A High Resolution Melting Analysis-Based Genotyping Toolkit for the Peach (Prunus persica) Chilling Requirement
Abstract
:1. Introduction
2. Results
2.1. Integration of Genetic Cofactors Representing Major- and Minor-Effect CR-related QTLs on a Physical Peach Genome Map
2.2. Selection of SNP Markers Presenting Cofactors and the Detection of the Selected SNPs via HRM Analysis
2.3. HRM Followed by Principal Component Analysis (PCA) is a Robust Variant Calling Method for Differentiating Genotypes Based on the Selected SNP Markers
2.4. Genotyping of 22 CR-related SNP Markers for 27 Peach Cultivars
2.5. Potential CR-Related Haplotypes
3. Discussion
3.1. Breeder Toolbox for Peach CRs
3.2. Advantages and Limits of Using HRM for Genotyping
3.3. Advantages of Using PCA for Variant Calls
3.4. Putative Low CR-Assoicated SNPs Are Potential Candidates for MAS
3.5. Recommended Marker Lists for Users of This Toolkit
4. Conclusions
5. Materials and Methods
5.1. Plant Materials
5.2. Genomic DNA Extraction
5.3. HRM Analysis
5.4. PCA for HRM Output Result Clustering
5.5. Instructions of the HRM Fast Genotyping Platform Analyzed With the PCA Pipeline
- > input_file = readline(‘Enter the file name: ’)
- > exported.data.file = read.csv(input_file,header = T)
- > max_lim = readline(‘Enter the upper limit of the melt region: ’)
- > min_lim = readline(‘Enter the lower limit of the melt region: ’)
- > library(mclust)
- > library(plot3D)
- > cluster.data <- Mclust(PCA.analysis.file$rotation[,1:3], G = 3)
- > df.PCA.MM1 <- as.data.frame(PCA.analysis.file$rotation[,1:3])
- > cluster.data$classification
- > plot(df.PCA.MM1[,1:2], bg=cluster.data$classification, pch=21,xlab='PC1', ylab='PC2')
- > identify(df.PCA.MM1[,1:2], labels = rownames(df.PCA.MM1))
5.6. Association Analysis and Haplotype Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
HRM | High resolution melting analysis |
CR | Chilling requirement |
QTL | Quantitative trait locus |
PCA | Principal component analysis |
MAS | Marker-assisted selection |
SSR | Simple sequence repeat |
SNP | Single nucleotide polymorphism |
GBS | Genotyping-by-sequencing |
PCR | Polymerase chain reaction |
KASP | Kompetitive allele-specific PCR |
FRET | Fluorescence resonance energy transfer |
qPCR | Quantitative PCR |
LOD | Logarithm of the odds |
LG | Linkage group |
X2 | Chi-square |
EndoPGs | Endopolygalacturonases |
NBS-LRR | Nucleotide binding site leucine-rich repeat |
AFLP | Amplified fragment length polymorphism |
CTAB | Cetyltrimethyl ammonium bromide |
PVP-40 | Polyvinylpyrrolidone average mol wt 40,000 |
CRAN | The Comprehensive R Archive Network |
3D | Three-dimension |
PC | Principal component |
Appendix A
Selected Marker 1 | Original Cofactor 2 | QTL 3 | LOD 4 | R2 (%) 5 | Physical Position (Original Cofactor) 6 | Marker Distance from the Cofactor 7 |
---|---|---|---|---|---|---|
Romeu et al., 2014 [9] | ||||||
SNP_IGA_297497 | SNP_IGA_297497 | CRW-EJ | 3.8 | 10 | Pp03:3635392 | N/A 9 |
N/A 8 | SNP_IGA_293752 | CRD-EJ | 2.5 | 6 | Pp03:1985533 | |
N/A | SNP_IGA_635355 | CRU-EJ CRD-EJ | 2.8-3.8 | 13-18 | Pp06:10237718 | |
Zhebentyayeva et al., 2014 [8] | ||||||
rs159238319 | UDA-053 | qCR1d-2008 qCR1d-2009 | 2.9 (2008) 6.7 (2009) | 3.1 (2008) 6.9 (2009) | Pp01:1689830..1689847 | +119 |
SNP_IGA_112592 | BPPCT036B | qCR1c-2009 | 2.4 | 2.7 | Pp01:37719340..37719361 | +55 |
N/A | Pchgms170 | qCR2-2009 | 2.3 | 3.4 | Pp02:16917187..16917222 | |
SNP_IGA_419106 | AMPA103 | qCR4b-2008 | 3.0 | 4.6 | Pp04:13519992..13520025 | +7012 |
rs159239801 | M12a | qCR4b-2009 | 2.7 | 3.6 | Pp04:9219635..9219660 | −264 |
N/A | ssrPACITA21 | qCR5-2008 qCR5-2009 | 3.9 (2008) 3.9 (2009) | 4.6 (2008) 4.5 (2009) | Pp05:10776287..10776338 | |
