatt, C.; Nurnberger, J.I.; Jose, J.V.; Silverstein, S.M.; Papathomas, T.V.; Sage, J.; Cole, J. Toward Precision Psychiatry: Statistical Platform for the Personalized Characterization of Natural Behaviors. Front. Neurol. 2016, 7, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandal, M.J.; Leppa, V.; Won, H.; Parikshak, N.N.; Geschwind, D.H. The road to precision psychiatry: Translating genetics into disease mechanisms. Nat. Neurosci. 2016, 19, 1397–1407. [Google Scholar] [CrossRef] [Green Version]
- Lin, E.; Tsai, S.J. Genome-wide microarray analysis of gene expression profiling in major depression and antidepressant therapy. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 64, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Lin, E.; Lane, H.Y. Genome-wide association studies in pharmacogenomics of antidepressants. Pharmacogenomics 2015, 16, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Lin, E.; Lane, H.Y. Machine learning and systems genomics approaches for multi-omics data. Biomark Res. 2017, 5, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bzdok, D.; Meyer-Lindenberg, A. Machine Learning for Precision Psychiatry: Opportunities and Challenges. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Davatzikos, C. Machine learning in neuroimaging: Progress and challenges. Neuroimage 2018. [Google Scholar] [CrossRef]
- Iniesta, R.; Stahl, D.; McGuffin, P. Machine learning, statistical learning and the future of biological research in psychiatry. Psychol. Med. 2016, 46, 2455–2465. [Google Scholar] [CrossRef] [Green Version]
- Lane, H.Y.; Tsai, G.E.; Lin, E. Assessing gene-gene interactions in pharmacogenomics. Mol. Diagn. 2012, 16, 15–27. [Google Scholar] [CrossRef]
- Lin, E.; Hwang, Y.; Liang, K.H.; Chen, E.Y. Pattern-recognition techniques with haplotype analysis in pharmacogenomics. Pharmacogenomics 2007, 8, 75–83. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.; van Ginneken, B.; Sanchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K.; Kalinin, A.A.; Do, B.T.; Way, G.P.; Ferrero, E.; Agapow, P.M.; Zietz, M.; Hoffman, M.M.; et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 2018, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dana, D.; Gadhiya, S.V.; St Surin, L.G.; Li, D.; Naaz, F.; Ali, Q.; Paka, L.; Yamin, M.A.; Narayan, M.; Goldberg, I.D.; et al. Deep Learning in Drug Discovery and Medicine; Scratching the Surface. Molecules 2018, 23, 2384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grapov, D.; Fahrmann, J.; Wanichthanarak, K.; Khoomrung, S. Rise of Deep Learning for Genomic, Proteomic, and Metabolomic Data Integration in Precision Medicine. OMICS 2018, 22, 630–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Hosseini Bamakan, S.M.; Qu, Q.; Li, S. Learning for Personalised Medicine: A Comprehensive Review from Deep Learning Perspective. IEEE Rev. Biomed. Eng. 2018, 12, 194–208. [Google Scholar] [CrossRef] [PubMed]
- Hulshoff Pol, H.; Bullmore, E. Neural networks in psychiatry. Eur. Neuropsychopharmacol. 2013, 23, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, B.S.; Williams, L.M.; Steiner, J.; Leboyer, M.; Carvalho, A.F.; Berk, M. The new field of ‘precision psychiatry’. BMC Med. 2017, 15, 80. [Google Scholar] [CrossRef]
- Dwyer, D.B.; Falkai, P.; Koutsouleris, N. Machine Learning Approaches for Clinical Psychology and Psychiatry. Annu. Rev. Clin. Psychol. 2018, 14, 91–118. [Google Scholar] [CrossRef]
- Pisanu, C.; Squassina, A. Treatment-Resistant Schizophrenia: Insights From Genetic Studies and Machine Learning Approaches. Front. Pharmacol. 2019, 10, 617. [Google Scholar] [CrossRef]
- Perlman, K.; Benrimoh, D.; Israel, S.; Rollins, C.; Brown, E.; Tunteng, J.-F.; You, R.; You, E.; Tanguay-Sela, M.; Snook, E. A systematic meta-review of predictors of antidepressant treatment outcome in major depressive disorder. J. Affect. Disord. 2019, 243, 503–515. [Google Scholar] [CrossRef]
