PPP2R5D-Related Intellectual Disability and Neurodevelopmental Delay: A Review of the Current Understanding of the Genetics and Biochemical Basis of the Disorder
Abstract
:1. Background
2. Genetics
3. Clinical Signs
4. Etiology
5. Tissue Expressions and Functions of the PPP2R5D Subunit
6. Pathogenic Mutations in PPP2R5D Leading to Defective PP2A–PPP2R5D Activity
7. Association of PP2A–PPP2R5D Dysregulation with Overgrowth Syndrome and Associated Intellectual Disability
8. Animal Models
9. Structure of the PP2A Enzyme Complex
10. Known Functions of the PP2A–PPP2R5D Holoenzyme
10.1. Targeting of PP2A to the Nucleus
10.2. The Role of PPP2A–PPP2R5D in Striatal Dopaminergic Neurotransmission
10.3. Role of PP2A–PPP2R5D in Neurotrophic Signaling
10.4. Role of PP2A–PPP2R5D in Tau Phosphorylation
10.5. Role of the PP2A–PPP2R5D Holoenzyme in the Progression of Cell Cycle
11. Future Research
12. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PPP2R5D | Protein Phosphatase 2 Regulatory Subunit B′ Delta |
PPP2A | Protein Phosphatase 2A |
MRI | Magnetic resonance imaging |
PI3K/AKT | Phosphoinositide 3-kinases/ Protein kinase B |
HEAT | Huntingtin-elongation-A subunit-TOR motif |
DARPP-32 | Dopamine-regulated neuronal phosphoprotein-32 |
GSK3β | Glycogen synthase kinase-3β |
Cdc25C | Cell division cycle25C |
ADA 3 | Transcriptional adaptor protein 3 |
PPP1R1B | Protein Phosphatase 1 Regulatory Inhibitor Subunit 1B |
NGF | Nerve growth factor |
AD | Alzheimer disease |
MPF | Maturation-promoting factor |
PC-12 cells | Pheochromocytoma cell line 12 |
Myt1 | Myelin Transcription Factor 1 |
Thr | Threonine |
Ser | Serine |
HEK293 | Human embryonic kidney cell line 293 |
TrkA | Tropomyosin receptor kinase A |
Wee1 | Wee1 kinase |
ID | Intellectual disability |
Cdk1 | Cyclin-dependent kinase |
Cdc20 | Cell division cycle 20 |
ERK | Extracellular signal-regulated kinase |
JNK | c-Jun N-terminal kinase |
References
- Houge, G.; Haesen, D.; Vissers, L.E.; Mehta, S.; Parker, M.J.; Wright, M.; Vogt, J.; McKee, S.; Tolmie, J.L.; Cordeiro, N.; et al. B56delta-related protein phosphatase 2A dysfunction identified in patients with intellectual disability. J. Clin. Investig. 2015, 125, 3051–3062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loveday, C.; Tatton-Brown, K.; Clarke, M.; Westwood, I.; Renwick, A.; Ramsay, E.; Nemeth, A.; Campbell, J.; Joss, S.; Gardner, M.; et al. Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth. Hum. Mol. Genet. 2015, 24, 4775–4779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, L.; Henderson, L.B.; Cho, M.T.; Petrey, D.S.; Fong, C.T.; Haude, K.M.; Shur, N.; Lundberg, J.; Hauser, N.; Carmichael, J.; et al. De novo missense variants in PPP2R5D are associated with intellectual disability, macrocephaly, hypotonia, and autism. Neurogenetics 2016, 17, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Yeung, K.S.; Tso, W.W.Y.; Ip, J.J.K.; Mak, C.C.Y.; Leung, G.K.C.; Tsang, M.H.Y.; Ying, D.; Pei, S.L.C.; Lee, S.L.; Yang, W.; et al. Identification of mutations in the PI3K-AKT-mTOR signalling pathway in patients with macrocephaly and developmental delay and/or autism. Mol. Autism 2017, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- McCright, B.; Rivers, A.M.; Audlin, S.; Virshup, D.M. The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J. Biol. Chem. 1996, 271, 22081–22089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirzaa, G.; Foss, K.; Nattakom, M.; Chung, W.K. PPP2R5D-Related Neurodevelopmental Disorder. In GeneReviews®; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Stephens, K., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK536360/ (accessed on 10 February 2020).
