Involvement of Salicylic Acid and Other Phenolic Compounds in Light-Dependent Cold Acclimation in Maize
Abstract
:1. Introduction
2. Results
2.1. Plant Hormones
2.2. Oxidative Stress and Antioxidants
2.3. Gene Expression Studies
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growth Conditions
4.2. Estimation of Lipid Peroxidation
4.3. Extraction and Analytical Procedure of Salicylic Acid and Flavonols
4.4. Measurement of Thiols
4.5. Determination of Phenylalanine Ammonia Lyase (PAL) Activity
4.6. Determination of Anthocyanin Content
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABA | abscisic acid |
ASC | ascorbate |
CysGly | cysteinyl–glycine |
GL | growth light, 387 µmol m−2 s−1 |
GSH | gluthathione (γ-L-glutamyl-L-cysteinyl–glycine) |
GST | glutathione-S-transferase |
JA | jasmonic acid |
K | kaempferol |
LL | low light intensity, 107 µmol m−2 s−1 |
MDA | malondialdehyde |
M | myricetin |
oHCA | ortho-hydroxycinnamic acid |
PAL | phenylalanine ammonia lyase |
Q | quercetin |
R | rutin |
SA | salicylic acid |
ZEP | zeaxanthin epoxidase |
γEC | γ-L-glutamyl-L-cysteine |
References
- Bredenkamp, G.J.; Baker, N.R. Temperature-sensitivity of D1 protein metabolism in isolated Zea mays chloroplasts. Plant Cell Environ. 1994, 17, 205–210. [Google Scholar] [CrossRef]
- Greaves, J.A. Improving suboptimal temperature tolerance in maize—The search for variation. J. Exp. Bot. 1996, 47, 307–323. [Google Scholar] [CrossRef]
- Anderson, M.D.; Prasad, T.K.; Martin, B.A.; Stewart, C.R. Differential gene expression in chilling-acclimated maize seedlings and evidence for the involvement of abscisic acid in chilling tolerance. Plant Physiol. 1994, 105, 331–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, T.K. Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: Changes in antioxidant system, oxidation of proteins and lipids, and protease activity. Plant J. 1996, 10, 1017–1026. [Google Scholar] [CrossRef]
- Janda, T.; Szalai, G.; Ducruet, J.-M.; Páldi, E. Changes in photosynthesis in inbred maize lines with different degrees of chilling tolerance grown at optimum and suboptimum temperatures. Photosynthetica 1998, 35, 205–212. [Google Scholar] [CrossRef]
- Gray, G.R.; Chauvin, L.P.; Sarhan, F.; Huner, N. Cold acclimation and freezing tolerance (a complex interaction of light and temperature). Plant Physiol. 1997, 114, 467–474. [Google Scholar] [CrossRef] [Green Version]
- Apostol, S.; Szalai, G.; Sujbert, L.; Popova, L.P.; Janda, T. Noninvasive monitoring of the light-induced cyclic photosynthetic electron flow during cold hardening in wheat leaves. Z. Nat. C 2006, 61, 734–740. [Google Scholar]
- Catalá, R.; Medina, J.; Salinas, J. Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proc. Natl. Acad. Sci. USA 2011, 108, 16475–16480. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.M.; Thomashow, M.F. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2012, 109, 15054–15059. [Google Scholar] [CrossRef] [Green Version]
- Janda, T.; Majláth, I.; Szalai, G. Interaction of temperature and light in the development of freezing tolerance in plants. J. Plant Growth Regul. 2014, 33, 460–469. