Manipulation of Ascorbate Biosynthetic, Recycling, and Regulatory Pathways for Improved Abiotic Stress Tolerance in Plants
Abstract
:1. Introduction
2. Biosynthesis of Ascorbate in Plants
2.1. The L-Galactose Pathway
2.1.1. Phosphomannose Isomerase (PMI)
2.1.2. Phosphomannose Mutase (PMM)
2.1.3. GDP-D-Mannose Pyrophosphorylase (GMP)
2.1.4. GDP-D-Mannose-3′,5′-Epimerase (GME)
2.1.5. GDP-L-Galactose Phosphorylase (GGP)
2.1.6. L-Galactose-1-Phosphate Phosphatase (GPP)
2.1.7. L-Galactose Dehydrogenase (L-GalDH)
2.1.8. L-Galactono-1,4-Lactone Dehydrogenase (L-GalLDH)
2.2. The L-Gulose Pathway
2.3. The Myo-Inositol Pathway
2.4. The D-Galacturonate Pathway
3. Recycling of Ascorbate in Plants
4. Regulation of Ascorbate Biosynthesis in Plants
4.1. Ascorbic Acid Mannose Pathway Regulator 1 (AMR1)
4.2. Basic Helix-Loop-Helix 59 Transcription Factor (bHLH59)
4.3. Calmodulin-Like 10 (CML10)
4.4. COP9 Signalosome Subunit 5B and 8 (CSN5B and CSN8)
4.5. DNA-Binding with One Finger 22 (Dof22)
4.6. Ethylene Response Factor 98 (ERF98)
4.7. GGP Upstream Open Reading Frame (GGP uORF)
4.8. HD-Zip I Family Transcription Factor 24 (HZ24)
4.9. High-Pigment-1 (HP1)
4.10. KONJAC 1 and 2 (KJC1 and KJC2)
4.11. Myeloblastosis Transcription Factor 5 (MYB5)
4.12. NBS-LRR 33 (NL33)
4.13. Non-specific Lipid Transfer Protein-1 (nsLTP1)
4.14. VITAMIN C-3 (VTC3)
4.15. WAX1
4.16. Zinc-Finger 3 (ZF3)
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
1O2 | singlet oxygen |
AMR | ascorbic acid mannose pathway regulator |
APX | ascorbate peroxidase |
bHLH | basic helix-loop-helix |
CAT | catalase |
CBF | cystathionine-β-synthase |
CML | calmodulin-like |
CSN | COP9 signalosome |
DDB | UV-DAMAGED DNA-BINDING PROTEIN |
D-GalUR | D-galacturonate reductase |
DHAR | dehydroascorbate reductase |
Dof | DNA-binding with one finger |
ERF | ethylene response factor |
GGP | GDP-L-galactose phosphorylase |
GlcAK | glucuronokinase |
GME | GDP-D-mannose-3′,5′-epimerase |
GMP | GDP-D-mannose pyrophosphorylase |
GPP | L-galactose-1-phosphate phosphatase |
GR | glutathione reductase |
H2O2 | hydrogen peroxide |
HO− | hydroxyl radical |
HP | High-Pigment |
HSP | heat shock protein |
HZ | HD-Zip I family transcription factor |
KJC | KONJAC |
L-GalDH | L-galactose dehydrogenase |
L-GalLDH | L-galactono-1,4-lactone dehydrogenase |
L-GulLO | L-gulono-1,4-lactone oxidase |
MDAR | monodehydroascorbate reductase |
MIOX | myo-inositol oxygenase |
mORF | major ORF |
MYB | myeloblastosis transcription factor |
NL | NBS-LRR |
nsLTP | non-specific lipid transfer protein |
O2− | superoxide |
PAP | purple acid phosphatase |
PMI | phosphomannose isomerase |
ROS | reactive oxygen species |
SOD | superoxide dismutase |
SOS | salt overly sensitive |
uORF | upstream open reading frame |
VTC | VITAMIN C |
ZF | Zinc-finger |
References
- Ashraf, M.; Wu, L. Breeding for salinity tolerance in plants. Crit. Rev. Plant Sci. 1994, 13, 17–42. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs Population Division. World Population Prospects 2019: Highlights; ST/ESA/SER.A/423; United Nations: New York, NY, USA, 2019; pp. 1–39. [Google Scholar]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Carvalho, M.d. Drought stress and reactive oxygen species. Plant Signal. Behav. 2008, 3, 156–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noctor, G.; Mhamdi, A.; Foyer, C.H. The roles of reactive oxygen metabolism in drought: Not so cut and dried. Plant Physiol. 2014, 164, 1636–1648. [Google Scholar] [CrossRef] [Green Version]
- Abogadallah, G.M. Insights into the significance of antioxidative defense under salt stress. Plant Signal. Behav. 2010, 5, 369–374. [Google Scholar] [CrossRef]
- Suzuki, N.; Mittler, R. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant 2006, 126, 45–51. [Google Scholar] [CrossRef]
- Zechmann, B. Subcellular distribution of ascorbate in plants. Plant Signal. Behav. 2011, 6, 360–363. [Google Scholar] [CrossRef] [Green Version]
- Zechmann, B.; Stumpe, M.; Mauch, F. Immunocytochemical determination of the subcellular distribution of ascorbate in plants. Planta 2011, 233, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bartoli, C.G.; Buet, A.; Grozeff, G.G.; Galatro, A.; Simontacchi, M. Ascorbate-glutathione cycle and abiotic stress tolerance in plants. In Ascorbic Acid in Plant Growth, Development and Stress Tolerance; Hossain, M.A., Munné-Bosch, S., Eds.; Springer: New York, NY, USA, 2017; pp. 177–200. [Google Scholar]
- Foyer, C.H.; Noctor, G. Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 2011, 155, 2–18. [Google Scholar] [CrossRef] [Green Version]
- Smirnoff, N.; Wheeler, G.L. Ascorbic acid in plants: Biosynthesis and function. Crit. Rev. Plant Sci. 2000, 19, 267–290. [Google Scholar] [CrossRef]
- Ishikawa, T.; Maruta, T.; Yoshimura, K.; Smirnoff, N. Biosynthesis and regulation of ascorbic acid in plants. In Antioxidants and Antioxidant Enzymes in Higher Plants; Gupta, D.K., Palma, J.M., Eds.; Springer: New York, NY, USA, 2018; pp. 163–179. [Google Scholar]
- Yoshimura, K.; Ishikawa, T. Chemistry and metabolism of ascorbic acid in plants. In Ascorbic Acid in Plant Growth, Development and Stress Tolerance; Hossain, M.A., Munné-Bosch, S., Eds.; Springer: New York, NY, USA, 2017; pp. 1–23. [Google Scholar]
- Siendones, E.; González-Reyes, J.A.; Santos-Ocana, C.; Navas, P.; Córdoba, F. Biosynthesis of ascorbic acid in kidney bean. L-Galactono-γ-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane. Plant Physiol. 1999, 120, 907–912. [Google Scholar] [CrossRef] [Green Version]