- Jordan’s Guardian Angels. Available online: https://jordansguardianangels.org/the-history-of-jordans-syndrome/ (accessed on 10 February 2020).
- Yu, U.Y.; Yoo, B.C.; Ahn, J.H. Regulatory B Subunits of Protein Phosphatase 2A Are Involved in Site-specific Regulation of Tau Protein Phosphorylation. Korean J. Physiol. Pharmacol. 2014, 18, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.H.; McAvoy, T.; Rakhilin, S.V.; Nishi, A.; Greengard, P.; Nairn, A.C. Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56delta subunit. Proc. Natl. Acad. Sci. USA 2007, 104, 2979–2984. [Google Scholar] [CrossRef] [Green Version]
- Tadmouri, A.; Kiyonaka, S.; Barbado, M.; Rousset, M.; Fablet, K.; Sawamura, S.; Bahembera, E.; Pernet-Gallay, K.; Arnoult, C.; Miki, T.; et al. Cacnb4 directly couples electrical activity to gene expression, a process defective in juvenile epilepsy. EMBO J. 2012, 31, 3730–3744. [Google Scholar] [CrossRef] [Green Version]
- Eichhorn, P.J.; Creyghton, M.P.; Bernards, R. Protein phosphatase 2A regulatory subunits and cancer. Biochim. Biophys. Acta 2009, 1795, 1–15. [Google Scholar] [CrossRef]
- Lambrecht, C.; Libbrecht, L.; Sagaert, X.; Pauwels, P.; Hoorne, Y.; Crowther, J.; Louis, J.V.; Sents, W.; Sablina, A.; Janssens, V. Loss of protein phosphatase 2A regulatory subunit B56delta promotes spontaneous tumorigenesis in vivo. Oncogene 2018, 37, 544–552. [Google Scholar] [CrossRef]
- Zolnierowicz, S. Type 2A protein phosphatase, the complex regulator of numerous signaling pathways. Biochem. Pharmacol. 2000, 60, 1225–1235. [Google Scholar] [CrossRef]
- Lechward, K.; Awotunde, O.S.; Swiatek, W.; Muszynska, G. Protein phosphatase 2A: Variety of forms and diversity of functions. Acta Biochim. Pol. 2001, 48, 921–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csortos, C.; Zolnierowicz, S.; Bako, E.; Durbin, S.D.; DePaoli-Roach, A.A. High complexity in the expression of the B′ subunit of protein phosphatase 2A0. Evidence for the existence of at least seven novel isoforms. J. Biol. Chem. 1996, 271, 2578–2588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssens, V.; Goris, J.; Van Hoof, C. PP2A: The expected tumor suppressor. Curr. Opin. Genet. Dev. 2005, 15, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Margolis, S.S.; Perry, J.A.; Forester, C.M.; Nutt, L.K.; Guo, Y.; Jardim, M.J.; Thomenius, M.J.; Freel, C.D.; Darbandi, R.; Ahn, J.H.; et al. Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell 2006, 127, 759–773. [Google Scholar] [CrossRef] [Green Version]
- Seshacharyulu, P.; Pandey, P.; Datta, K.; Batra, S.K. Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett. 2013, 335, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Tatton-Brown, K.; Weksberg, R. Molecular mechanisms of childhood overgrowth. Am. J. Med. Genet. C Semin. Med. Genet. 2013, 163c, 71–75. [Google Scholar] [CrossRef]
- Van Kanegan, M.J.; Strack, S. The Protein Phosphatase 2A Regulatory Subunits B′β and B′δ Mediate Sustained TrkA Neurotrophin Receptor Autophosphorylation and Neuronal Differentiation. Mol. Cell. Biol. 2009, 29, 662–674. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Phiel, C. Functions of B56-containing PP2As in major developmental and cancer signaling pathways. Life Sci. 2010, 87, 659–666. [Google Scholar] [CrossRef] [Green Version]
- Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Ohinata, Y.; Sutou, S.; Kondo, M.; Takahashi, T.; Mitsui, Y. Male-enhanced antigen-1 gene flanked by two overlapping genes is expressed in late spermatogenesis. Biol. Reprod. 2002, 67, 1824–1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCright, B.; Brothman, A.R.; Virshup, D.M. Assignment of human protein phosphatase 2A regulatory subunit genes b56alpha, b56beta, b56gamma, b56delta, and b56epsilon (PPP2R5A-PPP2R5E), highly expressed in muscle and brain, to chromosome regions 1q41, 11q12, 3p21, 6p21.1, and 7p11.2 --> p12. Genomics 1996, 36, 168–170. [Google Scholar] [CrossRef] [PubMed]
- DECIPHER. Available online: https://decipher.sanger.ac.uk/ (accessed on 10 February 2020).
