Relationship between the Electrical Characteristics of Molecules and Fast Streamers in Ester Insulation Oil
Abstract
:1. Introduction
2. Results
2.1. Effect of C=C on the Ionization Potential and Electron Affinity
2.2. Effect of β-hydrogen and Chain Length on the Ionization Potential and Electron Affinity
2.3. HOMO and LUMO Characteristics
2.4. Ionization Potential Distribution of Different Insulation Oils
2.5. Formation Mechanism of Fast Streamers
3. Materials and Methods
3.1. Materials
3.2. Methods
4. Conclusions
- The major contribution to the highest occupied molecular orbital (HOMO) comes from the carbon atoms adjacent to C=C. Thus, the IPs of triglycerides decrease as the number of C=C double bonds increases. The C=C in alkanes may also lower the IP.
- The influences of C=C and β-H on the EA of the triglyceride is small, as indicated by the small variations in EA (0.16 eV). This occurs because the contributions of β-H and the atoms near C=C to the LUMO are small. Instead, the atoms near the ester group make a primary contribution to the LUMO.
- β-H has little effect on the IP of the triglyceride because it makes no contribution to the HOMO. Under the same chain length, the maximum difference between the triglyceride (with β-H) and trimethylolpropane triesters (without β-H) is only 0.6%. As the molecular chain length increases, the ionization potential decreases. The IPs of triglycerides are determined by the C=C and chain length.
- In this study, the IPs of 53 kinds of molecules in FR3 were calculated. The IPs of molecules of the trimethylolpropane triester molecules are significantly higher compared with those of molecules of FR3. However, the LI Vb of the trimethylolpropane triester is still significantly lower than that of MO at large gaps. Therefore, neither the C=C or β-H but rather the ester group leads to this phenomenon. The atoms near the ester group make the main contribution to the LUMO, which draws more electron impact toward themselves compared to the alkane in MO. This characteristic promotes the transition from slow to fast streamers.
Author Contributions
Funding
Conflicts of Interest
References
- Fofana, I. 50 years in the development of insulating liquids. IEEE Electr. Insul. Mag. 2013, 29, 13–25. [Google Scholar] [CrossRef]
- Pukel, G.J.; Schwarz, R.; Baumann, F.; Muhr, H.M.; Eberhardt, R.; Wieser, B.; Chu, D. Power transformers with environmentally friendly and low flammability ester liquids. Elektrotech. Inftech. 2013, 1–6. [Google Scholar] [CrossRef]
- Ab Ghani, S.; Muhamad, N.A.; Noorden, Z.A.; Zainuddin, H.; Abu Bakar, N.; Talib, M.A. Methods for improving the workability of natural ester insulating oils in power transformer applications: A review. Electr. Power Syst. Res. 2018, 163, 655–667. [Google Scholar] [CrossRef]
- Garcia, B.; Garcia, T.; Primo, V.; Burgos, J.C.; Urquiza, D. Studying the loss of life of natural-ester-filled transformer insulation: Impact of moisture on the aging rate of paper. IEEE Electr. Insul. Mag. 2017, 33, 15–23. [Google Scholar] [CrossRef]
- Tokunaga, J.; Koide, H.; Mogami, K.; Hikosaka, T. Comparative studies on the aging of thermally upgraded paper insulation in palm fatty acid ester, mineral oil, and natural ester. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 258–265. [Google Scholar] [CrossRef]
- Carcedo, J.; Fernández, I.; Ortiz, A.; Delgado, F.; Renedo, C.J.; Pesquera, C. Aging assessment of dielectric vegetable oils. IEEE Electr. Insul. Mag. 2015, 31, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Frimpong, G.K.; Oommen, T.V.; Asano, R. A survey of aging characteristics of cellulose insulation in natural ester and mineral oil. IEEE Electr. Insul. Mag. 2011, 27, 36–48. [Google Scholar] [CrossRef]
- Coulibaly, M.; Perrier, C.; Marugan, M.; Beroual, A. Aging behavior of cellulosic materials in presence of mineral oil and ester liquids under various conditions. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 1971–1976. [Google Scholar] [CrossRef]
- McShane, C.P.; Rapp, K.J.; Corkran, J.L.; Gauger, G.A.; Luksich, J. Aging of paper insulation in natural ester dielectric fluid. Trans. Distribu. Conf. Expo. 2001, 2, 675–679. [Google Scholar]
