Exposure to Mono-n-Butyl Phthalate in Women with Endometriosis and Its Association with the Biological Effects on Human Granulosa Cells
Abstract
:1. Introduction
2. Results
2.1. Patient Demographics
2.2. Comparison of Urinary Phthalate Metabolites between the Endometriosis and Control Groups
2.3. Correlations between Phthalate Metabolites in Human Urine
2.4. Effects of MnBP on the Expression of BIRC3, BUB1B, CDC20, and Cyclin B1
2.5. Effect of MnBP on the Expression of IL-1β and TNF-α
2.6. Effect of MnBP on Human Granulosa Cell Mitochondrial Membrane Potential
2.7. Effect of MnBP on AMH, Inhibin B, StAR, and P450ssc Expression
3. Discussion
4. Materials and Methods
4.1. Subject Recruitment
4.2. Measurement of Urinary Phthalate Metabolite Concentrations
4.3. Cell Culture
4.4. Reverse Transcription Quantitative Polymerase Chain Reaction (RT-Q-PCR)
4.5. Assay to Measure Mitochondrial Membrane Potential
4.6. Statistical Analyses
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
EDC | endocrine-disrupting chemicals |
DEHP | Di(2-ethylhexyl) phthalate |
MnBP | Mono-n-butyl phthalate |
DBP | Dibutyl phthalate |
MEHP | Mono-(2-ethylhexyl) phthalate |
MEHHP | Mono-(2-ethyl-5-hydroxyhexyl) phthalate |
MEOHP | Mono-(2-ethyl-5-oxo-hexyl) phthalate |
MECCP | Mono-(2-ethyl-5-carboxypentyl) phthalate |
BzBP | Benzylbutyl phthalate |
MBzP | Mono-benzyl phthalate |
FSH | follicle-stimulating hormone |
BMI | body mass index |
IL-1β | interleukin-1β |
TNF-α | tumor necrosis factor-α |
BIRC5 | baculoviral inhibitor of apoptosis repeat-containing 5 |
BUB1B | budding uninhibited by benzimidazoles 1 homolog beta, mitotic checkpoint serine/threonine kinase beta |
CDC20 | cell division cycle 20 |
AMH | anti-Mullerian hormone |
StAR | steroidogenic acute regulatory protein |
P450scc | cytochrome cholesterol side-chain cleavage enzyme |
References
- Taylor, R.N.; Lebovic, D.I.; Mueller, M.D. Angiogenic factors in endometriosis. Ann. N. Y. Acad. Sci. 2002, 955, 89–100. [Google Scholar] [CrossRef]
- Giudice, L.C.; Kao, L.C. Endometriosis. Lancet 2004, 364, 1789–1799. [Google Scholar] [CrossRef]
- Olive, D.L.; Schwartz, L.B. Endometriosis. N. Engl. J. Med. 1993, 328, 1759–1769. [Google Scholar] [CrossRef]
- Lai, G.L.; Yeh, C.C.; Yeh, C.Y.; Chen, R.Y.; Fu, C.L.; Chen, C.H.; Tzeng, C.R. Decreased zinc and increased lead blood levels are associated with endometriosis in Asian Women. Reprod. Toxicol. 2017, 74, 77–84. [Google Scholar] [CrossRef]
- Buck Louis, G.M.; Peterson, C.M.; Chen, Z.; Croughan, M.; Sundaram, R.; Stanford, J.; Varner, M.W.; Kennedy, A.; Giudice, L.; Fujimoto, V.Y.; et al. Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil. Steril. 2013, 100, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Smarr, M.M.; Kannan, K.; Buck Louis, G.M. Endocrine disrupting chemicals and endometriosis. Fertil. Steril. 2016, 106, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Crews, D.; McLachlan, J.A. Epigenetics, evolution, endocrine disruption, health, and disease. Endocrinology 2006, 147 (Suppl. 6), S4–S10. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef]
- Agarwal, D.K.; Lawrence, W.H.; Autian, J. Antifertility and mutagenic effects in mice from parenteral administration of di-2-ethylhexyl phthalate (DEHP). J. Toxicol. Environ. Health 1985, 16, 71–84. [Google Scholar] [CrossRef]