- Maruta, T.; Yonemitsu, M.; Yabuta, Y.; Tamoi, M.; Ishikawa, T.; Shigeoka, S. Arabidopsis phosphomannose isomerase 1, but not phosphomannose isomerase 2, is essential for ascorbic acid biosynthesis. J. Biol. Chem. 2008, 283, 28842–28851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimura, K.; Nakane, T.; Kume, S.; Shiomi, Y.; Maruta, T.; Ishikawa, T.; Shigeoka, S. Transient expression analysis revealed the importance of VTC2 expression level in light/dark regulation of ascorbate biosynthesis in Arabidopsis. Biosci. Biotechnol. Biochem. 2014, 78, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Hoeberichts, F.A.; Vaeck, E.; Kiddle, G.; Coppens, E.; Van De Cotte, B.; Adamantidis, A.; Ormenese, S.; Foyer, C.H.; Zabeau, M.; Inzé, D. A temperature-sensitive mutation in the Arabidopsis thaliana phosphomannomutase gene disrupts protein glycosylation and triggers cell death. J. Biol. Chem. 2008, 283, 5708–5718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, W.; Yu, C.; Qin, H.; Liu, X.; Zhang, A.; Johansen, I.E.; Wang, D. Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. Plant J. 2007, 49, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Badejo, A.A.; Eltelib, H.A.; Fukunaga, K.; Fujikawa, Y.; Esaka, M. Increase in ascorbate content of transgenic tobacco plants overexpressing the acerola (Malpighia glabra) phosphomannomutase gene. Plant Cell Physiol. 2009, 50, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Conklin, P.L.; Norris, S.R.; Wheeler, G.L.; Williams, E.H.; Smirnoff, N.; Last, R.L. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc. Natl. Acad. Sci. USA 1999, 96, 4198–4203. [Google Scholar] [CrossRef] [Green Version]
- Conklin, P.L.; Pallanca, J.E.; Last, R.L.; Smirnoff, N. L-ascorbic acid metabolism in the ascorbate-deficient Arabidopsis mutant vtc1. Plant Physiol. 1997, 115, 1277–1285. [Google Scholar] [CrossRef] [Green Version]
- Conklin, P.L.; Williams, E.H.; Last, R.L. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc. Natl. Acad. Sci. USA 1996, 93, 9970–9974. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Tao, Q.; Wang, Z.; Fan, R.; Li, Y.; Sun, X.; Tang, K. Engineering ascorbic acid biosynthetic pathway in Arabidopsis leaves by single and double gene transformation. Biol. Plantarum. 2012, 56, 451–457. [Google Scholar] [CrossRef]
- Badejo, A.A.; Tanaka, N.; Esaka, M. Analysis of GDP-D-mannose pyrophosphorylase gene promoter from acerola (Malpighia glabra) and increase in ascorbate content of transgenic tobacco expressing the acerola gene. Plant Cell Physiol. 2008, 49, 126–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Ye, J.; Munir, S.; Yang, T.; Chen, W.; Liu, G.; Zheng, W.; Zhang, Y. Biosynthetic gene pyramiding leads to ascorbate accumulation with enhanced oxidative stress tolerance in tomato. Int. J. Mol. Sci. 2019, 20, 1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cronje, C.; George, G.M.; Fernie, A.R.; Bekker, J.; Kossmann, J.; Bauer, R. Manipulation of L-ascorbic acid biosynthesis pathways in Solanum lycopersicum: Elevated GDP-mannose pyrophosphorylase activity enhances L-ascorbate levels in red fruit. Planta 2012, 235, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-Y.; Liu, R.-R.; Zhang, C.-Q.; Tang, K.-X.; Sun, M.-F.; Yan, G.-H.; Liu, Q.-Q. Manipulation of the rice L-galactose pathway: Evaluation of the effects of transgene overexpression on ascorbate accumulation and abiotic stress tolerance. PLoS ONE 2015, 10, e0125870. [Google Scholar] [CrossRef] [PubMed]
- Imai, T.; Ban, Y.; Yamamoto, T.; Moriguchi, T. Ectopic overexpression of peach GDP-D-mannose pyrophosphorylase and GDP-D-mannose-3′, 5′-epimerase in transgenic tobacco. Plant Cell Tissue Organ Cult. 2012, 111, 1–13. [Google Scholar] [CrossRef]
- Sawake, S.; Tajima, N.; Mortimer, J.C.; Lao, J.; Ishikawa, T.; Yu, X.; Yamanashi, Y.; Yoshimi, Y.; Kawai-Yamada, M.; Dupree, P. KONJAC1 and 2 are key factors for GDP-mannose generation and affect L-ascorbic f and glucomannan biosynthesis in Arabidopsis. Plant Cell 2015, 27, 3397–3409. [Google Scholar] [CrossRef]
- Wolucka, B.A.; Van Montagu, M. GDP-mannose 3′, 5′-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J. Biol. Chem. 2003, 278, 47483–47490. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, L.; Alhagdow, M.; Nunes-Nesi, A.; Quemener, B.; Guillon, F.; Bouchet, B.; Faurobert, M.; Gouble, B.; Page, D.; Garcia, V. GDP-D-mannose 3, 5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. Plant J. 2009, 60, 499–508. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Y.; Liu, W.; Liu, Z. Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation. Biotechnol. Lett. 2014, 36, 2331–2341. [Google Scholar] [CrossRef]
- Huang, M.; Xu, Q.; Deng, X.-X. L-Ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose (Rosa roxburghii Tratt). J. Plant Physiol. 2014, 171, 1205–1216. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.; Zhang, Y.; Cai, X.; Gong, P.; Zhang, J.; Wang, T.; Li, H.; Ye, Z. Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep. 2011, 30, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Conklin, P.L.; Saracco, S.A.; Norris, S.R.; Last, R.L. Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 2000, 154, 847–856. [Google Scholar] [PubMed]
- Laing, W.A.; Wright, M.A.; Cooney, J.; Bulley, S.M. The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proc. Natl. Acad. Sci. USA 2007, 104, 9534–9539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowdle, J.; Ishikawa, T.; Gatzek, S.; Rolinski, S.; Smirnoff, N. Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J. 2007, 52, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Lim, B.; Smirnoff, N.; Cobbett, C.S.; Golz, J.F. Ascorbate-deficient vtc2 mutants in Arabidopsis do not exhibit decreased growth. Front. Plant Sci. 2016, 7, 1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulley, S.M.; Rassam, M.; Hoser, D.; Otto, W.; Schünemann, N.; Wright, M.; MacRae, E.; Gleave, A.; Laing, W. Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. J. Exp. Bot. 2009, 60, 765–778. [Google Scholar] [CrossRef] [Green Version]