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Aro, E.M.; Millar, A.H. Mechanisms of Photodamage and Protein Turnover in Photoinhibition. Trends Plant Sci. 2018, 23, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Szalai, G.; Majláth, I.; Pál, M.; Gondor, O.K.; Rudnóy, S.; Oláh, C.; Vanková, R.; Kalapos, B.; Janda, T. Janus-Faced Nature of Light in the Cold Acclimation Processes of Maize. Front. Plant Sci. 2018, 9, 850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Yang, Y.J.; Hu, H.; Zhang, S.B. Moderate photoinhibition of photosystem II protects photosystem I from photodamage at chilling stress in tobacco leaves. Front. Plant Sci. 2016, 7, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima-Melo, Y.; Alencar, V.T.C.B.; Lobo, A.K.M.; Sousa, R.H.V.; Tikkanen, M.; Aro, E.-M.; Silveira, J.A.G.; Gollan, P.J. Photoinhibition of Photosystem I provides oxidative protection during imbalanced photosynthetic electron transport in Arabidopsis thaliana. Front. Plant Sci. 2019, 10, 916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solecka, D.; Kacperska, A. Phenylpropanoid deficiency affects the course of plant acclimation to cold. Physiol. Plant. 2003, 119, 253–262. [Google Scholar] [CrossRef]
- Seyfferth, C.; Tsuda, K. Salicylic acid signal transduction: The initiation of biosynthesis, perception and transcriptional reprogramming. Front. Plant Sci. 2014, 5, 697. [Google Scholar] [CrossRef] [Green Version]
- Poór, P.; Czékus, Z.; Tari, I.; Ördög, A. The multifaceted roles of plant hormone salicylic acid in endoplasmic reticulum stress and unfolded protein response. Int. J. Mol. Sci. 2019, 20, 5842. [Google Scholar] [CrossRef] [Green Version]
- Cappellari, L.D.R.; Santoro, M.V.; Schmidt, A.; Gershenzon, J.; Banchio, E. Improving phenolic total content and monoterpene in Mentha x piperita by using salicylic acid or methyl jasmonate combined with Rhizobacteria inoculation. Int. J. Mol. Sci. 2020, 21, 50. [Google Scholar] [CrossRef] [Green Version]
- Palmer, I.A.; Chen, H.; Chen, J.; Chang, M.; Li, M.; Liu, F.; Fu, Z.Q. Novel salicylic acid analogs induce a potent defense response in Arabidopsis. Int. J. Mol. Sci. 2019, 20, 3356. [Google Scholar] [CrossRef] [Green Version]
- Majláth, I.; Szalai, G.; Soós, V.; Sebestyén, E.; Balázs, E.; Vanková, R.; Dobrev, P.I.; Tandori, J.; Janda, T. Effect of light on the gene expression and hormonal status of winter and spring wheat plants during cold hardening. Phys. Plant. 2012, 145, 296–314. [Google Scholar] [CrossRef]
- Szalai, G.; Pap, M.; Janda, T. Light-induced frost tolerance differs in winter and spring wheat plants. J. Plant Physiol. 2009, 166, 1826–1831. [Google Scholar] [CrossRef] [PubMed]
- Janda, T.; Szalai, G.; Tari, I.; Páldi, E. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 1999, 208, 175–180. [Google Scholar] [CrossRef]
- Scott, I.M.; Clarke, S.M.; Wood, J.E.; Mur, L.A.J. Salicylate Accumulation Inhibits Growth at Chilling Temperature in Arabidopsis. Plant Physiol. 2004, 135, 1040–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokotylo, I.; Kravets, V.; Ruelland, E. Salicylic acid binding proteins (SABPs): The hidden forefront of salicylic acid signalling. Int. J. Mol. Sci. 2019, 20, 4377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westfall, C.S.; Xu, A.; Jez, J.M. Structural evolution of differential amino acid effector regulation in plant chorismate mutases. J. Biol. Chem. 2014, 289, 28619–28628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vishwakarma, K.; Upadhyay, N.; Kumar, N.; Yadav, G.; Singh, J.; Mishra, R.K.; Kumar, V.; Verma, R.; Upadhyay, R.G.; Pandey, M.; et al. Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects. Front. Plant Sci. 2017, 8, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, L.; Zhu, J.-K. Regulation of abscisic acid biosynthesis. Plant Physiol. 2003, 133, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Soitamo, A.J.; Piippo, M.; Allahverdiyeva, Y.; Natalia Battchikova, N.; Aro, E.-M. Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biology 2008, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Janda, T.; Szalai, G.; Leskó, K.; Yordanova, R.; Apostol, S.; Popova, L. Factors contributing to the enhanced freezing tolerance in wheat during frost hardening in light. Phytochemistry 2007, 68, 1674–1682. [Google Scholar] [CrossRef]