- Lin, E.; Kuo, P.H.; Liu, Y.L.; Yu, Y.W.; Yang, A.C.; Tsai, S.J. A Deep Learning Approach for Predicting Antidepressant Response in Major Depression Using Clinical and Genetic Biomarkers. Front. Psychiatry 2018, 9, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kautzky, A.; Baldinger, P.; Souery, D.; Montgomery, S.; Mendlewicz, J.; Zohar, J.; Serretti, A.; Lanzenberger, R.; Kasper, S. The combined effect of genetic polymorphisms and clinical parameters on treatment outcome in treatment-resistant depression. Eur Neuropsychopharmacol 2015, 25, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.J.; Andreescu, C.; Price, J.C.; Edelman, K.L.; Reynolds, C.F., III; Aizenstein, H.J. Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction. Int. J. Geriatr. Psychiatry 2015, 30, 1056–1067. [Google Scholar] [CrossRef] [PubMed]
- Chekroud, A.M.; Zotti, R.J.; Shehzad, Z.; Gueorguieva, R.; Johnson, M.K.; Trivedi, M.H.; Cannon, T.D.; Krystal, J.H.; Corlett, P.R. Cross-trial prediction of treatment outcome in depression: A machine learning approach. Lancet Psychiatry 2016, 3, 243–250. [Google Scholar] [CrossRef]
- Iniesta, R.; Malki, K.; Maier, W.; Rietschel, M.; Mors, O.; Hauser, J.; Henigsberg, N.; Dernovsek, M.Z.; Souery, D.; Stahl, D.; et al. Combining clinical variables to optimize prediction of antidepressant treatment outcomes. J. Psychiatr. Res. 2016, 78, 94–102. [Google Scholar] [CrossRef]
- Zou, H.; Zhang, H.H. On the Adaptive Elastic-Net with a Diverging Number of Parameters. Ann. Stat. 2009, 37, 1733–1751. [Google Scholar] [CrossRef] [Green Version]
- Maciukiewicz, M.; Marshe, V.S.; Hauschild, A.C.; Foster, J.A.; Rotzinger, S.; Kennedy, J.L.; Kennedy, S.H.; Muller, D.J.; Geraci, J. GWAS-based machine learning approach to predict duloxetine response in major depressive disorder. J. Psychiatr. Res. 2018, 99, 62–68. [Google Scholar] [CrossRef]
- Tibshirani, R. The lasso method for variable selection in the Cox model. Stat. Med. 1997, 16, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Chang, B.; Choi, Y.; Jeon, M.; Lee, J.; Han, K.-M.; Kim, A.; Ham, B.-J.; Kang, J. ARPNet: Antidepressant Response Prediction Network for Major Depressive Disorder. Genes 2019, 10, 907. [Google Scholar] [CrossRef] [Green Version]
- Athreya, A.P.; Neavin, D.; Carrillo-Roa, T.; Skime, M.; Biernacka, J.; Frye, M.A.; Rush, A.J.; Wang, L.; Binder, E.B.; Iyer, R.K. Pharmacogenomics-Driven Prediction of Antidepressant Treatment Outcomes: A Machine Learning Approach with Multi-Trial Replication. Clin. Pharmacol. Ther. 2019, 106, 855–865. [Google Scholar] [CrossRef] [Green Version]
- Nunes, A.; Ardau, R.; Berghöfer, A.; Bocchetta, A.; Chillotti, C.; Deiana, V.; Garnham, J.; Grof, E.; Hajek, T.; Manchia, M. Prediction of lithium response using clinical data. Acta Psychiatr. Scand. 2019, 141, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Eugene, A.R.; Masiak, J.; Eugene, B. Predicting lithium treatment response in bipolar patients using gender-specific gene expression biomarkers and machine learning. F1000Research 2018, 7, 474. [Google Scholar] [CrossRef] [PubMed]
- Schmaal, L.; Marquand, A.F.; Rhebergen, D.; van Tol, M.J.; Ruhe, H.G.; van der Wee, N.J.; Veltman, D.J.; Penninx, B.W. Predicting the Naturalistic Course of Major Depressive Disorder Using Clinical and Multimodal Neuroimaging Information: A Multivariate Pattern Recognition Study. Biol Psychiatry 2015, 78, 278–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miotto, R.; Li, L.; Kidd, B.A.; Dudley, J.T. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Sci Rep. 2016, 6, 26094. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.; Tran, T.; Phung, D.; Venkatesh, S. Deepcare: A deep dynamic memory model for predictive medicine. Pacific-Asia Conference on Knowledge Discovery and Data Mining; Springer: Cham, Switzerland, 2016; pp. 30–41. [Google Scholar]