- Bulley, S.; Wright, M.; Rommens, C.; Yan, H.; Rassam, M.; Lin-Wang, K.; Andre, C.; Brewster, D.; Karunairetnam, S.; Allan, A.C. Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase. Plant Biotechnol. J. 2012, 10, 390–397. [Google Scholar] [CrossRef]
- Wang, L.; Meng, X.; Yang, D.; Ma, N.; Wang, G.; Meng, Q. Overexpression of tomato GDP-L-galactose phosphorylase gene in tobacco improves tolerance to chilling stress. Plant Cell Rep. 2014, 33, 1441–1451. [Google Scholar] [CrossRef]
- Ali, B.; Pantha, S.; Acharya, R.; Ueda, Y.; Wu, L.-B.; Ashrafuzzaman, M.; Ishizaki, T.; Wissuwa, M.; Bulley, S.; Frei, M. Enhanced ascorbate level improves multi-stress tolerance in a widely grown indica rice variety without compromising its agronomic characteristics. J. Plant Physiol. 2019, 240, 152998. [Google Scholar] [CrossRef]
- Bulley, S.; Laing, W. The regulation of ascorbate biosynthesis. Curr. Opin. Plant Biol. 2016, 33, 15–22. [Google Scholar] [CrossRef]
- Conklin, P.L.; Gatzek, S.; Wheeler, G.L.; Dowdle, J.; Raymond, M.J.; Rolinski, S.; Isupov, M.; Littlechild, J.A.; Smirnoff, N. Arabidopsis thaliana VTC4 encodes L-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. J. Biol. Chem. 2006, 281, 15662–15670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatzek, S.; Wheeler, G.L.; Smirnoff, N. Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis. Plant J. 2002, 30, 541–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pineau, B.; Layoune, O.; Danon, A.; De Paepe, R. L-galactono-1, 4-lactone dehydrogenase is required for the accumulation of plant respiratory complex I. J. Biol. Chem. 2008, 283, 32500–32505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landi, M.; Fambrini, M.; Basile, A.; Salvini, M.; Guidi, L.; Pugliesi, C. Overexpression of L-galactono-1, 4-lactone dehydrogenase (L-GalLDH) gene correlates with increased ascorbate concentration and reduced browning in leaves of Lactuca sativa L. after cutting. Plant Cell Tissue Organ Cult. 2015, 123, 109–120. [Google Scholar] [CrossRef]
- Guo, X.; Liu, R.H.; Fu, X.; Sun, X.; Tang, K. Over-expression of l-galactono-γ-lactone dehydrogenase increases vitamin C, total phenolics and antioxidant activity in lettuce through bio-fortification. Plant Cell Tissue Organ Cult. 2013, 114, 225–236. [Google Scholar] [CrossRef]
- Shi, S.; Ma, F.; Li, Y.; Feng, F.; Shang, Z. Overexpression of L-galactono-1, 4-lactone dehydrogenase (GLDH) in Lanzhou lily (Lilium davidii var. unicolor) via particle bombardment-mediated transformation. Vitr. Cell. Dev. Biol. Plant 2012, 48, 1–6. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, L.; Wang, R. Level of ascorbic acid in transgenic rice for L-galactono-1, 4-lactone dehydrogenase overexpressing or suppressed is associated with plant growth and seed set. Acta Physiol. Plant 2011, 33, 1353–1363. [Google Scholar] [CrossRef]
- Liu, W.; An, H.-M.; Yang, M. Overexpression of Rosa roxburghii L-galactono-1, 4-lactone dehydrogenase in tobacco plant enhances ascorbate accumulation and abiotic stress tolerance. Acta Physiol. Plant 2013, 35, 1617–1624. [Google Scholar] [CrossRef]
- Imai, T.; Niwa, M.; Ban, Y.; Hirai, M.; Ôba, K.; Moriguchi, T. Importance of the L-galactonolactone pool for enhancing the ascorbate content revealed by L-galactonolactone dehydrogenase-overexpressing tobacco plants. Plant Cell Tissue Organ Cult. 2009, 96, 105–112. [Google Scholar] [CrossRef]
- Linster, C.L.; Adler, L.N.; Webb, K.; Christensen, K.C.; Brenner, C.; Clarke, S.G. A second GDP-L-galactose phosphorylase in Arabidopsis en route to vitamin C covalent intermediate and substrate requirements for the conserved reaction. J. Biol. Chem. 2008, 283, 18483–18492. [Google Scholar] [CrossRef] [Green Version]
- Linster, C.L.; Gomez, T.A.; Christensen, K.C.; Adler, L.N.; Young, B.D.; Brenner, C.; Clarke, S.G. Arabidopsis VTC2 encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. J. Biol. Chem. 2007, 282, 18879–18885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisko, K.A.; Torres, R.; Harris, R.S.; Belisle, M.; Vaughan, M.M.; Jullian, B.; Chevone, B.I.; Mendes, P.; Nessler, C.L.; Lorence, A. Elevating vitamin C content via overexpression of myo-inositol oxygenase and L-gulono-1,4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses. Vitr. Cell. Dev. Biol. Plant 2013, 49, 643–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radzio, J.A.; Lorence, A.; Chevone, B.I.; Nessler, C.L. L-Gulono-1,4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants. Plant Mol. Biol. 2003, 53, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Nessler, C.L. Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol. Breed. 2000, 6, 73–78. [Google Scholar] [CrossRef]
- Upadhyaya, C.P.; Akula, N.; Young, K.E.; Chun, S.C.; Kim, D.H.; Park, S.W. Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol. Lett. 2010, 32, 321–330. [Google Scholar]
- Lim, M.Y.; Pulla, R.K.; Park, J.M.; Harn, C.H.; Jeong, B.R. Over-expression of L-gulono-γ-lactone oxidase (GLOase) gene leads to ascorbate accumulation with enhanced abiotic stress tolerance in tomato. Vitr. Cell. Dev. Biol. Plant 2012, 48, 453–461. [Google Scholar] [CrossRef]
- Aboobucker, S.I.; Suza, W.P.; Lorence, A. Characterization of two Arabidopsis L-gulono-1, 4-lactone oxidases, AtGulLO3 and AtGulLO5, involved in ascorbate biosynthesis. React. Oxyg. Species 2017, 4, 389. [Google Scholar] [CrossRef]
- Maruta, T.; Ichikawa, Y.; Mieda, T.; Takeda, T.; Tamoi, M.; Yabuta, Y.; Ishikawa, T.; Shigeoka, S. The contribution of Arabidopsis homologs of L-gulono-1, 4-lactone oxidase to the biosynthesis of ascorbic acid. Biosci. Biotechnol. Biochem. 2010, 74, 1494–1497. [Google Scholar] [CrossRef] [Green Version]
- Lorence, A.; Chevone, B.I.; Mendes, P.; Nessler, C.L. myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol. 2004, 134, 1200–1205. [Google Scholar] [CrossRef] [Green Version]