- Agarwal, D.K.; Lawrence, W.H.; Turner, J.E.; Autian, J. Effects of parenteral di-(2-ethylhexyl)phthalate (DEHP) on gonadal biochemistry, pathology, and reproductive performance of mice. J. Toxicol. Environ. Health 1989, 26, 39–59. [Google Scholar] [CrossRef]
- Arcadi, F.A.; Costa, C.; Imperatore, C.; Marchese, A.; Rapisarda, A.; Salemi, M.; Trimarchi, G.R.; Costa, G. Oral toxicity of bis (2-ethylhexyl) phthalate during pregnancy and suckling in the Long-Evans rat. Food Chem. Toxicol. 1998, 36, 963–970. [Google Scholar] [CrossRef]
- Huggert, L.; Morgan, P.B. Description and biology of Trichopria painteri n.sp. (Hymenoptera: Diapriidae), a solitary parasitoid of Stomoxys calcitrans (Diptera: Muscidae) from Harare, Zimbabwe. Med. Vet. Entomol. 1993, 7, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.J.; Weaver, R.; Gaines, L.J.; Heindel, J.J. Mono-(2-ethylhexyl) phthalate suppresses estradiol production independent of FSH-cAMP stimulation in rat granulosa cells. Toxicol. Appl. Pharm. 1994, 128, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Lamb, J.C.T.; Chapin, R.E.; Teague, J.; Lawton, A.D.; Reel, J.R. Reproductive effects of four phthalic acid esters in the mouse. Toxicol. Appl. Pharm. 1987, 88, 255–269. [Google Scholar] [CrossRef]
- Laskey, J.W.; Berman, E. Steroidogenic assessment using ovary culture in cycling rats: Effects of bis (2-diethylhexyl) phthalate on ovarian steroid production. Reprod. Toxicol. 1993, 7, 25–33. [Google Scholar] [CrossRef]
- Lovekamp, T.N.; Davis, B.J. Mono-(2-ethylhexyl) phthalate suppresses aromatase transcript levels and estradiol production in cultured rat granulosa cells. Toxicol. Appl. Pharm. 2001, 172, 217–224. [Google Scholar] [CrossRef]
- Heudorf, U.; Mersch-Sundermann, V.; Angerer, J. Phthalates: Toxicology and exposure. Int. J. Hyg. Environ. Health 2007, 210, 623–634. [Google Scholar] [CrossRef]
- Schettler, T. Human exposure to phthalates via consumer products. Int. J. 2006, 29, 134–139. [Google Scholar] [CrossRef]
- Kelley, K.E.; Hernandez-Diaz, S.; Chaplin, E.L.; Hauser, R.; Mitchell, A.A. Identification of phthalates in medications and dietary supplement formulations in the United States and Canada. Environ. Health Perspect. 2012, 120, 379–384. [Google Scholar] [CrossRef]
- Wormuth, M.; Scheringer, M.; Vollenweider, M.; Hungerbuhler, K. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal. 2006, 26, 803–824. [Google Scholar] [CrossRef]
- Wittassek, M.; Koch, H.M.; Angerer, J.; Bruning, T. Assessing exposure to phthalates—The human biomonitoring approach. Mol. Nutr. Food Res. 2011, 55, 7–31. [Google Scholar] [CrossRef] [PubMed]
- Parlett, L.E.; Calafat, A.M.; Swan, S.H. Women’s exposure to phthalates in relation to use of personal care products. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Kay, V.R.; Chambers, C.; Foster, W.G. Reproductive and developmental effects of phthalate diesters in females. Crit. Rev. Toxicol. 2013, 43, 200–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Specht, I.O.; Toft, G.; Hougaard, K.S.; Lindh, C.H.; Lenters, V.; Jonsson, B.A.; Heederik, D.; Giwercman, A.; Bonde, J.P. Associations between serum phthalates and biomarkers of reproductive function in 589 adult men. Environ. Int. 2014, 66, 146–156. [Google Scholar] [CrossRef] [PubMed]
- National Report on Human Exposure to Environmental Chemicals. Available online: https://www.cdc.gov/exposurereport/index.html (accessed on 1 January 2019).