SNP_IGA_695463 | EPPISF002 | qCR6-2008 | 3.4 | 3.9 | Pp06:28325489..28325504 | −2022 |
N/A | PacC13 | qCR8-2008 qCR8-2009 | 4.0 (2008) 2.4 (2009) | 5.0 (2008) 2.8 (2009) | Pp08:18135194..18135213 | |
Bielenberg et al., 2015 [10] | ||||||
2_16900230 | 2_16900230 | qCR2-2008 | 7.72 | 10.5 | Pp02:20476740 | N/A |
4_00772820 | 4_00772820 | qCR4a-2008 | 6.23 | 5.9 | Pp04:772922 | N/A |
4_11060745 | 4_11060745 | qCR4b-2008 | 5.06 | 4.5 | Pp04:11071616 | N/A |
5_13713689 | 5_13713689 | qCR5a-2008 | 6.00 | 5.7 | Pp05:13708460 | N/A |
N/A | BPPCT038 | qCR5b-2008 | 4.50 | 4.0 | Pp05:14652958..14653005 | |
8_11718744 | 8_11718744 | qCR8-2008 | 8.64 | 9.0 | Pp08:12463247 | N/A |
Selected Marker 1 | Original Cofactor 2 | Primer Name | Sequence (5’-3’) | Ta (°C) 3 | Product Size (bp) | Efficiency of PCR 4 | R2 |
---|---|---|---|---|---|---|---|
SNP_IGA_122351 | SNP_IGA_122057 | S1_4102b-f1 | ATTTTGTATCTGCGTGTGGACGGAG | 60.1 | 152 | 92.579 | 0.998 |
S1_4102b-r1 | TGCGGTAATCTAGGAACTGGAGTCG | 59.6 | |||||
SNP_IGA_297497 | SNP_IGA_297497 | S3_0363-f2 | AGTGACAAGGAAAGTCTCTCTGAAGGC | 58.7 | 81 | 98.858 | 0.994 |
S3_0363-r2 | CTGGCTCAAACACTCAACCAACTTG | 58.8 | |||||
SNP_IGA_769251 | SNP_IGA_769194 | S7_1256-f1 | CGCACAGATTCCAACAGAGCCG | 61.4 | 104 | 95.879 | 0.997 |
S7_1256-r1 | GCGACTTTGGTCCACGTTATGCC | 61.3 | |||||
SNP_IGA_779222 | SNP_IGA_779224 | S7_1611-f1 | GACCGAAGAATATCGACGTTAAGGGTTCTTTG | 65.1 | 98 | 94.51 | 0.972 |
S7_1611-r1 | AAAGTTCATGCAGAAGATACCAGCAGACTC | 61.3 | |||||
rs159238319 | UDA-053 | S1_1690-f2 | CTCTTGTTGGTTATCTCATTGTTAAGTGATTTGACATG | 65 | 77 | 122.991 | 0.967 |
S1_1690-r2 | CAACCACAAGTCTCACAAAATGCACAC | 60.5 | |||||
SNP_IGA_134905 | Pchgms29 | S1_4631-f2 | TTCTACCAATATGAAAAAGCTACCTGGGGTT | 62.2 | 88 | 123.755 | 0.984 |
S1_4631-r2 | TGATTACCTCCGAGCTTCTGATAGGC | 60 | |||||
SNP_IGA_381567 | Pchgms174 | S4_2429-f2 | GTGGAGTATCTTCGGAACTCAGAAAACCA | 61.8 | 74 | 105.302 | 0.984 |
S4_2429-r2 | CATGAGATGATCGTCAGTCTAAACTCTTAACTTACC | 62 | |||||
SNP_IGA_419106 | AMPA103 | S4_1351-f1 | GTGACATTTGACTAGGTCTATCTGCCCTAAG | 60.1 | 136 | 90.389 | 0.932 |
S4_1351-r2 | CCATTAGGTATAAAAAGGGTTGGTTAAGTTGG | 61.3 | |||||
SNP_IGA_695463 | EPPISF002 | S6_2645-f2 | CTTGTTCACCCGTCGTGGAGGCT | 63.1 | 68 | 96.83 | 0.994 |
S6_2645-r2 | GCACTTCCCAAGGTGGTCGTTTCC | 63.5 | |||||
SNP_IGA_786935 | UDAp-409A | S7_1954b-f1 | CAATCCAAAGCTGCTCACCTCCA | 60.1 | 124 | 102.906 | 0.986 |
S7_1954b-r1 | GACCTGGCTCCTGACGGAGTTG | 59.6 | |||||
SNP_IGA_112592 | BPPCT036B | S1_3674-f2 | ACAGAGAGGTTCACATTGGCTTTACAAA | 59.5 | 149 | 92.303 | 0.960 |
S1_3674-r2 | GAAGCTGGGTGATAAGTAATTTTCAATAAACAAGCA | 64.6 | |||||
rs159239801 | M12a | S4_9208b-f1 | CTGTCTTGGTATCAATCCACTGTGAGACTT | 60.1 | 150 | 89.051 | 0.996 |
S4_9208b-r1 | AGCCAAGTCCAATTTCGTTTCAACTAATG | 61.6 | |||||
SNP_IGA_780662 | UDAp-460 | S7_1667-f1 | GGTTTCGGTTTCTTCTTCGTCCA | 58.2 | 97 | 91.915 | 0.998 |
S7_1667-r1 | AACGACAAGTCGCATCAGGATCAG | 59.2 | |||||
S1_4475-r1 | CCAATCCTGACAACTAGCATTGATTGAC | 60.0 | |||||
1_40995799 | 1_40995799 | S1_4099-f1 | CGAACAATCCAACTGGCAGTGC | 59.1 | 96 | 102.331 | 0.999 |
S1_4099-r1 | AGGAGTCATAAACAATTATTGATCCGTTTG | 59.1 | |||||
2_16900230 | 2_16900230 | S2_1690-f1 | CAAATTACAAACAGCCACCTCATCAGC | 60.9 | 114 | 92.092 | 0.991 |
S2_1690-r1 | GTGACCGTCGGATTCGCCAT | 59.0 | |||||
4_00772820 | 4_00772820 | S4_0077-f1 | CATGGTCGTGTTGTCTCTGCATTG | 59.0 | 93 | 89.503 | 0.995 |
S4_0077-r1 | GAGAAACGGTGTTGACTGAGCAGC | 59.0 | |||||
4_11060745 | 4_11060745 | S4_1106-f1 | CCGATTGGTTGATGCTGTGGATC | 60.0 | 133 | 108.264 | 0.976 |
S4_1106-r1 | GAAGTAAAGGTTATCGAAATGGTTTCTCG | 59.0 | |||||
4_13747914 | 4_13747914 | S4_1374-f1 | ACAAGGCTGGGTTGTAGGCTGC | 59.2 | 131 | 99.112 | 0.984 |
S4_1374-r1 | GCTGGATCAGGAGGCAAAATTAGG | 59.1 | |||||
