Study of Inheritance and Linkage of Virulence Genes in a Selfing Population of a Pakistani Dominant Race of Puccinia striiformis f. sp. tritici
Abstract
:1. Introduction
2. Results
2.1. Virulence Phenotypes
2.2. Inheritance of Virulence
2.3. Simple Sequence Repeat (SSR) Markers and Genotyping
2.4. Linkage Map Construction of Virulence Genes
3. Discussion
4. Materials and Methods
4.1. PST Isolate, Isolation of Single Urediniospore, and Teliospore Production
4.2. Growing Barberry Plants, Artificial Inoculation, and Selfing
4.3. Progeny Population
4.4. Virulence Phenotyping on Wheat Yr Single-Gene Lines
4.5. DNA Extraction
4.6. Simple Sequence Repeat (SSR) Markers
4.7. Polymerase Chain Reaction (PCR) Amplification and SSR Genotyping
Urea–PAGE Gel, Electrophoresis, and Silver-Staining
4.8. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liu, M.; Hambleton, S. Taxonomic study of stripe rust, Puccinia striiformis sensu lato, based on molecular and morphological evidence. Fungal Biol. 2010, 114, 881–899. [Google Scholar] [CrossRef]
- Wellings, C.R.; Singh, R.P.; Yahyaoui, A.; Nazari, K.; McIntosh, R.A. The Development and Application of Near-Isogenic Lines for Monitoring Cereal Rust Pathogens. In Borlaug Global Rust Initiative Technical Workshop; McIntosh, R.A., Ed.; BGRIC Oregon: Obregon, Mexico, 2009; pp. 77–87. [Google Scholar]
- Khanfri, S.; Boulif, M.; Lahlali, R. Yellow rust (Puccinia striiformis): A serious threat to wheat production worldwide. Not. Sci. Biol. 2018, 10, 410–423. Available online: https://www.notulaebiologicae.ro/index.php/nsb/article/view/10287/8980 (accessed on 16 August 2019). [CrossRef] [Green Version]
- Chen, X.M. Epidemiology and control of stripe rust Puccinia striiformis f. sp. tritici on wheat. Can. J. Plant Pathol. 2005, 27, 314–337. [Google Scholar] [CrossRef]
- Wan, A.M.; Zhao, Z.H.; Chen, X.M.; He, Z.H.; Jin, S.L.; Jia, Q.Z.; Yao, G.; Yang, J.X.; Wang, B.T.; Li, G.B.; et al. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis. 2004, 88, 896–904. [Google Scholar] [PubMed] [Green Version]
- Chen, W.Q.; Wu, L.R.; Liu, T.G.; Xu, S.C.; Jin, S.L.; Peng, Y.L.; Wang, B.T. Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Dis. 2009, 93, 1093–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zheng, D.; Zuo, S.; Chen, X.; Zhuang, H.; Huang, L.; Kang, Z.; Zhao, J. Inheritance and Linkage of Virulence Genes in Chinese Predominant Race CYR32 of the Wheat Stripe Rust Pathogen Puccinia striiformis f. sp. tritici. Front. Plant Sci. 2018, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.M. Integration of cultivar resistance and fungicide application for control of wheat stripe rust. Can. J. Plant Pathol. 2014, 36, 311–326. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, M.N.; Wan, A.M.; Xia, C.J.; See, D.R.; Zhang, M.; Chen, X.M. Virulence and molecular characterization of experimental isolates of the stripe rust pathogen (Puccinia striiformis) indicate somatic recombination. Phytopathol 2016, 107, 329–344. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Szabo, L.J.; Carson, M. Century-Old mystery of Puccinia striiformis life history solved with the identification of Berberis spp. as an alternate host. Phytopathol 2010, 100, 432–435. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y. Role of Berberis spp. as alternate hosts in generating new races of Puccinia graminis and P. striiformis. Euphytica. 2011, 179, 105–108. [Google Scholar] [CrossRef]