- Szalai, G.; Janda, T.; Páldi, E.; Szigeti, Z. Role of light in the development of post-chilling symptoms in maize. J. Plant Physiol. 1996, 148, 378–383. [Google Scholar] [CrossRef]
- Janda, T.; Szalai, G.; Páldi, E. Chlorophyll fluorescence and anthocyanin content in chilled maize plants and after returned to a non-chilling temperature under various light conditions. Biol. Plant. 1996, 38, 625–627. [Google Scholar] [CrossRef]
- Zagorchev, L.; Seal, C.E.; Kranner, I.; Odjakova, M. A Central Role for Thiols in Plant Tolerance to Abiotic Stress. Int. J. Mol. Sci. 2013, 14, 7405–7432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toldi, D.; Gyugos, M.; Darkó, É.; Szalai, G.; Gulyás, Z.; Gierczik, K.; Székely, A.; Boldizsár, Á.; Galiba, G.; Müller, M.; et al. Light intensity and spectrum affect metabolism of glutathione and amino acids at transcriptional level. PLoS ONE 2019, 14, e0227271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Chaouch, S.; Mhamdi, A.; Queval, G.; Zechmann, B.; Noctor, G. Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signalling. Antioxid. Redox Signal. 2013, 18, 2106–2121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellős, T.; Tímár, I.; Szilágyi, V.; Szalai, G.; Galiba, G.; Kocsy, G. Stress hormones and abiotic stresses have different effects on antioxidants in maize lines with different sensitivity. Plant Biol. 2008, 10, 563–572. [Google Scholar] [CrossRef]
- Gondor, O.K.; Janda, T.; Soós, V.; Pál, M.; Majláth, I.; Adak, M.K.; Balázs, E.; Szalai, G. Salicylic acid induction of flavonoid biosynthesis pathways in wheat varies by treatment. Front. Plant Sci. 2016, 7, 1447. [Google Scholar] [CrossRef] [Green Version]
- Meuwly, P.; Métraux, J.P. Ortho-anisic acid as internal standard for the simultaneous quantitation of salicylic acid and its putative biosynthetic precursors in cucumber leaves. Anal. Biochem. 1993, 214, 500–505. [Google Scholar] [CrossRef]
- Pál, M.; Horváth, E.; Janda, T.; Páldi, E.; Szalai, G. Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays L.) plants. Physiol. Plant. 2005, 125, 356–364. [Google Scholar] [CrossRef]
- Janda, T.; Lejmel, M.A.; Molnár, A.B.; Majláth, I.; Pál, M.; Nguyen, Q.T.; Nguyen, N.T.; Le, V.N.; Szalai, G. Interaction between elevated temperature and different types of Na-salicylate treatment in Brachypodium dystachion. PLoS ONE 2020, 15, e0227608. [Google Scholar] [CrossRef] [Green Version]
- Gulyás, Z.; Boldizsár, Á.; Novák, A.; Szalai, G.; Pál, M.; Galiba, G.; Kocsy, G. Central role of the flowering repressor ZCCT2 in the redox control of freezing tolerance and the initial development of flower primordia in wheat. BMC Plant Biol. 2014, 14, 91. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Yan, R.; Cao, M.; Yang, W.; Wang, S.; Chen, F. Effects of copper on growth, antioxidant enzymes and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedling. Plant Soil Environ. 2008, 54, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Kho, K.F.F.; Bolsman-Louwen, A.C.; Vuik, J.C.; Bennink, G.J.H. Anthocyanin synthesis in a white flowering mutant of Petunia hybrida—II. Accumulation of dihydroflavonol intermediates in white flowering mutants; uptake of intermediates in isolated corollas and conversion into anthocyanins. Planta 1977, 135, 109–118. [Google Scholar] [CrossRef] [PubMed]