SNP_IGA_427604 | 4_14984691 | S4_1498b-f2 | AATCTACTGAGATTCTAGTATGAGAGAGGTCTAAGC | 58.9 | 134 | 99.598 | 0.982 |
S4_1498b-r2 | CATTTTCCACCCACCAAACCTTCGAC | 64.1 | |||||
5_13713689 | 5_13713689 | S5_1371-f2 | CACTCTGAATCCTTCTGTTGGGTTGGC | 63.7 | 132 | 92.307 | 0.992 |
S5_1371-r2 | AATATCAGTGCAGCTTTCAGGGACAAGAAG | 62.8 | |||||
8_11718744 | 8_11718744 | S8_1171-f1 | CATGGAGATCAGTAATGAAACATCTCTGC | 59.4 | 96 | 96.596 | 0.998 |
S8_1171-r1 | GCCCACTGACAGCTTCTTCAACC | 58.8 |
Cultivar | CR (h) | SNP_IGA_297497 | rs159238319 | SNP_IGA_695463 | SNP_IGA_112592 | SNP_IGA_419106 | rs159239801 | 2_16900230 | 4_00772820 | 4_11060745 | 5_13713689 | 8_11718744 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Low-chill cultivars | ||||||||||||
Okinawa | 100 | C† | C | T | A | T† | T | T/G | A | G | C† | T† |
Flordared | 100 | C | C | T | A† | T/C | T/G | G† | A/G† | C/G | C | C† |
Ruby | 100 | C | T/C† | G | G | C | T/G | T | A/G | C/G | C | C |
Xiami | 125 | C | C | T | A | T/C | T/G† | G† | A/G | C/G | C† | C† |
Yinggetao | 125 | C | C | T† | G | C | T† | T | A | G | C | C† |
Premier | 150 | T/C | T/C† | T/G | A/G | T | T | T/G | A/G | C/G | C | T/C† |
Flordabell | 150 | T | C† | T† | A/G | C† | T/G† | T/G† | A/G | C/G† | C† | C |
Flordabeauty | 150 | T/C | C | T/G | A/G† | T/C† | T/G† | T† | A/G | C/G | C | T/C† |
TropicPrince | 150 | T/C | C | T/G | A/G† | T† | T† | T† | A | G† | C/G† | T |
Kuu Taur | 150 | C | C | T | A | C† | T | T† | A† | G | C | T† |
Chuenfeng | 150 | C | T/C† | T† | A/G | T/C | T/G | G | G† | C/G | C | T/C |
TropicSweet | 175 | C | C† | T/G† | A/G† | T/C | T/G | T† | A† | C/G | C | T/C† |
SpringHoney | 180 | C | T/C† | T/G | G | T/C | T | T/G | A/G | C/G | C | T/C† |
Tropicsnow | 200 | C | C† | G | A | T† | T/G† | T/G | A/G | C/G | C | C |
Fushou | N/A5 | C | C | T | G† | T/C† | T† | T/G | A† | C/G | C/G† | C† |
High-chill cultivars | ||||||||||||
Yamane Hakuto | 800 | T/C | C | G | A | C | T | T/G | A | C/G† | C | T |
Shiga Hakuto | 800 | T | C | G | A† | T/C† | T† | T | A | C/G† | C | T |
Okubo | 850 | T† | C | T/G | A† | C | T | T/G | A | C/G | C | T† |
Shang Hai Shui Mi | 850 | T | C | T† | A† | T | T | T/G | A | C/G† | C/G† | T† |
Okitsu | 900 | T/C | C | T | G† | T | T | T/G | A/G | G | C† | T |
Aki Hakuto | 900 | T | C | T/G | A | C | T | T/G | A | G | C | T |
Hongqingshui | N/A | T | C | T/G | A | C | T† | T† | A/G† | C/G | C/G† | T |
Nakatsu Hakuto | N/A | T/C | C† | G† | A | C | T | T/G | A† | C/G | C | T† |
Sunago wase | N/A | T/C | C | T | A | T/C† | T | T/G | A | C/G | C† | T |
Yamato Wase | N/A | T/C† | C | G | A | C | T | T/G | A/G† | C/G† | C | T† |
Odama Hakuho | N/A | T/C | C | G | A | C | T | T/G | A† | C/G† | C | T† |
Tsao Sheng Yu Tao | N/A | C | T/C† | T | A | T | T† | T/G | G | G | C | T |
Putative low chill associated marker | C | -- | T | G | T | T/G | -- | G | -- | -- | C | |
Significance (X2-test) 4 | ** | ns. | ns. | ** | ns. | ** | ns. | ns. | ns. | ns. | *** | |
Accuracy (ratio; %) | 3/3; 100% | 8/9; 88.9% | 5/6; 83.3% | 9/9; 100% | 6/9; 66.7% | 10/10; 100% | 5/8; 62.5% | 9/9; 100% | 7/7; 100% | 9/9; 100% | 15/15; 100% |
References
- Sherman, W.B.; Beckman, T.G. Climatic adaptation in fruit crops. Acta Hortic. 2003, 622, 411–428. [Google Scholar] [CrossRef]
- Citadin, I.; Scariotto, S.; Sachet, M.R.; Rosa, F.J.; Raseira, M.d.C.B.; Wagner Junior, A. Adaptability and stability of fruit set and production of peach trees in a subtropical climate. Sci. Agric. 2014, 71, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Rouse, R.E.; Sherman, W.B. ‘UFSun’ peach released for subtropical central and south Florida. Proc. Fla. State Hort. Soc. 2004, 117, 239–241. [Google Scholar]
- Parker, L.E.; Abatzoglou, J.T. Warming winters reduce chill accumulation for peach production in the southeastern United States. Climate 2019, 7, 94. [Google Scholar] [CrossRef] [Green Version]