- Lu, W.; Liu, Q. Effect of cellulose particles on impulse breakdown in ester transformer liquids in uniform electric fields. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2554–2564. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Z.D. Streamer characteristic and breakdown in synthetic and natural ester transformer liquids under standard lightning impulse voltage. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 285–294. [Google Scholar] [CrossRef]
- Rapp, K.J.; Corkran, J.; Mcshane, C.P.; Prevost, T.A. Lightning Impulse Testing of Natural Ester Fluid Gaps and Insulation Interfaces. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 1595–1603. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.D. Study of dielectric behavior of ester transformer liquids under ac voltage. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1916–1925. [Google Scholar] [CrossRef]
- Rapp, K.J.; McShane, C.P.; Vandermaar, J.; Vukovic, D.; Tenbohlen, S. Long gap breakdown of natural ester fluid. Int. Conf. High Voltage Eng. Applicat. 2010, 104–107. [Google Scholar]
- Reffas, A.; Moulai, H.; Beroual, A. Comparison of dielectric properties of olive oil, mineral oil, and other natural and synthetic ester liquids under AC and lightning impulse stresses. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1822–1830. [Google Scholar] [CrossRef]
- Duy, C.T.; Lesaint, O.; Denat, A.; Bonifaci, N. Streamer propagation and breakdown in natural ester at high voltage. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 1–4. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, X.; Li, J.; Wang, F.; Zhang, R.; Mehmood, M.A.; Liang, S.; Jiang, T. Streamer characteristics of dielectric natural ester-based liquids under long gap distances. Aip Adv. 2018, 8, 105129. [Google Scholar] [CrossRef] [Green Version]
- Peppas, G.D.; Charalampakos, V.P.; Pyrgioti, E.C.; Gonos, I.F. Electrical and optical measurements investigation of the pre-breakdown processes in natural ester oil under different impulse voltage waveforms. IET Sci. Meas. Technol. 2016, 10, 545–551. [Google Scholar] [CrossRef]
- Denat, A.; Lesaint, O.; Mc Cluskey, F. Breakdown of liquids in long gaps: Influence of distance, impulse shape, liquid nature, and interpretation of measurements. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2581–2591. [Google Scholar] [CrossRef]
- Lesaint, O. Prebreakdown phenomena in liquids: Propagation ‘modes’ and basic physical properties. J. Phys. D 2016, 49, 144001. [Google Scholar] [CrossRef]
- Smalo, H.S.; Astrand, P.; Ingebrigtsen, S. Calculation of ionization potentials and electron affinities for molecules relevant for streamer initiation and propagation. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 733–741. [Google Scholar] [CrossRef]
- Dung, N.V.; Høidalen, H.K.; Linhjell, D.; Lundgaard, L.E.; Unge, M. Effects of reduced pressure and additives on streamers in white oil in long point-plane gap. J. Phys. D Appl. Phys. 2013, 46, 255501. [Google Scholar] [CrossRef]
- Zhan, C.G.; Nichols, J.A.; Dixon, D.A. Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies. J. Phys. Chem. A 2003, 107, 4184–4195. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, F.; Li, J.; Huang, Z.; Lou, Z.; Han, Q.; Zhao, Q.; Hu, K. Synthesis of trimethylolpropane fatty acid triester as a high performance electrical insulating oil. Ind. Crops Prod. 2019, 142, 111834. [Google Scholar] [CrossRef]
- Nemeth, G.I.; Selzle, H.L.; Schlag, E.W. Magnetic ZEKE experiments with mass analysis. Chem. Phys. Lett. 1993, 215, 151–155. [Google Scholar] [CrossRef]
- Holmes, J.L.; Lossing, F.P. Ionization energies of homologous organic compounds and correlation with molecular size. Org. Mass Spectrom. 1991, 26, 537–541. [Google Scholar] [CrossRef]
- Lesaint, O.; Massala, G. Positive streamer propagation in large oil gaps: Experimental characterization of propagation modes. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 360–370. [Google Scholar] [CrossRef]
- Davari, N.; Åstrand, P.O.; Ingebrigtsen, S.; Unge, M. Excitation energies and ionization potentials at high electric fields for molecules relevant for electrically insulating liquids. J. Appl. Phys. 2013, 113, 143707. [Google Scholar] [CrossRef]