- Tóth, S.Z.; Nagy, V.; Puthur, J.T.; Kovács, L.; Garab, G. The physiological role of ascorbate as photosystem II electron donor: Protection against photoinactivation in heat-stressed leaves. Plant Physiol. 2011, 156, 382–392. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Gruszewski, H.A.; Chevone, B.I.; Nessler, C.L. An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol. 2008, 146, 431–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belgaroui, N.; Lacombe, B.; Rouached, H.; Hanin, M. Phytase overexpression in Arabidopsis improves plant growth under osmotic stress and in combination with phosphate deficiency. Sci. Rep. 2018, 8, 1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endres, S.; Tenhaken, R. Myoinositol oxygenase controls the level of myoinositol in Arabidopsis, but does not increase ascorbic acid. Plant Physiol. 2009, 149, 1042–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, J.; Zhang, M.; Zhang, H.; Xiong, H.; Liu, P.; Ali, J.; Li, J.; Li, Z. OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Plant Sci. 2012, 196, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Kanter, U.; Usadel, B.; Guerineau, F.; Li, Y.; Pauly, M.; Tenhaken, R. The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides. Planta 2005, 221, 243–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Höller, S.; Ueda, Y.; Wu, L.; Wang, Y.; Hajirezaei, M.-R.; Ghaffari, M.-R.; von Wirén, N.; Frei, M. Ascorbate biosynthesis and its involvement in stress tolerance and plant development in rice (Oryza sativa L.). Plant Mol. Biol. 2015, 88, 545–560. [Google Scholar] [CrossRef]
- Ivanov Kavkova, E.; Blöchl, C.; Tenhaken, R. The myo-inositol pathway does not contribute to ascorbic acid synthesis. Plant Biol. 2019, 21, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Agius, F.; González-Lamothe, R.; Caballero, J.L.; Muñoz-Blanco, J.; Botella, M.A.; Valpuesta, V. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat. Biotechnol. 2003, 21, 177. [Google Scholar] [CrossRef]
- Upadhyaya, C.P.; Young, K.E.; Akula, N.; Kim, H.; Heung, J.J.; Oh, O.M.; Aswath, C.R.; Chun, S.C.; Kim, D.H.; Park, S.W. Over-expression of strawberry D-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Sci. 2009, 177, 659–667. [Google Scholar]
- Upadhyaya, C.P.; Venkatesh, J.; Gururani, M.A.; Asnin, L.; Sharma, K.; Ajappala, H.; Park, S.W. Transgenic potato overproducing L-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity. Biotechnol. Lett. 2011, 33, 2297. [Google Scholar] [CrossRef]
- Upadhyaya, C.P.; Akula, N.; Kim, H.S.; Jeon, J.H.; Ho, O.M.; Chun, S.C.; Kim, D.H.; Park, S.W. Biochemical analysis of enhanced tolerance in transgenic potato plants overexpressing D-galacturonic acid reductase gene in response to various abiotic stresses. Mol. Breed. 2011, 28, 105–115. [Google Scholar]
- Amaya, I.; Osorio, S.; Martinez-Ferri, E.; Lima-Silva, V.; Doblas, V.G.; Fernández-Muñoz, R.; Fernie, A.R.; Botella, M.A.; Valpuesta, V. Increased antioxidant capacity in tomato by ectopic expression of the strawberry D-galacturonate reductase gene. Biotechnol. J. 2015, 10, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Zhang, C.; Ye, J.; Hu, T.; Ye, Z.; Li, H.; Zhang, Y. Ectopic expression of FaGalUR leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Growth Regul. 2015, 76, 187–197. [Google Scholar] [CrossRef]
- Lim, M.Y.; Jeong, B.R.; Jung, M.; Harn, C.H. Transgenic tomato plants expressing strawberry D-galacturonic acid reductase gene display enhanced tolerance to abiotic stresses. Plant Biotechnol. Rep. 2016, 10, 105–116. [Google Scholar] [CrossRef]
- Bao, G.; Zhuo, C.; Qian, C.; Xiao, T.; Guo, Z.; Lu, S. Co-expression of NCED and ALO improves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants. Plant Biotechnol. J. 2016, 14, 206–214. [Google Scholar] [CrossRef]
- Chen, Z.; Qin, C.; Lin, L.; Zeng, X.; Zhao, Y.; He, S.; Lu, S.; Guo, Z. Overexpression of yeast arabinono-1, 4-lactone oxidase gene (ALO) increases tolerance to oxidative stress and Al toxicity in transgenic tobacco plants. Plant Mol. Biol. Rep. 2015, 33, 806–818. [Google Scholar] [CrossRef]
- Gallie, D.R. The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J. Exp. Bot. 2012, 64, 433–443. [Google Scholar] [CrossRef] [Green Version]
- Eastmond, P.J. MONODEHYROASCORBATE REDUCTASE4 is required for seed storage oil hydrolysis and postgerminative growth in Arabidopsis. Plant Cell 2007, 19, 1376–1387. [Google Scholar] [CrossRef] [Green Version]
- Eltelib, H.; Fujikawa, Y.; Esaka, M. Overexpression of the acerola (Malpighia glabra) monodehydroascorbate reductase gene in transgenic tobacco plants results in increased ascorbate levels and enhanced tolerance to salt stress. S. Afr. J. Bot. 2012, 78, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Eltayeb, A.E.; Kawano, N.; Badawi, G.H.; Kaminaka, H.; Sanekata, T.; Shibahara, T.; Inanaga, S.; Tanaka, K. Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 2007, 225, 1255–1264. [Google Scholar] [CrossRef]
- Yin, L.; Wang, S.; Eltayeb, A.E.; Uddin, M.I.; Yamamoto, Y.; Tsuji, W.; Takeuchi, Y.; Tanaka, K. Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 2010, 231, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wu, Q.Y.; Sun, Y.L.; Wang, L.Y.; Yang, X.H.; Meng, Q.W. Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol. Plant 2010, 139, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, K.; George, S.; Venkataraman, G.; Parida, A. A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 2010, 92, 1321–1329. [Google Scholar] [CrossRef] [PubMed]