- Hauser, R.; Calafat, A.M. Phthalates and human health. Occup. Environ. Med. 2005, 62, 806–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, B.J.; Maronpot, R.R.; Heindel, J.J. Di-(2-ethylhexyl) phthalate suppresses estradiol and ovulation in cycling rats. Toxicol. Appl. Pharm. 1994, 128, 216–223. [Google Scholar] [CrossRef]
- Craig, Z.R.; Wang, W.; Flaws, J.A. Endocrine-disrupting chemicals in ovarian function: Effects on steroidogenesis, metabolism and nuclear receptor signaling. Reproduction 2011, 142, 633–646. [Google Scholar] [CrossRef]
- Itoh, H.; Iwasaki, M.; Hanaoka, T.; Sasaki, H.; Tanaka, T.; Tsugane, S. Urinary phthalate monoesters and endometriosis in infertile Japanese women. Sci. Total Environ. 2009, 408, 37–42. [Google Scholar] [CrossRef]
- Reddy, B.S.; Rozati, R.; Reddy, B.V.; Raman, N.V. Association of phthalate esters with endometriosis in Indian women. BJOG 2006, 113, 515–520. [Google Scholar] [CrossRef]
- Cobellis, L.; Latini, G.; De Felice, C.; Razzi, S.; Paris, I.; Ruggieri, F.; Mazzeo, P.; Petraglia, F. High plasma concentrations of di-(2-ethylhexyl)-phthalate in women with endometriosis. Hum. Reprod. 2003, 18, 1512–1515. [Google Scholar] [CrossRef]
- Weuve, J.; Hauser, R.; Calafat, A.M.; Missmer, S.A.; Wise, L.A. Association of exposure to phthalates with endometriosis and uterine leiomyomata: Findings from NHANES, 1999–2004. Environ. Health Perspect. 2010, 118, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.C.; Tsai, E.M.; Li, W.F.; Liao, P.C.; Chung, M.C.; Wang, Y.H.; Wang, S.L. Association between phthalate exposure and glutathione S-transferase M1 polymorphism in adenomyosis, leiomyoma and endometriosis. Hum. Reprod. 2010, 25, 986–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Chun, S.; Jang, J.Y.; Chae, H.D.; Kim, C.H.; Kang, B.M. Increased plasma levels of phthalate esters in women with advanced-stage endometriosis: A prospective case-control study. Fertil. Steril. 2011, 95, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Upson, K.; Sathyanarayana, S.; De Roos, A.J.; Thompson, M.L.; Scholes, D.; Dills, R.; Holt, V.L. Phthalates and risk of endometriosis. Environ. Res. 2013, 126, 91–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Cho, S.; Ihm, H.J.; Oh, Y.S.; Heo, S.H.; Chun, S.; Im, H.; Chae, H.D.; Kim, C.H.; Kang, B.M. Possible Role of Phthalate in the Pathogenesis of Endometriosis: In Vitro, Animal, and Human Data. J. Clin. Endocrinol. Metab. 2015, 100, E1502–E1511. [Google Scholar] [CrossRef]
- Harlow, C.R.; Cahill, D.J.; Maile, L.A.; Talbot, W.M.; Mears, J.; Wardle, P.G.; Hull, M.G. Reduced preovulatory granulosa cell steroidogenesis in women with endometriosis. J. Clin. Endocrinol. Metab. 1996, 81, 426–429. [Google Scholar]
- Toya, M.; Saito, H.; Ohta, N.; Saito, T.; Kaneko, T.; Hiroi, M. Moderate and severe endometriosis is associated with alterations in the cell cycle of granulosa cells in patients undergoing in vitro fertilization and embryo transfer. Fertil. Steril. 2000, 73, 344–350. [Google Scholar] [CrossRef]
- De Abreu, L.G.; Romao, G.S.; Dos Reis, R.M.; Ferriani, R.A.; De Sa, M.F.; De Moura, M.D. Reduced aromatase activity in granulosa cells of women with endometriosis undergoing assisted reproduction techniques. Gynecol. Endocrinol. 2006, 22, 432–436. [Google Scholar] [CrossRef]
- Yamashita, Y.; Asano, M.; Morishima, S.; Fujino, K.; Terai, Y.; Ohmichi, M. Mitochondrial gene expression in granulosa cells of severe endometriosis with in vitro fertilization and embryo transfer. Fertil. Steril. 2007, 88, 1703–1705. [Google Scholar] [CrossRef]