- Choi, E.; Bahadori, M.T.; Schuetz, A.; Stewart, W.F.; Sun, J. Doctor AI: Predicting clinical events via recurrent neural networks. Mach. Learn. Healthc. Conf. PMLR 2016, 56, 301–318. [Google Scholar]
- Arbabshirani, M.R.; Plis, S.; Sui, J.; Calhoun, V.D. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage 2017, 145 (Pt B), 137–165. [Google Scholar] [CrossRef] [Green Version]
- Kloppel, S.; Stonnington, C.M.; Chu, C.; Draganski, B.; Scahill, R.I.; Rohrer, J.D.; Fox, N.C.; Jack, C.R., Jr.; Ashburner, J.; Frackowiak, R.S. Automatic classification of MR scans in Alzheimer’s disease. Brain 2008, 131 (Pt 3), 681–689. [Google Scholar] [CrossRef]
- Ju, R.; Hu, C.; Zhou, P.; Li, Q. Early Diagnosis of Alzheimer’s Disease Based on Resting-State Brain Networks and Deep Learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017, 16, 244–257. [Google Scholar] [CrossRef]
- Ortiz, A.; Munilla, J.; Gorriz, J.M.; Ramirez, J. Ensembles of Deep Learning Architectures for the Early Diagnosis of the Alzheimer’s Disease. Int. J. Neural. Syst. 2016, 26, 1650025. [Google Scholar] [CrossRef]
- Akhavan Aghdam, M.; Sharifi, A.; Pedram, M.M. Combination of rs-fMRI and sMRI Data to Discriminate Autism Spectrum Disorders in Young Children Using Deep Belief Network. J. Digit. Imaging 2018, 31, 895–903. [Google Scholar] [CrossRef]
- Pinaya, W.H.; Gadelha, A.; Doyle, O.M.; Noto, C.; Zugman, A.; Cordeiro, Q.; Jackowski, A.P.; Bressan, R.A.; Sato, J.R. Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci. Rep. 2016, 6, 38897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, E.; Lin, C.-H.; Lai, Y.-L.; Huang, C.-H.; Huang, Y.-J.; Lane, H.-Y. Combination of G72 Genetic Variation and G72 Protein Level to Detect Schizophrenia: Machine Learning Approaches. Front. Psychiatry 2018, 9, 566. [Google Scholar] [CrossRef] [PubMed]
- Casanova, R.; Barnard, R.T.; Gaussoin, S.A.; Saldana, S.; Hayden, K.M.; Manson, J.E.; Wallace, R.B.; Rapp, S.R.; Resnick, S.M.; Espeland, M.A.; et al. Using high-dimensional machine learning methods to estimate an anatomical risk factor for Alzheimer’s disease across imaging databases. Neuroimage 2018, 183, 401–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Algamal, Z.Y.; Lee, M.H. Regularized logistic regression with adjusted adaptive elastic net for gene selection in high dimensional cancer classification. Comput. Biol. Med. 2015, 67, 136–145. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Walter, M.; Alizadeh, S.; Jamalabadi, H.; Lueken, U.; Dannlowski, U.; Walter, H.; Olbrich, S.; Colic, L.; Kambeitz, J.; Koutsouleris, N.; et al. Translational machine learning for psychiatric neuroimaging. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 91, 113–121. [Google Scholar] [CrossRef]
- Woo, C.W.; Chang, L.J.; Lindquist, M.A.; Wager, T.D. Building better biomarkers: Brain models in translational neuroimaging. Nat. Neurosci. 2017, 20, 365–377. [Google Scholar] [CrossRef]
- Moreno-De-Luca, D.; Ross, M.E.; Ross, D.A. Leveraging the Power of Genetics to Bring Precision Medicine to Psychiatry: Too Little of a Good Thing? Biol. Psychiatry 2018, 83, e45–e46. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.H.; Yang, J.H.; Chiang, C.W.K.; Hsiung, C.N.; Wu, P.E.; Chang, L.C.; Chu, H.W.; Chang, J.; Song, I.W.; Yang, S.L.; et al. Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum. Mol. Genet. 2016, 25, 5321–5331. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.C.; Fan, C.T.; Liao, C.C.; Chen, Y.S. Taiwan Biobank: Making cross-database convergence possible in the Big Data era. Gigascience 2018, 7, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Lin, E.; Kuo, P.H.; Liu, Y.L.; Yang, A.C.; Kao, C.F.; Tsai, S.J. Association and interaction of APOA5, BUD13, CETP, LIPA and health-related behavior with metabolic syndrome in a Taiwanese population. Sci. Rep. 2016, 6, 36830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, E.; Kuo, P.H.; Liu, Y.L.; Yang, A.C.; Kao, C.F.; Tsai, S.J. Effects of circadian clock genes and environmental factors on cognitive aging in old adults in a Taiwanese population. Oncotarget 2017, 8, 24088–24098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, E.; Kuo, P.H.; Liu, Y.L.; Yang, A.C.; Kao, C.F.; Tsai, S.J. Effects of circadian clock genes and health-related behavior on metabolic syndrome in a Taiwanese population: Evidence from association and interaction analysis. Plos ONE 2017, 12, e0173861. [Google Scholar] [CrossRef] [PubMed]