- Haroldsen, V.M.; Chi-Ham, C.L.; Kulkarni, S.; Lorence, A.; Bennett, A.B. Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato. Plant Physiol. Biochem. 2011, 49, 1244–1249. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, S.; Tamaoki, M.; Shikano, T.; Nakajima, N.; Ogawa, D.; Ioki, M.; Aono, M.; Kubo, A.; Kamada, H.; Inoue, Y. Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol. 2006, 47, 304–308. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, X.; Zong, Y.; Wen, S.; Cheng, Y.; Li, H. Enzymatic activity and functional analysis under multiple abiotic stress conditions of a dehydroascorbate reductase gene derived from Liriodendron Chinense. Environ. Exp. Bot. 2019, 167, 103850. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, Y.; Chen, W.; Tang, K.; Zhang, L. Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J. Integr. Plant Biol. 2010, 52, 400–409. [Google Scholar] [CrossRef]
- Liu, F.; Guo, X.; Yao, Y.; Tang, W.; Zhang, W.; Cao, S.; Han, Y.; Liu, Y. Cloning and function characterization of two dehydroascorbate reductases from kiwifruit (Actinidia chinensis L.). Plant Mol. Biol. Rep. 2016, 34, 815–826. [Google Scholar] [CrossRef]
- Ushimaru, T.; Nakagawa, T.; Fujioka, Y.; Daicho, K.; Naito, M.; Yamauchi, Y.; Nonaka, H.; Amako, K.; Yamawaki, K.; Murata, N. Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J. Plant Physiol. 2006, 163, 1179–1184. [Google Scholar] [CrossRef]
- Wang, W.; Qiu, X.; Kim, H.S.; Yang, Y.; Hou, D.; Liang, X.; Kwak, S.-S. Molecular cloning and functional characterization of a sweetpotato chloroplast IbDHAR3 gene in response to abiotic stress. Plant Biotechnol. Rep. 2020, 14, 9–19. [Google Scholar] [CrossRef]
- Chen, Z.; Young, T.E.; Ling, J.; Chang, S.-C.; Gallie, D.R. Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc. Natl. Acad. Sci. USA 2003, 100, 3525–3530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naqvi, S.; Zhu, C.; Farre, G.; Ramessar, K.; Bassie, L.; Breitenbach, J.; Conesa, D.P.; Ros, G.; Sandmann, G.; Capell, T. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc. Natl. Acad. Sci. USA 2009, 106, 7762–7767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goo, Y.-M.; Chun, H.J.; Kim, T.-W.; Lee, C.-H.; Ahn, M.-J.; Bae, S.-C.; Cho, K.-J.; Chun, J.-A.; Chung, C.-H.; Lee, S.-W. Expressional characterization of dehydroascorbate reductase cDNA in transgenic potato plants. J. Plant Biol. 2008, 51, 35–41. [Google Scholar] [CrossRef]
- Eltayeb, A.E.; Yamamoto, S.; Habora, M.E.E.; Yin, L.; Tsujimoto, H.; Tanaka, K. Transgenic potato overexpressing Arabidopsis cytosolic AtDHAR1 showed higher tolerance to herbicide, drought and salt stresses. Breed. Sci. 2011, 61, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Qin, A.; Shi, Q.; Yu, X. Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes. Mol. Biol. Rep. 2011, 38, 1557–1566. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Kim, I.-S.; Bae, M.-J.; Choe, Y.-H.; Kim, Y.-H.; Park, H.-M.; Kang, H.-G.; Yoon, H.-S. Homologous expression of cytosolic dehydroascorbate reductase increases grain yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. japonica). Planta 2013, 237, 1613–1625. [Google Scholar] [CrossRef]
- Kwon, S.-Y.; Ahn, Y.-O.; Lee, H.-S.; Kwak, S.-S. Biochemical characterization of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. BMB Rep. 2001, 34, 316–321. [Google Scholar]
- Kwon, S.-Y.; Choi, S.-M.; Ahn, Y.-O.; Lee, H.-S.; Lee, H.-B.; Park, Y.-M.; Kwak, S.-S. Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J. Plant Physiol. 2003, 160, 347–353. [Google Scholar] [CrossRef]
- Chen, Z.; Gallie, D.R. Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol. 2005, 138, 1673–1689. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-P.; Kim, S.-H.; Bang, J.-W.; Lee, H.-S.; Kwak, S.-S.; Kwon, S.-Y. Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep. 2007, 26, 591–598. [Google Scholar] [CrossRef] [Green Version]
- Eltayeb, A.E.; Kawano, N.; Badawi, G.H.; Kaminaka, H.; Sanekata, T.; Morishima, I.; Shibahara, T.; Inanaga, S.; Tanaka, K. Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol. Plant 2006, 127, 57–65. [Google Scholar] [CrossRef]
- Le Martret, B.; Poage, M.; Shiel, K.; Nugent, G.D.; Dix, P.J. Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol. J. 2011, 9, 661–673. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, Y.; Li, C.; Yu, X. Enhanced ascorbic acid accumulation through overexpression of dehydroascorbate reductase confers tolerance to methyl viologen and salt stresses in tomato. Czech J. Genet. Plant Breed. 2012, 48, 74–86. [Google Scholar] [CrossRef] [Green Version]
- Qin, A.; Huang, X.; Zhang, H.; Wu, J.; Yang, J.; Zhang, S. Overexpression of PbDHAR2 from Pyrus sinkiangensis in transgenic tomato confers enhanced tolerance to salt and chilling stresses. HortScience 2015, 50, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Lorence, A.; Gruszewski, H.A.; Chevone, B.I.; Nessler, C.L. AMR1, an Arabidopsis gene that coordinately and negatively regulates the mannose/l-galactose ascorbic acid biosynthetic pathway. Plant Physiol. 2009, 150, 942–950. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Li, W.; Ai, G.; Li, C.; Liu, G.; Chen, W.; Wang, B.; Wang, W.; Lu, Y.; Zhang, J. Genome-wide association analysis identifies a natural variation in basic helix-loop-helix transcription factor regulating ascorbate biosynthesis via D-mannose/L-galactose pathway in tomato. PLoS Genet. 2019, 15, e1008149. [Google Scholar] [CrossRef]
- Cho, K.M.; Nguyen, H.T.K.; Kim, S.Y.; Shin, J.S.; Cho, D.H.; Hong, S.B.; Shin, J.S.; Ok, S.H. CML 10, a variant of calmodulin, modulates ascorbic acid synthesis. New Phytol. 2016, 209, 664–678. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yu, Y.; Zhang, Z.; Quan, R.; Zhang, H.; Ma, L.; Deng, X.W.; Huang, R. Arabidopsis CSN5B interacts with VTC1 and modulates ascorbic acid synthesis. Plant Cell 2013, 25, 625–636. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Zhang, C.; Shu, W.; Ye, Z.; Li, H.; Zhang, Y. The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato. Biochem. Biophys. Res. Commun. 2016, 474, 736–741. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Zhang, R.; Huang, R. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J. 2012, 71, 273–287. [Google Scholar] [CrossRef]