- Wan, A.; Wang, X.; Kang, Z.; Chen, X. Variability of the Stripe Rust Pathogen, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 35–155. [Google Scholar]
- Wang, M.N.; Chen, X.M. “Stripe Rust Resistance,” Stripe Rust, 1st ed.; Chen, X.M., Kang, Z.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 353–558. [Google Scholar]
- Wan, A.M.; Wu, L.R.; Jia, Q.Z.; Jin, S.L.; Li, G.B.; Wang, B.T. Pathogenic changes of stripe rust fungus of wheat in China during 1997–2001. Acta Phytopathol. Sin. 2003, 33, 261–266. [Google Scholar] [CrossRef]
- Wan, A.M.; Wu, L.R.; Jin, S.L.; Yao, G.; Wan, B.T. Discovery and studies on CYR32, a new race of Puccinia striiformis f. sp. tritici in China. Acta Phytophyl. Sin. 2003, 30, 347–352. [Google Scholar] [CrossRef]
- Li, Q.; Li, G.B.; Yue, W.Y.; Du, J.Y.; Yang, L.J.; Kang, Z.S. Pathogenicity changes of wheat stripe rust fungus and disease resistance of wheat cultivars (lines) in Shaanxi province during 2002–2014. Acta Phytopathol. Sin. 2016, 46, 374–384. [Google Scholar] [CrossRef]
- Wang, M.N.; Chen, X.M. First report of Oregon grape (Mahonia equifolium) as an alternate host for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) under artificial conditions. Plant Dis. 2013, 97, 8–39. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, L.; Wang, Z.Y.; Chen, X.M.; Zhang, H.C.; Yao, J.N.; Zhan, G.M.; Chen, W.; Huang, L.L.; Kang, Z.S. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China. Phytopathology 2013, 103, 927–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehmood, S.; Sajid, M.; Zhao, J.; Khan, T.; Zhan, G.M.; Huang, L.L.; Kang, Z.S. Identification of Berberis species Collected from the Himalayan Region of Pakistan Susceptible to Puccinia striiformis f. sp. tritici. Plant Dis. 2018, 103, 461–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Qin, J.F.; Zhao, Y.Y.; Zhao, J.; Huang, L.L.; Kang, Z.S. Virulence analysis of sexual progeny of the wheat stripe rust pathogen recovered from wild barberry in Shaanxi and Gansu. Acta Phytopathol. Sin. 2016, 46, 809–820. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zhao, J.; Chen, X.M.; Peng, Y.L.; Ji, J.J.; Zhao, S.L.; Lv, Y.J.; Huang, L.L.; Kang, Z.S. Virulence variations of Puccinia striiformis f. sp. tritici isolates collected from Berberis spp. in China. Plant Dis. 2016, 100, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.N.; Wan, A.M.; Chen, X.M. Barberry as alternate host is important for Puccinia graminis f. sp. tritici but not for Puccinia striiformis f. sp. tritici in the U.S. Pacific Northwest. Plant Dis. 2015, 99, 1507–1516. [Google Scholar] [CrossRef] [Green Version]
- Berlin, A.; Kyaschenko, J.; Justesen, A.F.; Yuen, J. Rust fungi forming aecia on Berberis spp. in Sweden. Plant Dis. 2012, 97, 1281–1287. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Wang, M.; Chen, X.M.; Kang, Z.S. Role of alternate hosts in epidemiology and pathogen variation of cereal rusts. Annu. Rev. Phytopathol. 2016, 54, 207–228. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.N.; Wan, A.M.; Chen, X.M. Genetic characterization of virulence/avirulence genes of Puccinia striiformis f. sp tritici. Phytopathology 2012, 102, 103. [Google Scholar]