- Lin, E.; Tsai, S.J.; Kuo, P.H.; Liu, Y.L.; Yang, A.C.; Kao, C.F.; Yang, C.H. The rs1277306 Variant of the REST Gene Confers Susceptibility to Cognitive Aging in an Elderly Taiwanese Population. Dement. Geriatr. Cogn. Disord. 2017, 43, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Lin, E.; Tsai, S.J.; Kuo, P.H.; Liu, Y.L.; Yang, A.C.; Kao, C.F.; Yang, C.H. The ADAMTS9 gene is associated with cognitive aging in the elderly in a Taiwanese population. Plos ONE 2017, 12, e0172440. [Google Scholar] [CrossRef]
- Lin, E.; Yang, A.C.; Tsai, S.J. Association between metabolic syndrome and cognitive function in old adults in a Taiwanese population. Taiwan. J. Psychiatry 2017, 31, 232–240. [Google Scholar]
- Folkersen, L.; Brynedal, B.; Diaz-Gallo, L.M.; Ramskold, D.; Shchetynsky, K.; Westerlind, H.; Sundstrom, Y.; Schepis, D.; Hensvold, A.; Vivar, N.; et al. Integration of known DNA, RNA and protein biomarkers provides prediction of anti-TNF response in rheumatoid arthritis: Results from the COMBINE study. Mol. Med. 2016, 22, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Qvarfordt, M.; Anderson, M.; Svartengren, M. Quality and learning aspects of the first 9000 spirometries of the LifeGene study. NPJ Prim. Care Respir. Med. 2018, 28, 6. [Google Scholar] [CrossRef]
- Gombojav, B.; Song, Y.M.; Lee, K.; Yang, S.; Kho, M.; Hwang, Y.C.; Ko, G.; Sung, J. The Healthy Twin Study, Korea updates: Resources for omics and genome epidemiology studies. Twin Res. Hum. Genet. 2013, 16, 241–245. [Google Scholar] [CrossRef]
- Ben-Hamo, R.; Efroni, S. Biomarker robustness reveals the PDGF network as driving disease outcome in ovarian cancer patients in multiple studies. BMC Syst. Biol. 2012, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Tebani, A.; Afonso, C.; Marret, S.; Bekri, S. Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations. Int. J. Mol. Sci. 2016, 17, 1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein-Piekarski, A.N.; Holt-Gosselin, B.; O’Hora, K.; Williams, L.M. Integrating sleep, neuroimaging, and computational approaches for precision psychiatry. Neuropsychopharmacology 2020, 45, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.K.; Lee, K.; Park, C. Applications of machine learning in addiction studies: A systematic review. Psychiatry Res. 2019, 275, 53–60. [Google Scholar] [CrossRef]
- Ramos-Lima, L.F.; Waikamp, V.; Salgado, T.A.; Passos, I.C.; Freitas, L.H.M. The use of machine learning techniques in trauma-related disorders: A systematic review. J. Psychiatr. Res. 2020, 121, 159–172. [Google Scholar] [CrossRef]
- Dalvie, S.; Koen, N.; McGregor, N.; O’Connell, K.; Warnich, L.; Ramesar, R.; Nievergelt, C.M.; Stein, D.J. Toward a Global Roadmap for Precision Medicine in Psychiatry: Challenges and Opportunities. OMICS 2016, 20, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.M. Precision psychiatry: A neural circuit taxonomy for depression and anxiety. Lancet Psychiatry 2016, 3, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Lin, E.; Tsai, S.-J. Gene-Environment Interactions and Role of Epigenetics in Depression. Understanding Depression; Springer: Berlin, Germany, 2018; pp. 41–50. [Google Scholar]
- Lin, E.; Kuo, P.-H.; Liu, Y.-L.; Yang, A.C.; Tsai, S.-J. A gene-based analysis of variants in the Brain-derived Neurotrophic Factor gene with psychological distress in a Taiwanese population. Taiwan. J. Psychiatry 2019, 33, 33. [Google Scholar]