- Hauagge, R.; Cummins, J. Genetics of length of dormancy period in Malus vegetative buds. J. Am. Soc. Hortic. Sci. 1991, 116, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Perez, R.; Del Cueto, J.; Dicenta, F.; Martinez-Gomez, P. Recent advancements to study flowering time in almond and other Prunus species. Front. Plant Sci. 2014, 5, 334. [Google Scholar]
- Fan, S.; Bielenberg, D.G.; Zhebentyayeva, T.N.; Reighard, G.L.; Okie, W.R.; Holland, D.; Abbott, A.G. Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol. 2010, 185, 917–930. [Google Scholar] [CrossRef]
- Zhebentyayeva, T.N.; Fan, S.; Chandra, A.; Bielenberg, D.G.; Reighard, G.L.; Okie, W.R.; Abbott, A.G. Dissection of chilling requirement and bloom date QTLs in peach using a whole genome sequencing of sibling trees from an F2 mapping population. Tree Genet. Genomes 2014, 10, 35–51. [Google Scholar] [CrossRef]
- Romeu, J.F.; Monforte, A.J.; Sánchez, G.; Granell, A.; García-Brunton, J.; Badenes, M.L.; Ríos, G. Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biol. 2014, 14, 52. [Google Scholar] [CrossRef] [Green Version]
- Bielenberg, D.G.; Rauh, B.; Fan, S.; Gasic, K.; Abbott, A.G.; Reighard, G.L.; Okie, W.R.; Wells, C.E. Genotyping by sequencing for SNP-based linkage map construction and QTL analysis of chilling requirement and bloom date in peach [Prunus persica (L.) Batsch]. PLoS One 2015, 10, e0139406. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Crouch, J.H. Marker-assisted selection in plant breeding: From publications to practice. Crop Sci. 2008, 48, 391–407. [Google Scholar] [CrossRef] [Green Version]
- Thomson, M.J. High-throughput SNP genotyping to accelerate crop improvement. Plant Breed. Biotech. 2014, 2, 195–212. [Google Scholar] [CrossRef]
- Verde, I.; Bassil, N.; Scalabrin, S.; Gilmore, B.; Lawley, C.T.; Gasic, K.; Micheletti, D.; Rosyara, U.R.; Cattonaro, F.; Vendramin, E.; et al. Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS ONE 2012, 7, e35668. [Google Scholar] [CrossRef]
- Verde, I.; Abbott, A.G.; Scalabrin, S.; Jung, S.; Shu, S.; Marroni, F.; Zhebentyayeva, T.; Dettori, M.T.; Grimwood, J.; Cattonaro, F.; et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genet. 2013, 45, 487. [Google Scholar] [CrossRef] [Green Version]
- Verde, I.; Jenkins, J.; Dondini, L.; Micali, S.; Pagliarani, G.; Vendramin, E.; Paris, R.; Aramini, V.; Gazza, L.; Rossini, L.; et al. The Peach v2.0 release: High-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics 2017, 18, 225. [Google Scholar] [CrossRef] [Green Version]
- De la Vega, F.M.; Lazaruk, K.D.; Rhodes, M.D.; Wenz, M.H. Assessment of two flexible and compatible SNP genotyping platforms: TaqMan SNP genotyping assays and the SNPlex genotyping system. Mutat. Res.-Fund. Mol. M. 2005, 573, 111–135. [Google Scholar] [CrossRef]
- Livak, K.J.; Flood, S.J.; Marmaro, J.; Giusti, W.; Deetz, K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. Genome Res. 1995, 4, 357–362. [Google Scholar] [CrossRef]
- Semagn, K.; Babu, R.; Hearne, S.; Olsen, M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Mol. Breeding 2014, 33, 1–14. [Google Scholar] [CrossRef]
- Reed, G.H.; Wittwer, C.T. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin. Chem. 2004, 50, 1748–1754. [Google Scholar] [CrossRef] [Green Version]