- Turowski, P.; Fernandez, A.; Favre, B.; Lamb, N.J.; Hemmings, B.A. Differential methylation and altered conformation of cytoplasmic and nuclear forms of protein phosphatase 2A during cell cycle progression. J. Cell. Biol. 1995, 129, 397–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocher, G.; Letourneux, C.; Lenormand, P.; Porteu, F. Inhibition of B56-containing protein phosphatase 2As by the early response gene IEX-1 leads to control of Akt activity. J. Biol. Chem. 2007, 282, 5468–5477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martens, E.; Stevens, I.; Janssens, V.; Vermeesch, J.; Gotz, J.; Goris, J.; Van Hoof, C. Genomic organisation, chromosomal localisation tissue distribution and developmental regulation of the PR61/B′ regulatory subunits of protein phosphatase 2A in mice. J. Mol. Biol. 2004, 336, 971–986. [Google Scholar] [CrossRef]
- Rodgers, J.T.; Vogel, R.O.; Puigserver, P. Clk2 and B56beta mediate insulin-regulated assembly of the PP2A phosphatase holoenzyme complex on Akt. Mol. Cell. 2011, 41, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Claret, F.X. Phosphatases: The new brakes for cancer development? Enzyme Res. 2012, 2012, 659649. [Google Scholar] [CrossRef] [Green Version]
- Tatton-Brown, K.; Hanks, S.; Ruark, E.; Zachariou, A.; Duarte Sdel, V.; Ramsay, E.; Snape, K.; Murray, A.; Perdeaux, E.R.; Seal, S.; et al. Germline mutations in the oncogene EZH2 cause Weaver syndrome and increased human height. Oncotarget 2011, 2, 1127–1133. [Google Scholar] [CrossRef] [Green Version]
- Tatton-Brown, K.; Seal, S.; Ruark, E.; Harmer, J.; Ramsay, E.; Del Vecchio Duarte, S.; Zachariou, A.; Hanks, S.; O’Brien, E.; Aksglaede, L.; et al. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nat. Genet. 2014, 46, 385–388. [Google Scholar] [CrossRef] [Green Version]
- Lindhurst, M.J.; Sapp, J.C.; Teer, J.K.; Johnston, J.J.; Finn, E.M.; Peters, K.; Turner, J.; Cannons, J.L.; Bick, D.; Blakemore, L.; et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N. Engl. J. Med. 2011, 365, 611–619. [Google Scholar] [CrossRef] [Green Version]
- Louis, J.V.; Martens, E.; Borghgraef, P.; Lambrecht, C.; Sents, W.; Longin, S.; Zwaenepoel, K.; Pijnenborg, R.; Landrieu, I.; Lippens, G.; et al. Mice lacking phosphatase PP2A subunit PR61/B′delta (Ppp2r5d) develop spatially restricted tauopathy by deregulation of CDK5 and GSK3beta. Proc. Natl. Acad. Sci. USA 2011, 108, 6957–6962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forester, C.M.; Maddox, J.; Louis, J.V.; Goris, J.; Virshup, D.M. Control of mitotic exit by PP2A regulation of Cdc25C and Cdk1. Proc. Natl. Acad. Sci. USA 2007, 104, 19867–19872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Pham, H.T.; Ruediger, R.; Walter, G. Characterization of the Aalpha and Abeta subunit isoforms of protein phosphatase 2A: Differences in expression, subunit interaction, and evolution. Biochem. J. 2003, 369, 387–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemmings, B.A.; Adams-Pearson, C.; Maurer, F.; Muller, P.; Goris, J.; Merlevede, W.; Hofsteenge, J.; Stone, S.R. alpha- and beta-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry 1990, 29, 3166–3173. [Google Scholar] [CrossRef]