- Lin, E.; Kuo, P.-H.; Liu, Y.-L.; Yang, A.C.; Tsai, S.-J. Polymorphisms of the DNA repair gene EXO1 modulate cognitive aging in old adults in a Taiwanese population. DNA Repair 2019, 78, 1–6. [Google Scholar] [CrossRef]
- Mukherjee, S.; Asnani, H.; Lin, E.; Kannan, S. ClusterGAN: Latent space clustering in generative adversarial networks. Proc. AAAI Conf. Artif. Intell. 2019, 33. [Google Scholar] [CrossRef]
- Hu, Y.; Hase, T.; Li, H.P.; Prabhakar, S.; Kitano, H.; Ng, S.K.; Ghosh, S.; Wee, L.J. A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data. BMC Genom. 2016, 17 (Suppl. 13), 1025. [Google Scholar] [CrossRef] [Green Version]
- Lin, E.; Tsai, S.-J. Diagnostic Prediction Based on Gene Expression Profiles and Artificial Neural Networks. Soft Computing for Biological Systems; Springer: Berlin, Germany, 2018; pp. 13–22. [Google Scholar]
- Serretti, A. The Present and Future of Precision Medicine in Psychiatry: Focus on Clinical Psychopharmacology of Antidepressants. Clin. Psychopharmacol. Neurosci. 2018, 16, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, E.; Tsai, S.-J. Multi-Omics and Machine Learning Applications in Precision Medicine. Curr. Pharm. Pers. Med. (Former. Curr. Pharm.) 2017, 15, 97–104. [Google Scholar] [CrossRef]
- Stein, M.B.; Smoller, J.W. Precision Psychiatry-Will Genomic Medicine Lead the Way? Jama Psychiatry 2018, 75, 663–664. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Lin, E.; Lane, H.-Y. Genetic biomarkers on age-related cognitive decline. Front. Psychiatry 2017, 8, 247. [Google Scholar] [CrossRef] [PubMed]
Study | Model | Results |
---|---|---|
Lin et al. [21] | Deep learning architecture | AUC = 0.82, sensitivity = 0.75, specificity = 0.69 for antidepressant treatment response; AUC = 0.81, sensitivity = 0.77, specificity = 0.66 for remission |
Kautzky et al. [22] | Random forest | An accuracy of 25% for antidepressant treatment outcome |
Patel et al. [23] | Decision tree | An accuracy of 89% based on mini-mental status examination scores, age, and structural imaging |
Chekroud et al. [24] | Tree-based ensemble | An accuracy of 59% based on 25 variables for clinical antidepressant remission |
Iniesta et al. also [25] | Elastic net | AUC = 0.72 based on clinical and demographical datasets |
Maciukiewicz et al. [27] | SVM and decision trees | An accuracy of 52% based on SNPs |
Chang et al. [29] | Linear regression | An accuracy of 84% based on neuroimaging biomarkers, genetic variants, DNA methylation, and demographic information |
Athreya et al. [30] | Random forest | AUC > 0.7 and accuracy > 69% for antidepressant therapy response |
Nunes et al. [31] | Random forest | AUC = 0.8; sensitivity = 0.53; specificity = 0.9 for lithium therapy response |
Eugene et al. [32] | Decision tree and random forest | AUC = 0.92 for lithium therapy response |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, E.; Lin, C.-H.; Lane, H.-Y. Precision Psychiatry Applications with Pharmacogenomics: Artificial Intelligence and Machine Learning Approaches. Int. J. Mol. Sci. 2020, 21, 969. https://doi.org/10.3390/ijms21030969
Lin E, Lin C-H, Lane H-Y. Precision Psychiatry Applications with Pharmacogenomics: Artificial Intelligence and Machine Learning Approaches. International Journal of Molecular Sciences. 2020; 21(3):969. https://doi.org/10.3390/ijms21030969
Chicago/Turabian StyleLin, Eugene, Chieh-Hsin Lin, and Hsien-Yuan Lane. 2020. "Precision Psychiatry Applications with Pharmacogenomics: Artificial Intelligence and Machine Learning Approaches" International Journal of Molecular Sciences 21, no. 3: 969. https://doi.org/10.3390/ijms21030969
APA StyleLin, E., Lin, C. -H., & Lane, H. -Y. (2020). Precision Psychiatry Applications with Pharmacogenomics: Artificial Intelligence and Machine Learning Approaches. International Journal of Molecular Sciences, 21(3), 969. https://doi.org/10.3390/ijms21030969