- Reed, G.H.; Kent, J.O.; Wittwer, C.T. High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 2007, 8, 597–608. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Khu, D.-M.; Monteros, M.J. High-resolution melting analysis for SNP genotyping and mapping in tetraploid alfalfa (Medicago sativa L.). Mol. Breeding 2012, 29, 489–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.D.; Chu, Z.Z.; Liu, X.G.; Jing, H.C.; Liu, Y.G.; Hao, D.Y. A cost-effective high-resolution melting approach using the EvaGreen dye for DNA polymorphism detection and genotyping in plants. J. Integr. Plant Biol. 2010, 52, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.-Y.; Yu, X.-m.; Shu, Q.-Y.; Zhang, H.-L.; Wang, S.-G.; Yuan, F.-J.; Shi, C.-H. Development of an HRM-based, safe and high-throughput genotyping system for two low phytic acid mutations in soybean. Mol. Breeding 2016, 36, 101. [Google Scholar] [CrossRef]
- Ganopoulos, I.; Tsaballa, A.; Xanthopoulou, A.; Madesis, P.; Tsaftaris, A. Sweet cherry cultivar identification by high-resolution-melting (HRM) analysis using gene-based SNP markers. Plant Mol. Biol. Rep. 2012, 31, 763–768. [Google Scholar] [CrossRef]
- Buddhachat, K.; Osathanunkul, M.; Madesis, P.; Chomdej, S.; Ongchai, S. Authenticity analyses of Phyllanthus amarus using barcoding coupled with HRM analysis to control its quality for medicinal plant product. Gene. 2015, 573, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Rolland, M.; Dupuy, A.; Pelleray, A.; Delavault, P. Molecular identification of broomrape species from a single seed by high resolution melting analysis. Front. Plant Sci. 2016, 7, 1838. [Google Scholar] [CrossRef] [Green Version]
- Reja, V.; Kwok, A.; Stone, G.; Yang, L.; Missel, A.; Menzel, C.; Bassam, B. ScreenClust: Advanced statistical software for supervised and unsupervised high resolution melting (HRM) analysis. Methods 2010, 50, S10–S14. [Google Scholar] [CrossRef]
- Adami, M.; De Franceschi, P.; Brandi, F.; Liverani, A.; Giovannini, D.; Rosati, C.; Dondini, L.; Tartarini, S. Identifying a carotenoid cleavage dioxygenase (ccd4) gene controlling yellow/white fruit flesh color of peach. Plant Mol. Biol. Rep. 2013, 31, 1166–1175. [Google Scholar] [CrossRef]
- Falchi, R.; Vendramin, E.; Zanon, L.; Scalabrin, S.; Cipriani, G.; Verde, I.; Vizzotto, G.; Morgante, M. Three distinct mutational mechanisms acting on a single gene underpin the origin of yellow flesh in peach. Plant J. 2013, 76, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Peace, C.P.; Crisosto, C.H.; Gradziel, T.M. Endopolygalacturonase: A candidate gene for freestone and melting flesh in peach. Mol. Breeding 2005, 16, 21–31. [Google Scholar] [CrossRef]
- Gu, C.; Wang, L.; Wang, W.; Zhou, H.; Ma, B.; Zheng, H.; Fang, T.; Ogutu, C.; Vimolmangkang, S.; Han, Y. Copy number variation of a gene cluster encoding endopolygalacturonase mediates flesh texture and stone adhesion in peach. J. Exp. Bot. 2016, 67, 1993–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vendramin, E.; Pea, G.; Dondini, L.; Pacheco, I.; Dettori, M.T.; Gazza, L.; Scalabrin, S.; Strozzi, F.; Tartarini, S.; Bassi, D.; et al. A unique mutation in a MYB gene cosegregates with the nectarine phenotype in peach. PLoS ONE 2014, 9, e90574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, P.; Pascal, T. Mapping Rm2 gene conferring resistance to the green peach aphid (Myzus persicae Sulzer) in the peach cultivar “Rubira®”. Tree Genet. Genomes 2011, 7, 1057–1068. [Google Scholar] [CrossRef]
- Picañol, R.; Eduardo, I.; Aranzana, M.J.; Howad, W.; Batlle, I.; Iglesias, I.; Alonso, J.M.; Arús, P. Combining linkage and association mapping to search for markers linked to the flat fruit character in peach. Euphytica 2013, 190, 279–288. [Google Scholar] [CrossRef]
- Zhang, Y.; López-Girona, E.; Aranzana, M.J. Region-wide association analysis and high-throughput resequencing strategies in peach to develop molecular markers for flat fruit marker-assisted selection. Acta Hortic. 2018, 1203, 79–84. [Google Scholar] [CrossRef]