- Laing, W.A.; Martínez-Sánchez, M.; Wright, M.A.; Bulley, S.M.; Brewster, D.; Dare, A.P.; Rassam, M.; Wang, D.; Storey, R.; Macknight, R.C.; et al. An upstream open reading frame is essential for feedback regulation of ascorbate biosynthesis in Arabidopsis. Plant Cell 2015, 27, 772–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broad, R.C.; Bonneau, J.P.; Beasley, J.T.; Roden, S.; Philips, J.G.; Baumann, U.; Hellens, R.P.; Johnson, A.A. Genome-wide identification and characterization of the GDP-L-galactose phosphorylase gene family in bread wheat. BMC Plant Biol. 2019, 19, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Si, X.; Ji, X.; Fan, R.; Liu, J.; Chen, K.; Wang, D.; Gao, C. Genome editing of upstream open reading frames enables translational control in plants. Nat. Biotechnol. 2018, 36, 894–898. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yang, X.; Yu, Y.; Si, X.; Zhai, X.; Zhang, H.; Dong, W.; Gao, C.; Xu, C. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 2018, 36, 1160–1163. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Ye, J.; Tao, P.; Li, H.; Zhang, J.; Zhang, Y.; Ye, Z. The tomato HD-Zip I transcription factor SlHZ24 modulates ascorbate accumulation through positive regulation of the d-mannose/l-galactose pathway. Plant J. 2016, 85, 16–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Han, L.; Ye, Z.; Li, H. Ascorbic acid accumulation is transcriptionally modulated in high-pigment-1 tomato fruit. Plant Mol. Biol. Rep. 2014, 32, 52–61. [Google Scholar] [CrossRef]
- Wang, S.; Liu, J.; Feng, Y.; Niu, X.; Giovannoni, J.; Liu, Y. Altered plastid levels and potential for improved fruit nutrient content by downregulation of the tomato DDB1-interacting protein CUL4. Plant J. 2008, 55, 89–103. [Google Scholar] [CrossRef]
- Xing, C.; Liu, Y.; Zhao, L.; Zhang, S.; Huang, X. A novel MYB transcription factor regulates ascorbic acid synthesis and affects cold tolerance. Plant Cell Environ. 2019, 42, 832–845. [Google Scholar] [CrossRef]
- Ye, J.; Liu, G.; Chen, W.; Zhang, F.; Li, H.; Ye, Z.; Zhang, Y. Knockdown of SlNL33 accumulates ascorbate, enhances disease and oxidative stress tolerance in tomato (Solanum lycopersicum). Plant Growth Regul. 2019, 89, 49–58. [Google Scholar] [CrossRef]
- Gangadhar, B.H.; Yu, J.W.; Sajeesh, K.; Park, S.W. A systematic exploration of high-temperature stress-responsive genes in potato using large-scale yeast functional screening. Mol. Genet. Genom. 2014, 289, 185–201. [Google Scholar] [CrossRef]
- Gangadhar, B.H.; Sajeesh, K.; Venkatesh, J.; Baskar, V.; Abhinandan, K.; Yu, J.W.; Prasad, R.; Mishra, R.K. Enhanced tolerance of transgenic potato plants over-expressing non-specific lipid transfer protein-1 (StnsLTP1) against multiple abiotic stresses. Front. Plant Sci. 2016, 7, 1228. [Google Scholar] [CrossRef] [Green Version]
- Conklin, P.L.; DePaolo, D.; Wintle, B.; Schatz, C.; Buckenmeyer, G. Identification of Arabidopsis VTC3 as a putative and unique dual function protein kinase:: Protein phosphatase involved in the regulation of the ascorbic acid pool in plants. J. Exp. Bot. 2013, 64, 2793–2804. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Guo, J.; Zhu, J.; Zhou, C. Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis. Plant Physiol. Biochem. 2014, 75, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, B.; Yang, T.; Li, H.; Zhang, L.; Zhang, Y.; Zhang, J.; Fei, Z.; Ye, Z. Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J. Exp. Bot. 2007, 58, 507–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Chu, Z.; Luo, J.; Zhou, Y.; Cai, Y.; Lu, Y.; Xia, J.; Kuang, H.; Ye, Z.; Ouyang, B. The C2H2 zinc-finger protein SlZF3 regulates AsA synthesis and salt tolerance by interacting with CSN 5B. Plant Biotechnol. J. 2018, 16, 1201–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, X.; Zhang, H.; Wang, Y.; Chen, K.; Gao, C. Manipulating gene translation in plants by CRISPR–Cas9-mediated genome editing of upstream open reading frames. Nat. Protoc. 2020, 15, 338–363. [Google Scholar] [CrossRef] [PubMed]
- Gallie, D.R. Increasing vitamin C content in plant foods to improve their nutritional value—successes and challenges. Nutrients 2013, 5, 3424–3446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Gallie, D.R. The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 2004, 16, 1143–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Gallie, D.R. Induction of monozygotic twinning by ascorbic acid in tobacco. PLoS ONE 2012, 7, e39147. [Google Scholar] [CrossRef] [Green Version]
Species Transformed | Gene(s) Transformed | Gene Source(s) | Promoter | Max Fold-Change | Tissue Examined | Stress Tolerance | Reference |
---|---|---|---|---|---|---|---|
L-galactose pathway genes | |||||||
Tobacco | PMM | Acerola | CaMV 35S | ~2.5 | Leaves | - | [20] |
Arabidopsis | PMM-GFP | Arabidopsis | CaMV 35S | 1.3 | Leaves | Methyl viologen | [19] |
Arabidopsis | GMP | Arabidopsis | CaMV 35S | 1.3 | Leaves | - | [24] |
Arabidopsis | GMP | Arabidopsis | CaMV 35S | ~1.2ns | Seedlings | - | [30] |
Rice | GMP | Arabidopsis | ZmUbi | ~1.5 | Leaves | - | [28] |
Tobacco | GMP | Peach | CaMV 35S | ~1.3ns | Leaves | - | [29] |
Tobacco | GMP | Acerola | MgGMP | ~2.5 | Leaves | - | [25] |
Tobacco | GMP | Acerola | CaMV 35S | ~2.0 | Leaves | - | [25] |
Tomato | GMP1 | Tomato | CaMV 35S | ~1.4, ~1.2 | Leaves, Red Fruit | - | [26] |
Tobacco | GMP + GME | Peach | CaMV 35S | ~1.4ns, ~1.8ns, ~1.0ns, ~1.1ns | Young Leaves, Old Leaves, Flower Buds, Immature Fruits | - | [29] |
Tomato | GMP1 + GME2 | Tomato | CaMV 35S | 2.0, ~1.3 | Leaves, Red Fruit | Methyl viologen | [26] |
Tomato | GMP1 + GME2 + GGP1 + GPP1 | Tomato | CaMV 35S | 2.0, ~1.3 | Leaves, Red Fruit | Methyl viologen | [26] |
Arabidopsis | GME | Arabidopsis | CaMV 35S | 1.4 | Leaves | - | [24] |
Arabidopsis | GME | Alfalfa | CaMV 35S | 1.8 | Leaves | Low pH, drought, salt | [33] |