- Walter, G.; Ferre, F.; Espiritu, O.; Carbone-Wiley, A. Molecular cloning and sequence of cDNA encoding polyoma medium tumor antigen-associated 61-kDa protein. Proc. Natl. Acad. Sci. USA 1989, 86, 8669–8672. [Google Scholar] [CrossRef] [Green Version]
- Groves, M.R.; Hanlon, N.; Turowski, P.; Hemmings, B.A.; Barford, D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 1999, 96, 99–110. [Google Scholar] [CrossRef]
- Ruediger, R.; Hentz, M.; Fait, J.; Mumby, M.; Walter, G. Molecular model of the A subunit of protein phosphatase 2A: Interaction with other subunits and tumor antigens. J. Virol. 1994, 68, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Ruediger, R.; Roeckel, D.; Fait, J.; Bergqvist, A.; Magnusson, G.; Walter, G. Identification of binding sites on the regulatory A subunit of protein phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus. Mol. Cell. Biol. 1992, 12, 4872–4882. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Xu, Y.; Chen, Y.; Jeffrey, P.D.; Chao, Y.; Lin, Z.; Li, Z.; Strack, S.; Stock, J.B.; Shi, Y. Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell 2006, 127, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Catterall, W.A.; Perez-Reyes, E.; Snutch, T.P.; Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev. 2005, 57, 411–425. [Google Scholar] [CrossRef]
- Deisseroth, K.; Mermelstein, P.G.; Xia, H.; Tsien, R.W. Signaling from synapse to nucleus: The logic behind the mechanisms. Curr. Opin. Neurobiol. 2003, 13, 354–365. [Google Scholar] [CrossRef]
- Flavell, S.W.; Greenberg, M.E. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu. Rev. Neurosci. 2008, 31, 563–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arikkath, J.; Campbell, K.P. Auxiliary subunits: Essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol. 2003, 13, 298–307. [Google Scholar] [CrossRef]
- Escayg, A.; De Waard, M.; Lee, D.D.; Bichet, D.; Wolf, P.; Mayer, T.; Johnston, J.; Baloh, R.; Sander, T.; Meisler, M.H. Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am. J. Hum. Genet. 2000, 66, 1531–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronjat, M.; Kiyonaka, S.; Barbado, M.; De Waard, M.; Mori, Y. Nuclear life of the voltage-gated Cacnb4 subunit and its role in gene transcription regulation. Channels 2013, 7, 119–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svenningsson, P.; Nishi, A.; Fisone, G.; Girault, J.A.; Nairn, A.C.; Greengard, P. DARPP-32: An integrator of neurotransmission. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 269–296. [Google Scholar] [CrossRef]
- Usui, H.; Inoue, R.; Tanabe, O.; Nishito, Y.; Shimizu, M.; Hayashi, H.; Kagamiyama, H.; Takeda, M. Activation of protein phosphatase 2A by cAMP-dependent protein kinase-catalyzed phosphorylation of the 74-kDa B′′ (delta) regulatory subunit in virto and identification of the phosphorylation sites. FEBS Lett. 1998, 430, 312–316. [Google Scholar] [CrossRef] [Green Version]
- Levi-Montalcini, R. The nerve growth factor 35 years later. Science 1987, 237, 1154–1162. [Google Scholar] [CrossRef]