Leaf | 3 d 15 °C | 3 d 5 °C | 1 d recovery | 4 d recovery | 7 d recovery | ||||||||||
Control | GL | LL | NA | GL | LL | NA | GL | LL | NA | GL | LL | NA | GL | LL | |
Kaempferol | 0.76 ± 0.11 | 1.04 ± 0.09 ** | 0.9 ± 0.07 *# | 0.92 ± 0.04 | 0.96 ± 0.16*## | 0.725 ± 0.1 | 1.1 ± 0.46 | 0.96 ± 0.15 | 0.92 ± 0.11 | 2.125 ± 0.44 | 1.04 ± 0.09 *** | 0.96 ± 0.18 *** | 1.4 ± 0.34 | 0.74 ± 0.05 ** | 0.72 ± 0.08 ** |
Quercetin | 1.43 ± 0.1 | 1.52 ± 0.38 | 1.52 ± 0.16 | 1.76 ± 0.15 | 1.52 ± 0.23 | 1.625 ± 0.17 | 1.66 ± 0.4 | 1.4 ± 0.12 | 1.28 ± 0.13 | 1.42 ± 0.08 | 1.25 ± 0.06 | 1.36 ± 0.29 | 1.12 ± 0.04 | 1.02 ± 0.11 | 0.94 ± 0.15 * |
Myricetin | 0.31 ± 0.07 | 0.59 ± 0.33 | 0.71 ± 0.42 | 0.24 ± 0.05 | 0.24 ± 0.09 | 0.19 ± 0.22 | nd | 0.58 ± 0.21 *** | 0.65 ± 0.35 ** | nd | nd | nd | nd | 0.43 ± 0.12 *** | 0.3 ± 0.2 * |
Rutin | 83.28 ± 10.9 | 101.38 ± 8.3 ** | 104.38 ± 7.77 ** | 87.4 ± 10.57 | 97.12 ± 18.51 | 121.83 ± 3.38 ***# | 89.78 ± 6.44 | 82.12 ± 0.82 * | 96.68 ± 5.1 ### | 41.98 ± 15.44 | 31.9 ± 8.24 | 50.28 ± 8.63 # | 37.52 ± 12.59 | 38.54 ± 6.79 | 37.12 ± 3.07 |
Root | 3 d 15 °C | 3 d 5 °C | 1 d recovery | 4 d recovery | 7 d recovery | ||||||||||
Control | GL | LL | NA | GL | LL | NA | GL | LL | NA | GL | LL | NA | GL | LL | |
Kaempferol | 0.04 ± 0.02 | 0.05 ± 0.01 | 0.06 ± 0.02 | 0.13 ± 0.03 | 0.13 ± 0.01 *## | 0.09 ± 0.02 | 0.19 ± 0.03 | 0.16 ± 0.03 | 0.14 ± 0.03 | 0.21 ± 0.03 | 0.25 ± 0.05 | 0.15 ± 0.09 | 0.06 ± 0.02 | 0.04 ± 0.02 | 0.07 ± 0.04 |
Quercetin | 1.18 ± 0.14 | 1.36 ± 0.06 * | 1.38 ± 0.1 * | 1.36 ± 0.26 | 1.44 ± 0.27 | 1.18 ± 0.16 | 1.45 ± 0.17 | 1.02 ± 0.13 ** | 1.26 ± 0.13# | 1.14 ± 0.11 | 1.2 ± 0.19 | 0.93 ± 0.05**# | 0.8 ± 0.1 | 0.9 ± 0.19 | 1.08 ± 0.08 ** |
Myricetin | 8.02 ± 0.92 | 26.52 ± 8.99 ** | 29.34 ± 13.61 ** | 11.28 ± 6.04 | 7.76 ± 2.38 | 8.68 ± 6.07 | 4.5 ± 4.6 | 2 ± 1.57 | 2.84 ± 1.8 | 3.28 ± 1.15 | 6.58 ± 2.6* | 7.72 ± 8.01 | 7.94 ± 4.25 | 7.72 ± 1.87 | 11.04 ± 2.9 |
Rutin | 132.55 ± 18.47 | 130.86 ± 13.14 | 118.8 ± 8.76 | 110.1 ± 6.81 | 105.16 ± 8.88 | 97.18 ± 15.11 | 104.75 ± 2.06 | 97.68 ± 3.48 * | 95.02 ± 6.85 | 106.56 ± 8.13 | 100.44 ± 3.23 | 117.17 ± 20.45 | 126.12 ± 4.68 | 119.36 ± 13.55 | 107.8 ± 12.77 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pál, M.; Janda, T.; Majláth, I.; Szalai, G. Involvement of Salicylic Acid and Other Phenolic Compounds in Light-Dependent Cold Acclimation in Maize. Int. J. Mol. Sci. 2020, 21, 1942. https://doi.org/10.3390/ijms21061942
Pál M, Janda T, Majláth I, Szalai G. Involvement of Salicylic Acid and Other Phenolic Compounds in Light-Dependent Cold Acclimation in Maize. International Journal of Molecular Sciences. 2020; 21(6):1942. https://doi.org/10.3390/ijms21061942
Chicago/Turabian StylePál, Magda, Tibor Janda, Imre Majláth, and Gabriella Szalai. 2020. "Involvement of Salicylic Acid and Other Phenolic Compounds in Light-Dependent Cold Acclimation in Maize" International Journal of Molecular Sciences 21, no. 6: 1942. https://doi.org/10.3390/ijms21061942
APA StylePál, M., Janda, T., Majláth, I., & Szalai, G. (2020). Involvement of Salicylic Acid and Other Phenolic Compounds in Light-Dependent Cold Acclimation in Maize. International Journal of Molecular Sciences, 21(6), 1942. https://doi.org/10.3390/ijms21061942