- Sandefur, P.; Frett, T.; Clark, J.; Gasic, K.; Peace, C. A DNA test for routine prediction in breeding of peach blush, Ppe-Rf-SSR. Mol. Breeding 2017, 37, 11. [Google Scholar] [CrossRef]
- Lambert, P.; Campoy, J.A.; Pacheco, I.; Mauroux, J.-B.; Da Silva Linge, C.; Micheletti, D.; Bassi, D.; Rossini, L.; Dirlewanger, E.; Pascal, T.; et al. Identifying SNP markers tightly associated with six major genes in peach [Prunus persica (L.) Batsch] using a high-density SNP array with an objective of marker-assisted selection (MAS). Tree Genet. Genomes 2016, 12, 121. [Google Scholar] [CrossRef]
- Micheletti, D.; Dettori, M.T.; Micali, S.; Aramini, V.; Pacheco, I.; Da Silva Linge, C.; Foschi, S.; Banchi, E.; Barreneche, T.; Quilot-Turion, B.; et al. Whole-genome analysis of diversity and SNP-major gene association in peach germplasm. PLoS ONE 2015, 10, e0136803. [Google Scholar] [CrossRef]
- Cao, K.; Zhou, Z.; Wang, Q.; Guo, J.; Zhao, P.; Zhu, G.; Fang, W.; Chen, C.; Wang, X.; Wang, X.; et al. Genome-wide association study of 12 agronomic traits in peach. Nat. Commun. 2016, 7, 13246. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Lee, T.; Cheng, C.H.; Buble, K.; Zheng, P.; Yu, J.; Humann, J.; Ficklin, S.P.; Gasic, K.; Scott, K.; et al. 15 years of GDR: New data and functionality in the genome database for Rosaceae. Nucleic. Acids. Res. 2019, 47, D1137–D1145. [Google Scholar] [CrossRef] [Green Version]
- Guy, L.; Kultima, J.R.; Andersson, S.G. genoPlotR: Comparative gene and genome visualization in R. Bioinform. 2010, 26, 2334–2335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- RStudio Team. RStudio: Integrated Development Environment for R; Version 1.2.5019; RStudio, Inc.: Boston, MA, USA, 2019. [Google Scholar]
- Duncan, R.D.; Epstein, M.P.; Satten, G.A. Case-control Haplotype Inference (CHAPLIN); Version 1.2; Emory University School of Medicine, Department of Human Genetics: Atlanta, GA, USA, 2006. [Google Scholar]
- Epstein, M.P.; Satten, G.A. Inference on haplotype effects in case-control studies using unphased genotype data. Am. J. Hum. Genet. 2003, 73, 1316–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crooks, G.E.; Hon, G.; Chandonia, J.-M.; Brenner, S.E. WebLogo: A sequence logo generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef] [Green Version]
- Layne, D.R.; Bassi, D. The Peach: Botany, Production and Uses, 1st ed.; CAB International: Cambridge, MA, USA, 2008; Volume 6, p. 166. [Google Scholar]
- Ou, S.K. Chilling requirement of local peach tree in Taiwan. J. Agr. Res. China 1992, 41, 251–260. [Google Scholar]
- Ou, S.K.; Chen, C.L. Estimation of the chilling requirement and development of a low-chill model for local peach trees in Taiwan. J. Am. Soc. Hortic. Sci. 2000, 46, 337–350. [Google Scholar]
- Ou, S.K.; Hwang, M.F.; Li, C.P.; Lu, S.J.; Song, C.W. The relationship between cultivar’s chilling requirement and planting altitudes of peaches. J. Agr. Res. China 2000, 49, 46–53. [Google Scholar]
- Ou, S.K.; Song, C.W.; Lin, C.Y. Breeding of ‘Xiame’ peach [Prunus persica SUMMERHONEY (‘Xiami’)]. J. Taiwan Agr. Res. 2006, 55, 1–12. [Google Scholar]
- Ou, S.K.; Lu, M.T.; Liu, M.H.; Song, C.W. Breeding of ‘Chuengfeng’ peach. J. Taiwan Agr. Res. 2010, 59, 228–236. [Google Scholar]
- Okie, O.R. Handbook of Peach and Nectarine Varieties: Performance in the Southeastern United States and Index of Names, 1st ed.; United States Department of Agriculture: Washington DC, USA, 1998. [Google Scholar]
- Wen, I.C.; Chang, C.Y. Breeding of peach cultivar ‘Tainung No.4 (Ruby)’. J. Taiwan Agr. Res. 2014, 63, 320–323. [Google Scholar]
- The National Plant Genetic Resources Center, T. Plant germplasm database query. Available online: https://www.npgrc.tari.gov.tw/npgrc1/index_e.html (accessed on 20 January 2019).