- Rodriguez-algaba, J.; Walter, S.; Sørensen, C.K.; Hovmøller, M.S.; Justesen, A.F. Sexual structures and recombination of the wheat rust fungus Puccinia striiformis on Berberis vulgaris. Fungal Gen. Biol. 2014, 70, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhan, G.M.; Chen, X.; Tungruentragoon, A.; Lu, X.; Zhao, J.; Huang, L.L.; Kang, Z.S. Virulence and simple sequence repeat marker segregation in a Puccinia striiformis f. sp. tritici population produced by selfing a Chinese isolate on Berberis shensiana. Phytopathology 2016, 106, 185–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.; Zhan, G.M.; Lu, X.; Zhao, J.; Huang, L.L.; Kang, Z.S. Determination of heterozygosity for avirulence/virulence loci through sexual hybridization of Puccinia striiformis f. sp. tritici. Front. Agric. Sci. Eng. 2017, 4, 48–58. [Google Scholar] [CrossRef]
- Afzal, S.N.; Haque, M.I.; Ahmadani, M.S.; Bashir, S.; Rehman, A. Assessment of yield losses caused by Puccinia striiformis triggering stripe rust in the most common wheat varieties. Pak. J. Bot. 2007, 39, 2127–2134. [Google Scholar]
- Fayyaz, M.; Shahzad, A.; Ali, G.M.; Rattu, A.R.; Muhammad, F. Identification of stripe rust (Puccinia striiformis) resistant genes among Pakistani spring wheat by using molecular markers. Int. J. Biosci. 2017, 11, 320–334. [Google Scholar]
- Hassan, S.F.; Hussain, M.; Rizvi, S.A. Wheat diseases situation in Pakistan. In Proceedings of the National Seminar on Wheat Research and Production, Islamabad, Pakistan, 6–9 August 1979. [Google Scholar]
- Ahmed, S.; Rodrigues, A.; Sabir, F.; Khan, R.; Panah, M. Economic Losses of Wheat Crops Infested with Yellow Rust in Highland Baluchistan; MART/AZR Project Research Report No. 67; ICARDA: Quetta, Pakistan, 1991; p. 15. Available online: http://agris.fao.org/agris-search/search.do?recordID=QV9400200 (accessed on 16 August 2019).
- Khan, M.A.; Mumtaz, H. Combining yellow rust resistance with high yield in grain wheat. In Proceedings of the Abstracts, Second Regional Yellow Rust Conference for Central & West Asia and North Africa, Islamabad, Pakistan, 22–26 March 2004; p. 28. [Google Scholar]
- Hussain, M.; Kirmani, M.A.S.; Ehsal-ul-Haque. Pathotypes and man guided evolution of Puccinia striiformis f. sp. tritici in Pakistan. In Proceedings of the Abstracts: Second regional yellow rust conference for Central and West Asia and North Africa, Islamabad, Pakistan, 22–24 March 2004. [Google Scholar]
- Bux, H.; Ashraf, M.; Chen, X.M. Expression of high temperature adult plant (HTAP) resistance against stripe rust (Puccinia striiformis f. sp. tritici) in Pakistan wheat landraces. Can. J. Plant Pathol. 2004, 34, 68–74. [Google Scholar] [CrossRef]
- Singh, R.P.; William, H.M.; Huerta-Espino, J.; Rosewarne, G. Wheat rust in Asia: Meeting the challenges with old and new technologies. In Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004; Available online: https://www.researchgate.net/publication/228626360 (accessed on 16 August 2019).
- Rizwan, S.; Iftikhar, A.; Kazi, A.M.; Sahi, G.M.; Mirza, J.I.; Attiq-ur-Rehman; Ashraf, M. Virulence variation of Puccinia striiformis Westend. f. sp. tritici in Pakistan. Arch Phytopathol. Plant Protect. 2010, 43, 875–882. [Google Scholar]
- Bahri, B.; Shah, S.J.A.; Hussain, S.; Leconte, M.; Enjalbert, J.; de Vallavieille-Pope, C. Genetic diversity of the wheat yellow rust population in Pakistan and its relationship with host resistance. Plant Pathol. 2011, 60, 649–660. [Google Scholar] [CrossRef]