- Carlberg, M.; Nejaty, J.; Froysa, B.; Guan, Y.; Soder, O.; Bergqvist, A. Elevated expression of tumour necrosis factor alpha in cultured granulosa cells from women with endometriosis. Hum. Reprod. 2000, 15, 1250–1255. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, A.M.; Somigliana, E.; Vercellini, P.; Pagliardini, L.; Candiani, M.; Vigano, P. Endometriosis as a detrimental condition for granulosa cell steroidogenesis and development: From molecular alterations to clinical impact. J. Steroid. Biochem. Mol. Biol. 2016, 155 Pt A, 35–46. [Google Scholar] [CrossRef]
- Du, Y.Y.; Fang, Y.L.; Wang, Y.X.; Zeng, Q.; Guo, N.; Zhao, H.; Li, Y.F. Follicular fluid and urinary concentrations of phthalate metabolites among infertile women and associations with in vitro fertilization parameters. Reprod. Toxicol. 2016, 61, 142–150. [Google Scholar] [CrossRef]
- Li, N.; Liu, K.; Yuan, H.; Zhu, J.; Yu, G.; Xie, J.; Fu, S.; Guo, K.; Ye, L. The effect of mono-(2-ethylhexyl) phthalate on apoptosis of rat ovarian granulosa cells in vitro. Environ. Toxicol. Pharm. 2015, 39, 643–650. [Google Scholar] [CrossRef]
- Li, N.; Liu, T.; Guo, K.; Zhu, J.; Yu, G.; Wang, S.; Ye, L. Effect of mono-(2-ethylhexyl) phthalate (MEHP) on proliferation of and steroid hormone synthesis in rat ovarian granulosa cells in vitro. J. Cell. Physiol. 2018, 233, 3629–3637. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.A.; Castle, L.; Scotter, M.J.; Massey, R.C.; Springall, C. A biomarker approach to measuring human dietary exposure to certain phthalate diesters. Food Addit. Contam. 2001, 18, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- Adir, M.; Salmon-Divon, M.; Combelles, C.M.H.; Mansur, A.; Cohen, Y.; Machtinger, R. In Vitro Exposure of Human Luteinized Mural Granulosa Cells to Dibutyl Phthalate Affects Global Gene Expression. Toxicol. Sci. 2017, 160, 180–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adir, M.; Combelles, C.M.H.; Mansur, A.; Ophir, L.; Hourvitz, A.; Orvieto, R.; Dor, J.; Machtinger, R. Dibutyl phthalate impairs steroidogenesis and a subset of LH-dependent genes in cultured human mural granulosa cell in vitro. Reprod. Toxicol. 2017, 69, 13–18. [Google Scholar] [CrossRef]
- Holt, J.E.; Lane, S.I.; Jones, K.T. The control of meiotic maturation in mammalian oocytes. Curr. Top. Dev. Biol. 2013, 102, 207–226. [Google Scholar]
- Johnson, A.L.; Langer, J.S.; Bridgham, J.T. Survivin as a cell cycle-related and antiapoptotic protein in granulosa cells. Endocrinology 2002, 143, 3405–3413. [Google Scholar] [CrossRef] [Green Version]
- Kapanidou, M.; Curtis, N.L.; Bolanos-Garcia, V.M. Cdc20: At the Crossroads between Chromosome Segregation and Mitotic Exit. Trends Biochem. Sci. 2017, 42, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Vleugel, M.; Hoek, T.A.; Tromer, E.; Sliedrecht, T.; Groenewold, V.; Omerzu, M.; Kops, G.J. Dissecting the roles of human BUB1 in the spindle assembly checkpoint. J. Cell. Sci. 2015, 128, 2975–2982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malutan, A.M.; Drugan, T.; Costin, N.; Ciortea, R.; Bucuri, C.; Rada, M.P.; Mihu, D. Pro-inflammatory cytokines for evaluation of inflammatory status in endometriosis. Cent. Eur. J. Immunol. 2015, 40, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.Y.; Guo, N.; Wang, Y.X.; Hua, X.; Deng, T.R.; Teng, X.M.; Yao, Y.C.; Li, Y.F. Urinary phthalate metabolites in relation to serum anti-Mullerian hormone and inhibin B levels among women from a fertility center: A retrospective analysis. Reprod. Health 2018, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- Dokras, A.; Habana, A.; Giraldo, J.; Jones, E. Secretion of inhibin B during ovarian stimulation is decreased in infertile women with endometriosis. Fertil. Steril. 2000, 74, 35–40. [Google Scholar] [CrossRef]