- Huang, E.J.; Reichardt, L.F. Trk receptors: Roles in neuronal signal transduction. Annu. Rev. Biochem. 2003, 72, 609–642. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, K.; Liu, F.; Gong, C.X.; Grundke-Iqbal, I. Tau in Alzheimer disease and related tauopathies. Curr. Alzheimer Res. 2010, 7, 656–664. [Google Scholar] [CrossRef] [Green Version]
- Kins, S.; Kurosinski, P.; Nitsch, R.M.; Gotz, J. Activation of the ERK and JNK signaling pathways caused by neuron-specific inhibition of PP2A in transgenic mice. Am. J. Pathol. 2003, 163, 833–843. [Google Scholar] [CrossRef] [Green Version]
- Mueller, P.R.; Coleman, T.R.; Kumagai, A.; Dunphy, W.G. Myt1: A Membrane-Associated Inhibitory Kinase That Phosphorylates Cdc2 on Both Threonine-14 and Tyrosine-15. Science 1995, 270, 86. [Google Scholar] [CrossRef] [PubMed]
- Parker, L.L.; Piwnica-Worms, H. Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science 1992, 257, 1955. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, I.; Clarke, P.R.; Marcote, M.J.; Karsenti, E.; Draetta, G. Phosphorylation and activation of human cdc25-C by cdc2--cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 1993, 12, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Chesnel, F.; Bazile, F.; Pascal, A.; Kubiak, J.Z. Cyclin B dissociation from CDK1 precedes its degradation upon MPF inactivation in mitotic extracts of Xenopus laevis embryos. Cell Cycle 2006, 5, 1687–1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherwood, S.W.; Kung, A.L.; Roitelman, J.; Simoni, R.D.; Schimke, R.T. In vivo inhibition of cyclin B degradation and induction of cell-cycle arrest in mammalian cells by the neutral cysteine protease inhibitor N-acetylleucylleucylnorleucinal. Proc. Natl. Acad. Sci. USA 1993, 90, 3353–3357. [Google Scholar] [CrossRef] [Green Version]
- Murray, A.W.; Solomon, M.J.; Kirschner, M.W. The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 1989, 339, 280–286. [Google Scholar] [CrossRef]
- Felix, M.A.; Cohen, P.; Karsenti, E. Cdc2 H1 kinase is negatively regulated by a type 2A phosphatase in the Xenopus early embryonic cell cycle: Evidence from the effects of okadaic acid. EMBO J. 1990, 9, 675–683. [Google Scholar] [CrossRef]
PPP2R5D Mutations | Glu197Lys | Glu198Lys | Glu200Lys | Glu420Lys | Pro201Arg | Pro53Ser | Trp207Arg | Reference |
---|---|---|---|---|---|---|---|---|
Number of individuals diagnosed in the four studies designated as A, B, C, and D | B. 1 | A. 6 | A. 2 | B. 3 | A. 1 | A. 1 | A. 1 | A. [1] |
B. 2 | B. [3] | |||||||
C. 2 | B. 1 | D. 1 | B. 1 | C. [4] | ||||
D. 3 | D. [27] | |||||||
Autism spectrum | B. Present | A. Not reported (6/6) B. Present (2/2) C. Present (2/2) D. Not reported | A. Not reported B. Present | B. Present (2/3) | A. Not reported D. Not reported | A. Present B. Present | A. Present | A. [1] B. [3] C. [4] D. [27] |
Developmental delay | B. Present | A. Severe (6/6) B. Severe (2/2) C. Moderate (2/2) D. Present (3/3) | A. Mild (2/2) B. Present (2/2) | B. Present (3/3) | A. Not reported D. Present | A. Not reported B. Present | A. Not reported | A. [1] B. [3] C. [4] D. [27] |