- Sharma-Poudyal, D.; Chen, X.M.; Wan, A.M.; Zhan, G.M.; Kang, Z.S.; Cao, S.Q.; Jin, S.L.; Morgounov, A.; Akin, B.; Mert, Z.; et al. Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Dis. 2013, 97, 379–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.P.; Duveiller, E.; Huerta-Espino, J. Virulence to yellow rust resistance gene Yr27: A threat to stable wheat production in Asia. In Proceedings of the Abstracts, Second Regional Yellow Rust Conference for Central & West Asia and North Africa, Islamabad, Pakistan, 22–26 March 2004; p. 16. [Google Scholar]
- Yuan, C.Y.; Wang, M.N.; Skinner, D.Z.; See, D.R.; Xia, C.J.; Guo, X.H. Inheritance of virulence, construction of a linkage map, and mapping dominant virulence genes in Puccinia striiformis f. sp. tritici through characterization of a sexual population with genotyping–By–Sequencing. Phytopathology 2017, 108, 133–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flor, H.H. Current status of the gene–For–Gene concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [Google Scholar] [CrossRef]
- Dracatos, P.M.; Zhang, P.; Park, R.F.; McIntosh, R.A.; Wellings, C.R. Complementary resistance genes in wheat selection ‘Avocet R’ confer resistance to stripe rust. Theor. Appl. Genet. 2016, 129, 65–76. [Google Scholar] [CrossRef]
- Wan, A.M.; Chen, X.M. Virulence characterization of Puccinia striiformis f. sp. tritici using a new set of Yr single–gene line differentials in the United States in 2010. Plant Dis. 2014, 98, 1534–1542. [Google Scholar] [CrossRef] [Green Version]
- McDonald, B.A.; Linde, C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 2002, 40, 349–379. [Google Scholar] [CrossRef] [Green Version]
- Wan, A.M.; Chen, X.M. Virulence, frequency, and distribution of races of Puccinia striiformis f. sp. tritici and P. striiformis f. sp. hordei identified in the United States in 2008 and 2009. Plant Dis. 2012, 96, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.N.; Chen, X.M. Barberry does not function as an alternate host for Puccinia striiformis f. sp. tritici in the US Pacific Northwest due to teliospore degradation and barberry phenology. Plant Dis. 2015, 99, 1500–1506. [Google Scholar]
- Mboup, M.; Leconte, M.; Gautier, A.; Wan, A.M.; Chen, W.; de Vallavieille-Pope, C.; Enjalbert, J. Evidence of genetic recombination in wheat yellow rust populations of a Chinese oversummering area. Fungal Gen. Biol. 2009, 46, 299–307. [Google Scholar] [CrossRef]
- Duan, X.; Tellier, A.; Wan, A.; Leconte, M.; de Vallavielle-Pope, C.; Enjalbert, J. Puccinia striiformis f. sp tritici presents high diversity and recombination in the over–summering zone of Gansu, China. Mycologia 2010, 102, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Leconte, M.; Rahman, H.; Saqib, M.S.; Gladieux, P.; Enjalbert, J.; De Vallavieille–Pope, C. High virulence and pathotype diversity of Puccinia striiformis f. sp. tritici at its center of diversity, the Himalayan region of Pakistan. Eur. J. Plant Pathol. 2014, 140, 275–290. [Google Scholar] [CrossRef]
- Ali, S.; Gladieux, P.; Leconte, M.; Gautier, A.; Justesen, A.F.; Hovmoller, M.S.; Enjalbert, J.; De Vallavieille–Pope, C. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. PLoS Pathog. 2014, 10, e1003903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hovmøller, M.S.; Walter, S.; Bayles, R.; Hubbard, A.; Flath, K.; Sommerfeldt, N.; Leconte, M.; Czembor, P.; Rodriguez-Algaba, J.; Thach, T.; et al. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near–Himalayan region. Plant Pathol. 2016, 65, 402–411. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-algaba, J.; Sørensen, C.K.; Labouriau, R.; Justesen, A.F.; Hovmøller, M.S. Genetic diversity within and among aecia of the wheat rust fungus Puccinia striiformis on the alternate host Berberis vulgaris. Fungal Biol. 2017, 121, 541–549. [Google Scholar] [CrossRef]