Arabidopsis | GME | Rose | CaMV 35S | 1.9 | Leaves | - | [34] |
Rice | GME | Arabidopsis | ZmUbi | ~1.9 | Leaves | Salt | [28] |
Tobacco | GME | Peach | CaMV 35S | ~1.3ns | Leaves | - | [29] |
Tomato | GME1 | Tomato | CaMV 35S | 1.4, 1.6 | Leaves, Fruits | Methyl viologen, cold, salt | [35] |
Tomato | GME2 | Tomato | CaMV 35S | ~1.8, ~1.2 | Leaves, Red Fruit | - | [26] |
Tomato | GME2 | Tomato | CaMV 35S | 1.3, 1.2 | Leaves, Fruits | Methyl viologen, cold, salt | [35] |
Arabidopsis | GGP | Kiwifruit | CaMV 35S | 4.1 | Leaves | - | [40] |
Rice | GGP | Kiwifruit | OsLP2 | 2.5 | Leaves | Salt, ozone | [43] |
Strawberry | GGP | Kiwifruit | CaMV 35S | 1.8, 2.1 | Leaves, Fruit | - | [41] |
Tomato | GGP | Kiwifruit | CaMV 35S | 2.0, 6.2 | Leaves, Fruit | - | [41] |
Arabidopsis | GGP1 | Arabidopsis | CaMV 35S | 2.9 | Leaves | - | [24] |
Potato | GGP1 | Arabidopsis | CaMV 35S | 1.7ns | Tubers | - | [41] |
Potato | GGP1 | Potato | CaMV 35S | 1.8ns | Tubers | - | [41] |
Potato | GGP1 | Potato | StPAT | 3.0 | Tubers | - | [41] |
Potato | GGP1 | Arabidopsis | CaMV 35S | 1.5ns | Tubers | - | [41] |
Rice | GGP1 | Arabidopsis | CaMV 35S | 2.6 | Leaves | Salt | [28] |
Tobacco | GGP1 | Tomato | CaMV 35S | 1.4 | Leaves | Cold | [42] |
Tomato | GGP1 | Tomato | CaMV 35S | 2.0, ~1.1ns | Leaves, Red Fruit | - | [26] |
Arabidopsis | GGP1 + L-GalLDH | Arabidopsis | CaMV 35S | 3.6 | Leaves | - | [24] |
Arabidopsis | GGP1 + GPP | Arabidopsis | CaMV 35S | 4.1 | Leaves | - | [24] |
Tomato | GGP1 + GPP1 | Tomato | CaMV 35S | ~1.8, ~1.0ns | Leaves, Red Fruit | Methyl viologen | [26] |
Potato | GGP2 | Potato | CaMV 35S | 2.4 | Tubers | - | [41] |
Potato | GGP2 | Potato | StPAT | 3.1 | Tubers | - | [41] |
Arabidopsis | GPP | Arabidopsis | CaMV 35S | 1.5 | Leaves | - | [24] |
Rice | GPP | Arabidopsis | ZmUbi | ~1.4 | Leaves | - | [28] |
Tomato | GPP1 | Tomato | CaMV 35S | ~1.7, ~1.1ns | Leaves, Red Fruit | - | [26] |
Arabidopsis | L-GalDH | Arabidopsis | CaMV 35S | 1.2 | Leaves | - | [24] |
Rice | L-GalDH | Arabidopsis | ZmUbi | ~1.7 | Leaves | - | [28] |
Tobacco | L-GalDH | Arabidopsis | CaMV 35S | ~1.1ns | Leaves | - | [46] |
Arabidopsis | L-GalLDH | Arabidopsis | CaMV 35S | 1.8 | Leaves | - | [24] |
Lettuce | L-GalLDH | Lettuce | PspetE | 1.3 | Leaves | - | [48] |
Lettuce | L-GalLDH | Arabidopsis | CaMV 35S | 3.2 | Leaves | - | [49] |
Lily | L-GalLDH | Apple | CaMV 35S | 7.0 | Leaves | - | [50] |
Rice | L-GalLDH | Rapeseed | ZmUbi | ~1.5 | Leaves | - | [28] |
Rice | L-GalLDH | Rice | ZmUbi | 1.3 | Leaves | - | [51] |
Tobacco | L-GalLDH | Rose | CaMV 35S | 2.1 | Leaves | Salt, methyl viologen | [52] |
Tobacco | L-GalLDH | Sweet potato | CaMV 35S | 1.0ns | Leaves | - | [53] |
L-gulose and myo-inositol pathway genes | |||||||
Arabidopsis | L-GulLO3 | Arabidopsis | CaMV 35S | ~0.8ns | Leaves | - | [61] |
Arabidopsis | L-GulLO5 | Arabidopsis | CaMV 35S | ~1.1ns | Leaves | - | [61] |
Rice | MIOX | Rice | CaMV 35S | 1.0ns | Leaves | Drought | [68] |
Tomato | MIOX2 | Arabidopsis | CaMV 35S | 0.5, 1.4, 1.3 | Leaves, Green Fruit, Red Fruit | - | [27] |
Arabidopsis | MIOX4 | Arabidopsis | CaMV 35S | 1.6 | Leaves | Salt, cold, heat, pyrene | [56] |
Arabidopsis | MIOX4 | Arabidopsis | CaMV 35S | 3.0 | Leaves | - | [63] |
Arabidopsis | MIOX4 | Arabidopsis | CaMV 35S | 1.7 | Leaves | Heat | [64] |
Arabidopsis | MIOX4 | Arabidopsis | CaMV 35S | 1.0ns | Leaves | - | [67] |
D-galacturonate pathway genes | |||||||
Arabidopsis | D-GalUR | Strawberry | CaMV 35S | 3.0 | Leaves | - | [72] |
Potato | D-GalUR | Strawberry | CaMV 35S | 2.0 | Tubers | Methyl viologen, salt, drought | [73] |
Potato | D-GalUR | Strawberry | CaMV 35S | ~2.1 | Tubers | Methyl viologen, salt, zinc chloride | [75] |
Potato | D-GalUR | Strawberry | CaMV 35S | ~1.7 | Tubers | Salt | [74] |
Tomato | D-GalUR | Strawberry | CaMV 35S | 2.5 | Fruit | Methyl viologen, salt, drought | [60] |
Tomato | D-GalUR | Strawberry | CaMV 35S | 1.8, 2.0 | Leaves, Red Fruit | Methyl viologen, salt, cold | [77] |
Tomato | D-GalUR | Strawberry | CaMV 35S | 1.3, ~1.0ns, 1.4 | Leaves, Green Fruit, Light Red Fruit | - | [76] |
Tomato | D-GalUR | Strawberry | SlPG | ~1.0ns, ~1.0ns, 1.4 | Leaves, Green Fruit, Light Red Fruit | - | [76] |
Animal and yeast genes | |||||||
Tobacco | ALO | Yeast | CaMV 35S | ~2.5 | Leaves | Cold | [79] |
Tobacco | ALO | Yeast | CaMV 35S | ~1.5, ~1.5, ~2.0 | Young Leaves, Mature Leaves, Old Leaves | Methyl viologen, high light, Al toxicity | [80] |
Tomato | ALO | Yeast | CaMV 35S | 1.5, 1.3, 1.1ns | Leaves, Green Fruit, Red Fruit | - | [27] |
Stylo | ALO + NCED | Yeast/stylo | CaMV 35S | 3.4 | Leaves | Drought, cold | [79] |
Tobacco | ALO + NCED | Yeast/stylo | CaMV 35S | ~2.5 | Leaves | Drought, cold | [79] |
Tomato | GMP | Yeast | CaMV 35S | 1.7, 1.5, 1.4 | Leaves, Green Fruit, Red Fruit | - | [27] |
Arabidopsis | L-GulLO | Rat | CaMV 35S | 1.8 | Leaves | Salt, cold, heat, pyrene | [56] |
Arabidopsis | L-GulLO | Rat | CaMV 35S | 2.0 | Leaves | - | [57] |
Lettuce | L-GulLO | Rat | CaMV 35S | 7.0 | Leaves | - | [58] |
Potato | L-GulLO | Rat | CaMV 35S | 2.4 | Tubers | Methyl viologen, salt, drought | [59] |
Tobacco | L-GulLO | Rat | CaMV 35S | 7.0 | Leaves | - | [58] |
Tomato | L-GulLO | Rat | CaMV 35S | 1.5 | Red fruit | Methyl viologen, salt, drought | [60] |
Species Transformed | Gene(s) Transformed | Gene Source(s) | Promoter | Max Fold-Change | Tissue Examined | Stress Tolerance | Reference |
---|---|---|---|---|---|---|---|
Tobacco | MDAR | Acerola | CaMV 35S | 2.0 | Leaves | Salt | [83] |
Tobacco | MDAR | Mangrove | CaMV 35S | ~1.3ns | Leaves | Salt | [87] |
Tomato | MDAR | Tomato | CaMV 35S | 1.2 | Leaves | Cold, heat, methyl viologen | [86] |
Tomato | MDAR | Tomato | FMV 34S | 1.2ns, 1.0ns | Leaves, red fruit | - | [88] |
Tobacco | MDAR1 | Arabidopsis | CaMV 35S | 2.2 | Leaves | Ozone, salt, drought | [84] |