- Leeners, B.; Damaso, F.; Ochsenbein-Kolble, N.; Farquhar, C. The effect of pregnancy on endometriosis-facts or fiction? Hum. Reprod. Update 2018, 24, 290–299. [Google Scholar] [CrossRef]
- Koga, K.; Takemura, Y.; Osuga, Y.; Yoshino, O.; Hirota, Y.; Hirata, T.; Morimoto, C.; Harada, M.; Yano, T.; Taketani, Y. Recurrence of ovarian endometrioma after laparoscopic excision. Hum. Reprod. 2006, 21, 2171–2174. [Google Scholar] [CrossRef]
- Busacca, M.; Chiaffarino, F.; Candiani, M.; Vignali, M.; Bertulessi, C.; Oggioni, G.; Parazzini, F. Determinants of long-term clinically detected recurrence rates of deep, ovarian, and pelvic endometriosis. Am. J. Obs. Gynecol. 2006, 195, 426–432. [Google Scholar] [CrossRef]
- Coccia, M.E.; Rizzello, F.; Palagiano, A.; Scarselli, G. Long-term follow-up after laparoscopic treatment for endometriosis: Multivariate analysis of predictive factors for recurrence of endometriotic lesions and pain. Eur. J. Obs. Gynecol. Reprod. Biol. 2011, 157, 78–83. [Google Scholar] [CrossRef]
- Shahbazi, S.; Shahrabi-Farahani, M. Evaluation of the correlation between body mass index and endometriosis among Iranian fertile women. Gynecol. Endocrinol. 2016, 32, 157–160. [Google Scholar] [CrossRef]
- Garalejic, E.; Arsic, B.; Radakovic, J.; Bojovic Jovic, D.; Lekic, D.; Macanovic, B.; Soldatovic, I.; Perovic, M. A preliminary evaluation of influence of body mass index on in vitro fertilization outcome in non-obese endometriosis patients. BMC Womens Health 2017, 17, 112. [Google Scholar] [CrossRef] [Green Version]
- Lagana, A.S.; Vitale, S.G.; Salmeri, F.M.; Triolo, O.; Ban Frangez, H.; Vrtacnik-Bokal, E.; Stojanovska, L.; Apostolopoulos, V.; Granese, R.; Sofo, V. Unus pro omnibus, omnes pro uno: A novel, evidence-based, unifying theory for the pathogenesis of endometriosis. Med. Hypotheses 2017, 103, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Vitale, S.G.; Capriglione, S.; Peterlunger, I.; La Rosa, V.L.; Vitagliano, A.; Noventa, M.; Valenti, G.; Sapia, F.; Angioli, R.; Lopez, S.; et al. The Role of Oxidative Stress and Membrane Transport Systems during Endometriosis: A Fresh Look at a Busy Corner. Oxid. Med. Cell. Longev. 2018, 2018, 7924021. [Google Scholar] [CrossRef]
- Lagana, A.S.; Garzon, S.; Gotte, M.; Vigano, P.; Franchi, M.; Ghezzi, F.; Martin, D.C. The Pathogenesis of Endometriosis: Molecular and Cell Biology Insights. Int. J. Mol. Sci. 2019, 20, 5615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagana, A.S.; Salmeri, F.M.; Ban Frangez, H.; Ghezzi, F.; Vrtacnik-Bokal, E.; Granese, R. Evaluation of M1 and M2 macrophages in ovarian endometriomas from women affected by endometriosis at different stages of the disease. Gynecol. Endocrinol. 2019, 30, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Sofo, V.; Gotte, M.; Lagana, A.S.; Salmeri, F.M.; Triolo, O.; Sturlese, E.; Retto, G.; Alfa, M.; Granese, R.; Abrao, M.S. Correlation between dioxin and endometriosis: An epigenetic route to unravel the pathogenesis of the disease. Arch. Gynecol. Obs. 2015, 292, 973–986. [Google Scholar] [CrossRef] [PubMed]