- Statler, G.D. Inheritance of virulence of culture 73–47 Puccinia recondita. Phytopathology 1977, 67, 906–908. [Google Scholar] [CrossRef] [Green Version]
- Statler, G.D. Inheritance of pathogenicity of culture 70–1, Race 1, of Puccinia recondite tritici. Phytopathology 1979, 69, 661–663. [Google Scholar] [CrossRef]
- Statler, G.D. Mutations affecting virulence in Puccinia recondita. Phytopathology 1985, 75, 565–567. [Google Scholar] [CrossRef]
- Statler, G.D. Inheritance of pathogenicity of progeny from an F1 culture of Melampsoralini. J. Phytopathol. 1990, 128, 184–190. [Google Scholar] [CrossRef]
- Samborski, D.J.; Dyck, P.L. Inheritance of virulence in Puccinia recondite on six backcross lines of wheat with single genes for resistance to leaf rust. Can. J. Bot. 1976, 54, 1666–1671. [Google Scholar] [CrossRef]
- Lupton, F.G.H.; Macer, R.C.F. Inheritance of resistance to yellow rust (Puccinia glumarum Erikss. & Henn.) in seven varieties of wheat. Trans. Br. Mycol. Soc. 1962, 45, 21–45. [Google Scholar]
- Zhan, G.M.; Chen, X.M.; Kang, Z.S.; Huang, L.L.; Wang, M.N.; Wan, A.M.; Cheng, P.; Cao, S.Q.; Jin, S.L. Virulence and molecular comparison of Puccinia striiformis f. sp. tritici populations in China and the United States. Fungal Biol. 2012, 116, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Zheng, W.M.; Huang, L.L.; Huang, J.Q.; Wang, X.J.; Chen, X.M.; Zhao, J.; Guo, J.; Zhuang, H.; Qiu, C.Z.; Liu, J.; et al. High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nat. Comm. 2013, 4, 2673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Line, R.; Qayoum, A. Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968–1987. US Dept. Agric. Agric. Res. Serv. Tech. Bull. 1992, 1788. Available online: https://naldc.nal.usda.gov/download/CAT92983836/PDF (accessed on 16 August 2019).
- Aljanabi, S.M.; Martinez, I. Universal and rapid salt–Extraction of high–Quality genomic DNA for PCR–based techniques. Nucleic Acids Res. 1997, 25, 4692–4693. [Google Scholar] [CrossRef] [PubMed]
- Holland, M.M.; Parson, W. Gene Marker (R) HID: A reliable software tool for the analysis of forensic STR data. J. Forensic Sci. 2011, 56, 29–35. [Google Scholar] [CrossRef]
- Chen, X.M.; Line, R.F.; Leung, H. Genome scanning for resistance-Gene analogs in rice, barley, and wheat by high-Resolution electrophoresis. Theor. Appl. Genet. 1998, 97, 345–355. [Google Scholar] [CrossRef]
- Kosman, E.; Leonard, K.J. Conceptual analysis of methods applied to assessment of diversity within and distance between populations with asexual or mixed mode of reproduction. New Phytol. 2007, 174, 683–696. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Wang, S.Q.; Li, H.H.; Deng, Q.M.; Zheng, A.P.; Li, S.C.; Li, P.; Li, Z.G.; Wang, J.K. Effects of missing marker and segregating distortion on QTL mapping in F2 populations. Theor. Appl. Genet. 2010, 121, 1071–1082. [Google Scholar] [CrossRef]
VPs ** | No. of isolates | Avirulence (A) and Virulence (V) on Wheat Yr Single-Gene Lines * | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Yr1 | Yr2 | Yr9 | Yr17 | Yr27 | YrA | YrSp | YrTr1 | YrExp2 | Yr47 | ||