Tobacco | MDAR1 | Arabidopsis | CaMV 35S | ~1.2 | Roots | - | [85] |
Arabidopsis | DHAR | Chinese tulip tree | CaMV 35S | ~1.4 | Leaves | Salt, drought | [90] |
Arabidopsis | DHAR | Rose | CaMV 35S | 3.0 | Leaves | - | [34] |
Maize | DHAR | Wheat | ZmUbi | 1.8, 1.9 | Leaves, kernels | - | [95] |
Potato | DHAR | Sesame | CaMV 35S | 1.5, 1.6 | Leaves, tubers | - | [97] |
Potato | DHAR | Sesame | PtPal | 1.3 | Tubers | - | [97] |
Tobacco | DHAR | Wheat | CaMV 35S | 2.1 | Leaves | Ozone | [103] |
Tobacco | DHAR | Human | CaMV 35S | 1.6 | Leaves | Methyl viologen, H2O2, cold, salt | [102] |
Tobacco | DHAR | Human | CaMV 35S | 1.6, 2.0 | Young leaves, mature leaves | Methyl viologen | [101] |
Tobacco | DHAR | Wheat | CaMV 35S | 2.4, 3.9, 2.2 | Expanding leaves, mature leaves, presenescent leaves | - | [95] |
Tomato | DHAR | Tomato | FMV 34S | 1.1ns, 1.6, 1.6 | Leaves, green fruit, red fruit | - | [88] |
Tobacco | DHAR + CuZnSOD + APX | Human + pea + pea | CaMV 35S | 1.5 | Leaves | Methyl viologen, salt | [104] |
Arabidopsis | DHAR1 | Arabidopsis | CaMV 35S | 3.3 | Leaves | High light, heat, paraquat | [91] |
Arabidopsis | DHAR1 | Kiwifruit | CaMV 35S | ~1.5 | Leaves | Salt | [92] |
Arabidopsis | DHAR1 | Rice | CaMV 35S | 1.2 | Leaves | Salt | [93] |
Maize | DHAR1 | Rice | HvHor | 6.1 | Kernels | - | [96] |
Potato | DHAR1 | Arabidopsis | CaMV 35S | 2.8 | Leaves | Methyl viologen, drought, salt | [98] |
Potato | DHAR1 | Potato | CaMV 35S | 1.7, 1.3 | Leaves, tubers | - | [99] |
Rice | DHAR1 | Rice | ZmUbi | ~1.7 | Leaves | - | [100] |
Tobacco | DHAR1 | Rice | PsPrrn | 1.6 | Leaves | Salt, cold | [106] |
Tomato | DHAR1 | Potato | CaMV 35S | 1.9, 1.4 | Leaves, fruit | Methyl viologen, salt | [107] |
Tobacco | DHAR1 + GR | Rice + E. coli | PsPrrn | ~2.5 | Leaves | Salt, cold, methyl viologen | [106] |
Arabidopsis | DHAR2 | Kiwifruit | CaMV 35S | ~1.4 | Leaves | Salt | [109] |
Potato | DHAR2 | Potato | CaMV 35S | 1.5, ~1.1ns | Leaves, tubers | - | [99] |
Tobacco | DHAR2 | Arabidopsis | CaMV 35S | 2.1 | Leaves | Ozone, drought, salt | [105] |
Tobacco | DHAR2 | Arabidopsis | CaMV 35S | ~1.3 | Roots | Aluminium | [85] |
Tomato | DHAR2 | Potato | CaMV 35S | 1.8, ~1.1ns | Leaves, fruit | Methyl viologen, salt | [107] |
Tomato | DHAR2 | Pear | CaMV 35S | 1.5 | Leaves | Salt, cold | [108] |
Arabidopsis | DHAR3 | Sweet potato | CaMV 35S | ~1.1ns | Leaves | Salt, drought | [94] |
Species | Regulatory Factor | Strategy | Gene Source | Promoter | Max Fold-Change | Tissue Examined | Stress Tolerance | Reference |
---|---|---|---|---|---|---|---|---|
Arabidopsis | AMR1 | T-DNA insertion | - | - | 2.0 | Leaves | Ozone | [109] |
Tomato | bHLH59 | Increased expression | Tomato | CaMV 35S | ~1.5 | Fruit | Methyl viologen | [110] |
Arabidopsis | CSN5B | T-DNA insertion | - | - | ~1.4 | Seedlings | Salt | [112] |
Arabidopsis | CSN8 | T-DNA insertion | - | - | ~1.8 | Seedlings | - | [112] |
Tomato | Dof22 | RNAi | - | - | 1.3, 1.6 | Leaves, red fruit | - | [113] |
Arabidopsis | ERF98 | Increased expression | Arabidopsis | CaMV 35S | 1.7 | Leaves | Salt | [114] |
Arabidopsis | GGP1 uORF | Genome editing | - | - | 1.7 | Leaves | - | [117] |
Lettuce | GGP1 uORF | Genome editing | - | - | 1.4 | Leaves | Methyl viologen | [117] |
Lettuce | GGP2 uORF | Genome editing | - | - | 2.6 | Leaves | Methyl viologen | [117] |
Tomato | GGP2 uORF | Genome editing | - | - | ~1.4 | Leaves | - | [118] |
Tomato | HZ24 | Increased expression | Tomato | CaMV 35S | 1.5, ~1.2 | Leaves, breaker fruit | Methyl viologen | [119] |
Arabidopsis | KJC1 | Increased expression | Arabidopsis | CaMV 35S | 1.4 | Seedlings | - | [30] |
Arabidopsis | KJC1 + GMP | Increased expression | Arabidopsis | CaMV 35S | ~1.0ns | Seedlings | - | [30] |
Arabidopsis | KJC2 | Increased expression | Arabidopsis | CaMV 35S | ~1.0ns | Seedlings | - | [30] |
Tobacco | MYB5 | Increased expression | Pear | CaMV 35S | ~1.3 | Leaves | Cold | [122] |
Tomato | NL33 | RNAi | - | - | 2.7, 1.3 | Leaves, red fruit | Methyl viologen, Botrytis cinerea | [123] |
Potato | nsLTP1 | Increased expression | Potato | CaMV 35S | 2.3 | Leaves | Heat, drought, salt | [125] |
Arabidopsis | VTC3 | Increased expression | Arabidopsis | CaMV 35S | ~0.8ns | Seedlings | - | [126] |
Arabidopsis | WAX1 | Increased expression | Saltwater cress | SP | 1.3 | Leaves | - | [127] |
Arabidopsis | WAX1 | Increased expression | Saltwater cress | AtRD29A | ~1.4* | Leaves | Drought | [127] |
Arabidopsis | ZF3 | Increased expression | Tomato | CaMV 35S | 1.8 | Leaves | Salt | [129] |
Tomato | ZF3 | Increased expression | Tomato | CaMV 35S | ~2.1 | Leaves | Salt | [129] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broad, R.C.; Bonneau, J.P.; Hellens, R.P.; Johnson, A.A.T. Manipulation of Ascorbate Biosynthetic, Recycling, and Regulatory Pathways for Improved Abiotic Stress Tolerance in Plants. Int. J. Mol. Sci. 2020, 21, 1790. https://doi.org/10.3390/ijms21051790
Broad RC, Bonneau JP, Hellens RP, Johnson AAT. Manipulation of Ascorbate Biosynthetic, Recycling, and Regulatory Pathways for Improved Abiotic Stress Tolerance in Plants. International Journal of Molecular Sciences. 2020; 21(5):1790. https://doi.org/10.3390/ijms21051790
Chicago/Turabian StyleBroad, Ronan C., Julien P. Bonneau, Roger P. Hellens, and Alexander A.T. Johnson. 2020. "Manipulation of Ascorbate Biosynthetic, Recycling, and Regulatory Pathways for Improved Abiotic Stress Tolerance in Plants" International Journal of Molecular Sciences 21, no. 5: 1790. https://doi.org/10.3390/ijms21051790
APA StyleBroad, R. C., Bonneau, J. P., Hellens, R. P., & Johnson, A. A. T. (2020). Manipulation of Ascorbate Biosynthetic, Recycling, and Regulatory Pathways for Improved Abiotic Stress Tolerance in Plants. International Journal of Molecular Sciences, 21(5), 1790. https://doi.org/10.3390/ijms21051790