- Giampaolino, P.; Della Corte, L.; Foreste, V.; Barra, F.; Ferrero, S.; Bifulco, G. Dioxin and endometriosis: A new possible relation based on epigenetic theory. Gynecol. Endocrinol. 2019, 5, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.S.; Rozati, R.; Reddy, S.; Kodampur, S.; Reddy, P.; Reddy, R. High plasma concentrations of polychlorinated biphenyls and phthalate esters in women with endometriosis: A prospective case control study. Fertil. Steril. 2006, 85, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Silva, M.J.; Brock, J.W.; Reidy, J.A.; Malek, N.A.; Hodge, C.C.; Nakazawa, H.; Needham, L.L.; Barr, D.B. Quantitative detection of nine phthalate metabolites in human serum using reversed-phase high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. J. Anal. Toxicol. 2003, 27, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.J.; Barr, D.B.; Reidy, J.A.; Kato, K.; Malek, N.A.; Hodge, C.C.; Hurtz, D.; Calafat, A.M.; Needham, L.L.; Brock, J.W. Glucuronidation patterns of common urinary and serum monoester phthalate metabolites. Arch. Toxicol. 2003, 77, 561–567. [Google Scholar] [CrossRef]
- Silva, M.J.; Barr, D.B.; Reidy, J.A.; Malek, N.A.; Hodge, C.C.; Caudill, S.P.; Brock, J.W.; Needham, L.L.; Calafat, A.M. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999–2000. Environ. Health Perspect. 2004, 112, 331–338. [Google Scholar] [CrossRef]
- Wang, X.J.; Xiong, G.P.; Luo, X.M.; Huang, S.Z.; Liu, J.; Huang, X.L.; Xie, Y.Z.; Lin, W.P. Dibutyl Phthalate Inhibits the Effects of Follicle-Stimulating Hormone on Rat Granulosa Cells Through Down-Regulation of Follicle-Stimulating Hormone Receptor. Biol. Reprod. 2016, 94, 144. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.S.; Chiang, P.H.; Wang, Y.C.; Kao, M.C.; Shieh, T.H.; Tsai, C.F.; Tsai, E.M. Benzyl butyl phthalate induces necrosis by AhR mediation of CYP1B1 expression in human granulosa cells. Reprod. Toxicol. 2012, 33, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Ko, Y.C. Plasticizer incident and its health effects in Taiwan. Kaohsiung J. Med. Sci. 2012, 28 (Suppl. 7), S17–S21. [Google Scholar] [CrossRef]
- El-Hussein, A.; Hamblin, M.R. ROS generation and DNA damage with photo-inactivation mediated by silver nanoparticles in lung cancer cell line. IET Nanobiotechnol. 2017, 11, 173–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Endometriosis Group | Control Group | p Value |
---|---|---|---|
Total, n | 123 | 82 | |
Education | |||
Junior high school, n (%) | 3 (2.4%) | 2 (2.4%) | |
Senior high school, n (%) | 13 (10.6%) | 13 (15.9%) | |
College/University, n (%) | 73 (59.3%) | 40 (48.8%) | |
Graduate School, n (%) | 21 (17.1%) | 19 (23.2%) | |
No. of deliveries | 0.3 (0.6) | 0.5 (0.9) | 0.045 a |
BMI a, kg/m2 | 20.6 (3.4) | 22.1 (3.6) | 0.002 a |
Age of menarche | 12.8(1.4) | 12.6 (1.2) | 0.559 a |
Duration of menstrual cycle | 28.5 (2.9) | 28.8 (4.9) | 0.544 a |
Dysmenorrhea, n (%) | 92 (74.8%) | 43 (52.4%) | 0.001 b |
Regulation of menstrual cycle, n (%) | 99 (80.5%) | 61 (74.4%) | 0.302 b |
Cigarette smoking status, n (%) | 10 (8.1%) | 11 (13.4%) | 0.222 b |
Use of medicine, n (%) | 61 (49.6%) | 23 (28.0%) | 0.002 b |
Oral contraceptive, n (%) | 7 (11.5%) | 2 (8.7%) | |
Progesterone, n (%) | 8 (13.1%) | 4 (17.4%) | |
Leuprolide acetate, n (%) | 34 (55.7%) | 9 (39.1%) | |
Others, n (%) | 9 (14.8%) | 1 (4.3%) | |
Combination of medicine, n (%) | 3 (4.9%) | 7 (30.4%) |