- Jomni, F.; Aitken, F.; Denat, A. Experimental investigation of transient pressure waves produced in dielectric liquids. J. Acoust. Soc. Am. 2000, 107, 1203–1211. [Google Scholar] [CrossRef]
- Oommen, T.V. Vegetable oils for liquid-filled transformers. IEEE Electr. Insul. Mag. 2002, 18, 6–11. [Google Scholar] [CrossRef]
- Gryglewicz, S.; Piechocki, W.; Gryglewicz, G. Preparation of polyol esters based on vegetable and animal fats. Bioresour. Technol. 2003, 87, 35–39. [Google Scholar] [CrossRef]
- Ingebrigtsen, S.; Lundgaard, L.E.; Åstrand, P.O. Effects of additives on prebreakdown phenomena in liquid cyclohexane: II. Streamer propagation. J. Phys. D Appl. Phys. 2007, 40, 5624–5634. [Google Scholar] [CrossRef]
- Ingebrigtsen, S.; Smalo, H.S.; Astrand, P.O.; Lundgaard, L.E. Effects of electron-attaching and electron-releasing additives on streamers in liquid cyclohexane. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 1524–1535. [Google Scholar] [CrossRef]
- Dung, N.V.; Hoidalen, H.K.; Linhjell, D.; Lundgaard, L.E.; Unge, M. Influence of impurities and additives on positive streamers in paraffinic model oil. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1593–1603. [Google Scholar] [CrossRef]
- Lísa, M.; Holčapek, M. Triacylglycerols profiling in plant oils important in food industry, dietetics and cosmetics using high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A 2008, 1198, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Liu, Q.; Wang, Z.D. Pre-breakdown and breakdown mechanisms of an inhibited gas to liquid hydrocarbon transformer oil under negative lightning impulse voltage. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2809–2818. [Google Scholar] [CrossRef] [Green Version]
- Davari, N.; Åstrand, P.-O.; Unge, M. Density-functional calculations of field-dependent ionization potentials and excitation energies of aromatic molecules. Chem. Phys. 2015, 447, 22–29. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09, Rev. D. 01; Gaussian. Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Christy, A.A.; Xu, Z.; Harrington, P. Thermal degradation and isomerisation kinetics of triolein studied by infrared spectrometry and GC–MS combined with chemometrics. Chem. Phys. Lipids 2009, 158, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Lide, D.R. CRC Handbook of Chemistry and Physics; CRC press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Kos, A.; Tefelski, D.B.; Kosciesza, R.; Rostocki, A.J.; Roszkiewicz, A.; Ejchart, W.; Jastrzebski, C.; Siegoczynski, R.M. Certain physico-chemical properties of triolein and methyl alcohol-triolein mixture under pressure. Int. J. High Pressure Res. 2007, 27, 39–42. [Google Scholar] [CrossRef]
IP (eV) | FR3 | MO | TME |
---|---|---|---|
7.14–7.73 | 94.7% | 5% | 0 |
7.83–8.07 | 5.3% | 0 | 0 |
8.82–9.08 | 0 | 0 | 100% |
9.08–9.15 | 0 | 95% | 0 |
Fatty Acid | Symbol | CN:DN1 |
---|---|---|
Caproic | Co | 6:0 |
Caprylic | Cy | 8:0 |
Capric | Cr | 10:0 |
Lauric | La | 12:0 |
Myristic | M | 14:0 |
Palmitic | P | 16:0 |
Stearic | S | 18:0 |
Oleic | O | 18:1 |
Linoleic | L | 18:2 |
Linolenic | Ln | 18:3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Wang, F.; Lou, Z.; Han, Q.; Zhao, Q.; Hu, K.; Huang, Z.; Li, J. Relationship between the Electrical Characteristics of Molecules and Fast Streamers in Ester Insulation Oil. Int. J. Mol. Sci. 2020, 21, 974. https://doi.org/10.3390/ijms21030974
Wang K, Wang F, Lou Z, Han Q, Zhao Q, Hu K, Huang Z, Li J. Relationship between the Electrical Characteristics of Molecules and Fast Streamers in Ester Insulation Oil. International Journal of Molecular Sciences. 2020; 21(3):974. https://doi.org/10.3390/ijms21030974
Chicago/Turabian StyleWang, Kaizheng, Feipeng Wang, Ziyi Lou, Qiuhuang Han, Qi Zhao, Kelin Hu, Zhengyong Huang, and Jian Li. 2020. "Relationship between the Electrical Characteristics of Molecules and Fast Streamers in Ester Insulation Oil" International Journal of Molecular Sciences 21, no. 3: 974. https://doi.org/10.3390/ijms21030974
APA StyleWang, K., Wang, F., Lou, Z., Han, Q., Zhao, Q., Hu, K., Huang, Z., & Li, J. (2020). Relationship between the Electrical Characteristics of Molecules and Fast Streamers in Ester Insulation Oil. International Journal of Molecular Sciences, 21(3), 974. https://doi.org/10.3390/ijms21030974