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4326. [Google Scholar] [CrossRef] [Green Version]
- Gundry, C.N.; Dobrowolski, S.F.; Martin, Y.R.; Robbins, T.C.; Nay, L.M.; Boyd, N.; Coyne, T.; Wall, M.D.; Wittwer, C.T.; Teng, D.H. Base-pair neutral homozygotes can be discriminated by calibrated high-resolution melting of small amplicons. Nucleic Acids Res. 2008, 36, 3401–3408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scrucca, L.; Fop, M.; Murphy, T.B.; Raftery, A.E. mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. R J. 2016, 8, 289–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Selected Marker 1 | Original Cofactor 2 | QTL 3 | LOD 4 | R2 (%) 5 | Physical Position (Original Cofactor) 6 | Marker Distance From The Cofactor 7 |
---|---|---|---|---|---|---|
Romeu et al., 2014 [9] | ||||||
SNP_IGA_122351 | SNP_IGA_122057 | CRW-AA/EJ CRU-AA/EJ CRD-AA/EJ | 16.3–22.3 | 64–76 | Pp01:41981168 | +20228 |
SNP_IGA_779222 | SNP_IGA_779224 | CRW-AA CRU-AA/EJ CRD-AA/EJ | 3.2–4.5 | 14–25 | Pp07:15717070 | −138 |
SNP_IGA_769251 | SNP_IGA_769194 | CRW-EJ CRU-EJ | 3.7–3.9 | 18–20 | Pp07:12156489 | +3271 |
Zhebentyayeva et al., 2014 [8] | ||||||
SNP_IGA_134905 | Pchgms29 | qCR1a-2008 qCR1a-2009 | 46.8 (2008) 17.8 (2009) | 44.1 (2008) 19.1 (2009) | Pp01:43499388..43499459 | 372 |
SNP_IGA_381567 | Pchgms174 | qCR4a-2008 qCR4a-2009 | 10.3 (2008) 2.6 (2009) | 11.4 (2008) 3.4 (2009) | Pp04:2431831..2431882 | −2207 |
SNP_IGA_780662 | UDAp-460 | qCR7-2009 | 2.4 | 24.4 | Pp07:16270932..16270953 | +2102 |
SNP_IGA_786935 | UDAp-409A | qCR7-2008 | 17.2 | 18.5 | Pp07:19150241..19150290 | −9274 |
Bielenberg et al., 2015 [10] | ||||||
1_40995799 | 1_40995799 | qCR1-2009 | 4.62 | 24.8 | Pp01:41969066 | N/A 8 |
SNP_IGA_131284 | 1_44762763 | qCR1-2008 | 12.78 | 16.0 | Pp01:45053074 | 4078 |
SNP_IGA_427604 | 4_14984691 | qCR4-2009 | 5.13 | 27.8 | Pp04:14995235 | −220 |
4_13747914 | 4_13747914 | qCR4c-2008 | 12.29 | 14.9 | Pp04:13758549 | N/A |
Optimized Temperature Regions for Normalization (°C) | |||||
---|---|---|---|---|---|
Selected Marker 1 | Primer Pairs | Applied Biosystems HRM Software v2.0 | Principal Components Analysis | ||
Pre-Melt Region 2 | Post-Melt Region 2 | Lower Limit 3 | Upper Limit 3 | ||
SNP_IGA_122351 | S1_4102b-f1/r1 | 72.6–73.0 | 82.0–82.5 | 73.0 | 82.0 |
SNP_IGA_297497 | S3_0363-f2/r2 | 69.1–69.5 | 79.8–80.2 | 63.5 | 79.0 |
SNP_IGA_769251 | S7_1256-f1/r1 | 78.7–79.1 | 87.0–87.5 | 79.1 | 87.0 |
SNP_IGA_779222 | S7_1611-f1/r1 | 72.7–73.1 | 81.8–82.3 | 77.5 | 82.0 |
rs159238319 | S1_1690-f2/r2 | 67.1–67.5 | 77.1–77.6 | 67.5 | 77.0 |
SNP_IGA_134905 | S1_4631-f2/r2 | 74.5–74.9 | 82.6–83.1 | 73.0 | 82.5 |
SNP_IGA_381567 | S4_2429-f2/r2 | 68.7–69.1 | 78.1–78.6 | 69.0 | 78.0 |
SNP_IGA_419106 | S4_1351-f1/r2 | 69.6–70.1 | 76.3–76.8 | 70.1 | 76.3 |
SNP_IGA_695463 | S6_2645-f2/r2 | 73.6–74.0 | 83.2–83.7 | 74.0 | 83.5 |
SNP_IGA_786935 | S7_1954b-f1/r1 | 77.2–77.6 | 83.9–84.4 | 77.6 | 83.9 |
SNP_IGA_112592 | S1_3674-f2/r2 | 68.6–69.0 | 77.8–78.2 | 69.0 | 78.5 |
rs159239801 | S4_9208b-f1/r1 | 71.0–71.5 | 77.2–77.7 | 71.5 | 77.7 |
SNP_IGA_780662 | S7_1667-f1/r1 | 75.7–76.0 | 85.2–85.6 | 77.5 | 85.0 |
SNP_IGA_131284 | S1_4475-f1/r1 | 71.4–71.8 | 79.5–80.0 | 71.8 | 79.5 |
1_40995799 | S1_4099-f1/r1 | 74.2–74.4 | 82.1–82.5 | 74.0 | 82.5 |
2_16900230 | S2_1690-f1/r1 | 79.1–79.3 | 85.5–86.2 | 79.3 | 85.5 |
4_00772820 | S4_0077-f1/r1 | 72.1–72.3 | 80.2–80.6 | 72.5 | 80.0 |
4_11060745 | S4_1106-f1/r1 | 77.9–78.1 | 85.4–85.8 | 77.0 | 85.5 |
4_13747914 | S4_1374-f1/r1 | 74.8–75.0 | 81.1–81.3 | 75.0 | 81.0 |
SNP_IGA_427604 | S4_1498b-f2/r2 | 72.9–73.3 | 80.5–81.0 | 73.0 | 81.0 |
5_13713689 | S5_1371-f2/r2 | 74.7–75.2 | 82.5–83.0 | 75.0 | 82.5 |
8_11718744 | S8_1171-f1/r1 | 74.2–74.6 | 80.9–81.5 | 70.5 | 80.5 |