Creatinine-Adjusted Urine Levels (µg/g Creatinine) | Endometriosis Group (n = 123) a | Control Group (n = 82) a | p Value b | p Value Adjusted c | OR (95% CI) c |
---|---|---|---|---|---|
MnBP a | 148.4 (136.8) | 109.9 (175.5) | 0.022 * | 0.034 * | 1.89 (1.05–3.39) |
MEHP a | 99.5 (112.8) | 73.7 (157.6) | 0.069 | 0.406 | 1.33 (0.68–2.59) |
MBzP a | 12.2 (18.1) | 10.0 (37.4) | 0.244 | 0.337 | 1.27 (0.78–2.06) |
MEOHP a | 66.7 (83.7) | 60.3 (127.8) | 0.392 | 0.562 | 0.73 (0.25–2.15) |
MEHHP a | 54.6 (69.3) | 54.6 (122.4) | 0.976 | 0.182 | 0.57 (0.25–1.31) |
Phthalate Diester | Primary Hydrolytic Monoester Metabolite | Secondary Oxidative Monoester Metabolite |
---|---|---|
Dibutyl phthalate (DBP) | Mono-n-butyl phthalate (MnBP) | |
Di(2-ethylhexyl) phthalate (DEHP) | Mono-(2-ethylhexyl) phthalate (MEHP) | Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) Mono-(2-ethyl-5-oxo-hexyl) phthalate (MEOHP) Mono-(2-ethyl-5-carboxypentyl) phthalate (MECCP) |
Benzylbutyl phthalate (BzBP) | Mono-benzyl phthalate (MBzP) Mono-n-butyl phthalate (MnBP) |
Gene Name | Forward Primers | Reverse Primers |
---|---|---|
baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) | 5′-cttggcccagtgtttcttct-3′ | 5′-cttattgttggtttcctttgcat-3′ |
budding uninhibited by benzimidazoles 1 homolog beta, mitotic checkpoint serine/threonine kinase beta (BUB1B) | 5′-tgcatttgaagcccagttt-3′ | 5′-caaagaagagatgatcttattgactcc-3′ |
cell division cycle 20 (CDC20) | 5′-ctgtctgagtgccgtggat-3′ | 5′-tccttgtaatggggagacca-3′ |
cyclin B1 | 5′- ccagtgccagtgtctgagc-3′ | 5′-tggagaggcagtatcaacca-3′ |
interleukin-1β (IL-1β) | 5′-atgatggcttattacagtggcaa-3′ | 5′-gtcggagattcgtagctgga-3′ |
tumor necrosis factor-α (TNF-α) | 5′-gaggccaagccctggtatg-3′ | 5′-cgggccgattgatctcagc-3′ |
anti-Mullerian hormone (AMH) | 5′-cgcctggtggtcctacac-3′ | 5′- gaacctcagcgagggtgtt-3′ |
inhibin B | 5′-ctctgcctggctcgatgt-3′ | 5′-aggccttgaagcacgaag-3′ |
steroidogenic acute regulatory protein (StAR) | 5′-gggagtggaaccccaatgtc-3′ | 5′-ccagctcgtgagtaatgaatgt-3′ |
cytochrome cholesterol side-chain cleavage enzyme (P450scc) | 5′-ctgcatgggacgtgattttc-3′ | 5′-cagggtcatggacgtcgtgt-3′ |
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) | 5′-gagtccactggcgtcttcac-3′ | 5′-gttcacacccatgacgaaca-3′ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, Y.-C.; Chen, Y.-C.; Chen, M.-J.; Chang, C.-W.; Lai, G.-L.; Tzeng, C.-R. Exposure to Mono-n-Butyl Phthalate in Women with Endometriosis and Its Association with the Biological Effects on Human Granulosa Cells. Int. J. Mol. Sci. 2020, 21, 1794. https://doi.org/10.3390/ijms21051794
Chou Y-C, Chen Y-C, Chen M-J, Chang C-W, Lai G-L, Tzeng C-R. Exposure to Mono-n-Butyl Phthalate in Women with Endometriosis and Its Association with the Biological Effects on Human Granulosa Cells. International Journal of Molecular Sciences. 2020; 21(5):1794. https://doi.org/10.3390/ijms21051794
Chicago/Turabian StyleChou, Ya-Ching, Yu-Chun Chen, Ming-Jer Chen, Ching-Wen Chang, Guan-Lin Lai, and Chii-Ruey Tzeng. 2020. "Exposure to Mono-n-Butyl Phthalate in Women with Endometriosis and Its Association with the Biological Effects on Human Granulosa Cells" International Journal of Molecular Sciences 21, no. 5: 1794. https://doi.org/10.3390/ijms21051794
APA StyleChou, Y.-C., Chen, Y.-C., Chen, M.-J., Chang, C.-W., Lai, G.-L., & Tzeng, C.-R. (2020). Exposure to Mono-n-Butyl Phthalate in Women with Endometriosis and Its Association with the Biological Effects on Human Granulosa Cells. International Journal of Molecular Sciences, 21(5), 1794. https://doi.org/10.3390/ijms21051794