Parental isolate | N/A *** | V | V | V | V | V | V | A | A | A | A |
1 | 42 | V | V | V | V | V | V | A | A | A | A |
2 | 25 | V | A | V | V | V | V | A | V | A | A |
3 | 5 | V | V | A | V | V | V | A | A | V | A |
4 | 3 | V | V | V | A | A | V | A | A | A | V |
5 | 1 | V | V | V | V | V | V | V | A | A | A |
6 | 1 | V | V | V | V | V | A | A | A | A | A |
7 | 4 | A | V | A | A | V | V | A | A | A | A |
8 | 2 | V | V | V | V | V | V | V | A | A | V |
9 | 1 | A | V | V | V | V | V | A | V | V | V |
10 | 3 | V | V | V | V | A | V | V | A | V | A |
11 | 1 | V | V | A | V | V | V | A | A | A | V |
12 | 2 | V | V | V | V | V | V | V | V | A | A |
13 | 1 | V | V | V | V | V | V | A | A | A | V |
14 | 1 | V | V | V | V | V | A | A | A | V | A |
15 | 2 | V | V | V | V | V | V | V | V | A | V |
16 | 1 | V | A | V | V | A | V | V | A | A | A |
17 | 7 | V | V | V | V | V | A | V | V | V | V |
18 | 3 | A | V | V | V | V | V | V | A | V | A |
19 | 3 | A | A | V | V | V | V | A | A | V | V |
20 | 2 | V | V | V | V | V | V | V | A | A | A |
21 | 1 | V | V | V | V | V | V | A | A | A | V |
22 | 1 | V | V | A | V | V | V | A | A | A | A |
23 | 1 | A | V | V | V | V | V | A | A | V | A |
24 | 1 | V | V | V | V | V | V | A | A | A | A |
25 | 1 | V | V | V | V | V | V | A | A | A | A |
Wheat Yr Single-Gene Lines | Infection Type of Parental Isolate | Observed No. of Progeny Isolates | Expected Ratio (V/A) | χ2 | aP | Virulence Genes | |
---|---|---|---|---|---|---|---|
Avirulent | Virulent | ||||||
Yr1 | 8 | 8 | 107 | 1:15 | 2.63 | 0.06 | VYr1–1, VYr1–2 |
Yr2 | 9 | 9 | 106 | 1:15 | 1.58 | 0.14 | VYr2–1, VYr2–2 |
Yr9 | 9 | 11 | 104 | 1:15 | 1.55 | 0.14 | VYr9–1, VYr9–2 |
Yr17 | 8 | 7 | 108 | 1:15 | 1.60 | 0.13 | VYr17–1, VYr17–2 |
Yr27 | 9 | 7 | 108 | 1:15 | 1.60 | 0.13 | VYr47–1, VYr47–2 |
YrA | 9 | 9 | 106 | 1:15 | 1.58 | 0.14 | VYrA–1, VYrA–2 |
YrSp | 1 | 30 | 85 | 1:3 | 0.76 | 0.09 | VYrSp |
YrTr1 | 1 | 28 | 87 | 1:3 | 0.62 | 0.27 | VYr Tr1 |
Yr Exp2 | 1 | 64 | 51 | 7:9 | 0.15 | 1.96 | VYrExpt2–1, VYrExpt2–2 |
Yr47 | 1 | 26 | 89 | 1:3 | 0.65 | 0.07 | VYr10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehmood, S.; Sajid, M.; Husnain, S.K.; Zhao, J.; Huang, L.; Kang, Z. Study of Inheritance and Linkage of Virulence Genes in a Selfing Population of a Pakistani Dominant Race of Puccinia striiformis f. sp. tritici. Int. J. Mol. Sci. 2020, 21, 1685. https://doi.org/10.3390/ijms21051685
Mehmood S, Sajid M, Husnain SK, Zhao J, Huang L, Kang Z. Study of Inheritance and Linkage of Virulence Genes in a Selfing Population of a Pakistani Dominant Race of Puccinia striiformis f. sp. tritici. International Journal of Molecular Sciences. 2020; 21(5):1685. https://doi.org/10.3390/ijms21051685
Chicago/Turabian StyleMehmood, Sajid, Marina Sajid, Syed Kamil Husnain, Jie Zhao, Lili Huang, and Zhensheng Kang. 2020. "Study of Inheritance and Linkage of Virulence Genes in a Selfing Population of a Pakistani Dominant Race of Puccinia striiformis f. sp. tritici" International Journal of Molecular Sciences 21, no. 5: 1685. https://doi.org/10.3390/ijms21051685
APA StyleMehmood, S., Sajid, M., Husnain, S. K., Zhao, J., Huang, L., & Kang, Z. (2020). Study of Inheritance and Linkage of Virulence Genes in a Selfing Population of a Pakistani Dominant Race of Puccinia striiformis f. sp. tritici. International Journal of Molecular Sciences, 21(5), 1685. https://doi.org/10.3390/ijms21051685