Cultivar 1 | CR (h) | SNP_IGA_122351 | SNP_IGA_769251 | SNP_IGA_779222 | SNP_IGA_134905 | SNP_IGA_381567 | SNP_IGA_786935 | SNP_IGA_780662 | SNP_IGA_131284 | 1_40995799 | 4_13747914 | SNP_IGA_427604 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Low-chill cultivars | ||||||||||||
Okinawa | 100 | G | G† | C | A | G | A† | C† | G | C | G | G |
Flordared | 100 | G | A/G | C | G | A/G | A† | C | A† | G | A/G | G† |
Ruby | 100 | A/G | G | C† | A/G† | A/G† | A/G† | C | A/G | C/G† | G | G |
Xiami | 125 | G | A/G | C | A | A/G | A† | C | A† | C | A/G† | G |
Yinggetao | 125 | G† | G | C | G† | G | A† | C | G | G† | G | G |
Premier | 150 | G | A/G | C | A | A/G | A† | C | A | C | A/G† | G |
Flordabelle | 150 | A/G† | A/G | T/C | G | G† | A | C | A | C/G† | G† | G |
Flordabeauty | 150 | A/G† | G† | C† | A | A | A/G† | C | A | C/G† | A/G | G |
TropicPrince | 150 | A/G | G† | C | G | A | G† | C† | A | G | A† | G |
Kuu Taur | 150 | A | A† | T | A† | G | A† | C | A | C† | G† | G |
Chuenfeng | 150 | G | A/G | C | G | A† | A | C† | A | G | A/G† | G |
TropicSweet | 175 | A/G | G | T/C† | G | A/G | A/G | C/A | A† | C/G | A/G | G |
SpringHoney | 180 | G | G | C | A/G | A/G | A/G† | C | A/G† | G | A/G | G |
Tropicsnow | 200 | A/G | A/G | T/C† | A | G† | A/G† | C/A | A | C | A/G | G |
Fushou | n.a. 5 | G | A/G | T/C† | A/G | G | A | C/A† | A/G† | G | A/G† | G† |
High-chill cultivars | ||||||||||||
Yamane Hakuto | 800 | A | A | T | A† | A | G | A | G | C | G | A |
Shiga Hakuto | 800 | A† | A | T† | A† | A | G | A† | G† | G | A† | A/G† |
Okubo | 850 | A | A | T | A | A | G | A | G | C | G | A |
Shanghaishuimi | 850 | A | A/G† | T | A | A | A/G† | C/A† | A/G† | C | A/G | A/G† |
Okitsu | 900 | A | A | T/C | A | A | A | C/A† | G† | C | A | G |
Aki Hakuto | 900 | A | A† | T | A† | A | G† | A | A/G | C | G | A |
Hongqingshui | N/A | A | A | T | A/G† | A | G | A† | A/G | C† | A† | A |
Nakatsu Hakuto | N/A | A | A† | T† | A† | A | G | A | G | C | G | A† |
Sunago wase | N/A | A | A/G† | T | A | A/G | A/G | A | G | C | A/G | A/G† |
Yamato Wase | N/A | A† | A | T | A/G† | A | G | A† | G | C† | A | A† |
Odama Hakuho | N/A | A | A | T† | A | A | G† | A | G† | C | G | A† |
Tsao Sheng Yu Tao | N/A | A | A/G† | C† | A | A† | A/G | C | G | C | A† | G† |
Putative low chill associated marker | G | G | C | G | G | A | C | A | G | G | G | |
Significance (X2-test) 3 | *** | *** | *** | * | *** | ** | *** | *** | ** | * | *** | |
Accuracy (ratio; %) 4 | 9/9; 100% | 9/9; 100% | 9/9; 100% | 6/9; 66.7% | 8/8; 100% | 13/14; 92.9% | 9/9; 100% | 9/9; 100% | 6/7; 85.7% | 8/10; 80% | 9/9; 100% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, L.; Huang, S.-J.; Hsieh, C.; Lu, M.-T.; Song, C.-W.; Hsu, F.-C. A High Resolution Melting Analysis-Based Genotyping Toolkit for the Peach (Prunus persica) Chilling Requirement. Int. J. Mol. Sci. 2020, 21, 1543. https://doi.org/10.3390/ijms21041543
Chou L, Huang S-J, Hsieh C, Lu M-T, Song C-W, Hsu F-C. A High Resolution Melting Analysis-Based Genotyping Toolkit for the Peach (Prunus persica) Chilling Requirement. International Journal of Molecular Sciences. 2020; 21(4):1543. https://doi.org/10.3390/ijms21041543
Chicago/Turabian StyleChou, Lin, Shih-Jie Huang, Chen Hsieh, Ming-Te Lu, Chia-Wei Song, and Fu-Chiun Hsu. 2020. "A High Resolution Melting Analysis-Based Genotyping Toolkit for the Peach (Prunus persica) Chilling Requirement" International Journal of Molecular Sciences 21, no. 4: 1543. https://doi.org/10.3390/ijms21041543
APA StyleChou, L., Huang, S.-J., Hsieh, C., Lu, M.-T., Song, C.-W., & Hsu, F.-C. (2020). A High Resolution Melting Analysis-Based Genotyping Toolkit for the Peach (Prunus persica) Chilling Requirement. International Journal of Molecular Sciences, 21(4), 1543. https://doi.org/10.3390/ijms21041543