Unsupported walking | B. 26 months | A. 6–8 years B. 3–8 years C. Not noted D. Not noted | A. 18–30 months B. 28 months | B. 3–5 years (2/3), not walking (1/3) | A. 18 months D. Not reported | A. 5 months to 3 years | A. 1.2 years | A. [1] B. [3] C. [4] D. [27] |
Speech | B. ~75 words and can form short sentences | A. Nonverbal (5/6) B. Nonverbal (1/2), and verbal (1/2) C. Not noted D. Not reported | A. Few words B. Few words at 3 years | B. Nonverbal (1/3), a few words (2/3) | A. A few words D. Not reported | A. Few words at 2.5 years (1/1) B. Nonverbal (1/1) | A. Yes, poor intelligibility | A. [1] B. [3] C. [4] D. [27] |
Intellectual disability (ID) | B. Moderate | A. Severe (6/6) B. Severe (3/3) C. Moderate (2/2) D. Present (1/3) | A. Present B. Severe | B. Present (2/3) | A. Moderate D. Not reported | A. Severe | A. Moderate | A. [1] B. [3] C. [4] D. [27] |
Macrocephaly | B. Present | A. Present (6/6) B. Present (2/2) C. Present (2/2) D. Present (1/3) | B. Absent | B. Present | A. Not present D. Not reported | A. Present | A. Absent | A. [1] B. [3] C. [4] D. [27] |
Hypotonia | B. Present | A. Present (6/6) B. Present (2/2) C. Present (2/2) D. present (1/3) | A. Present B. Present | B. Present | A. Present D. Not reported | A. Not reported B. Not reported | A. Present | A. [1] B. [3] C. [4] D. [27] |
Number of individuals diagnosed in the four studies designated as A, B, C and D | B. 1 | A. 6 B. 2 C. 2 D. 3 | A. 2 B. 1 | B. 3 | A. 1 D. 1 | A. 1 B. 1 | A. 1 | A. [1] B. [3] C. [4] D. [27] |
Behavioral Abnormalities | B. Anxiety in new situations | A. Not reported B. Not tested C. Not tested | A. Not tested B. Not tested | B. Aggressive, stereotypies, impulse control issues (2/3) | - | A. Not reported B. Not reported | A. Not reported | A. [6] B. [1] C. [3] |
Seizures | B. Not reported | A. Present (2/6) B. Present (1/2) C. Present (2/2) | - B. Present | B. Absent | A. Present (multifocal) D. Not reported | A. Not reported B. Not reported | A. Absent | A. [6] B. [1] C. [3] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, D.; Cary, W.; Nolta, J.A. PPP2R5D-Related Intellectual Disability and Neurodevelopmental Delay: A Review of the Current Understanding of the Genetics and Biochemical Basis of the Disorder. Int. J. Mol. Sci. 2020, 21, 1286. https://doi.org/10.3390/ijms21041286
Biswas D, Cary W, Nolta JA. PPP2R5D-Related Intellectual Disability and Neurodevelopmental Delay: A Review of the Current Understanding of the Genetics and Biochemical Basis of the Disorder. International Journal of Molecular Sciences. 2020; 21(4):1286. https://doi.org/10.3390/ijms21041286
Chicago/Turabian StyleBiswas, Dayita, Whitney Cary, and Jan A. Nolta. 2020. "PPP2R5D-Related Intellectual Disability and Neurodevelopmental Delay: A Review of the Current Understanding of the Genetics and Biochemical Basis of the Disorder" International Journal of Molecular Sciences 21, no. 4: 1286. https://doi.org/10.3390/ijms21041286
APA StyleBiswas, D., Cary, W., & Nolta, J. A. (2020). PPP2R5D-Related Intellectual Disability and Neurodevelopmental Delay: A Review of the Current Understanding of the Genetics and Biochemical Basis of the Disorder. International Journal of Molecular Sciences, 21(4), 1286. https://doi.org/10.3390/ijms21041286