Non-Invasive Cerebellar Stimulation in Neurodegenerative Ataxia: A Literature Review
Abstract
:1. Introduction
2. Transcranial Magnetic Stimulation for the Treatment of Cerebellar Ataxias
2.1. TMS Techniques
2.2. Clinical Studies
3. Transcranial Direct Current Stimulation for the Treatment of Cerebellar Ataxias
3.1. tDCS Techniques
3.2. Clinical Studies
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CANVAS | cerebellar ataxia neuropathy and vestibular areflexia syndrome |
CBI | cerebellar brain inhibition |
ICARS | International Cooperative Ataxia Rating Scale |
LTD | long-term depression |
LTP | long-term potentiation |
MSCA-C | cerebellar variant of multiple system atrophy |
PSP | progressive supranuclear palsy |
SARA | Scale for the Assessment and Rating of Ataxia |
SCA | spinocerebellar ataxia |
tACS | transcranial alternating current stimulation |
tDCS | transcranial direct current stimulation |
TBS | theta burst stimulation |
TMS | transcranial magnetic stimulation |
rTMS | repetitive transcranial magnetic stimulation |
References
- Harding, A.E. Classification of the Hereditary Ataxias and Paraplegias. Lancet 1983, 321, 1151–1155. [Google Scholar] [CrossRef]
- Durr, A. Autosomal dominant cerebellar ataxias: Polyglutamine expansions and beyond. Lancet Neurol. 2010, 9, 885–894. [Google Scholar] [CrossRef]
- Ruano, L.; Melo, C.; Silva, M.C.; Coutinho, P. The Global Epidemiology of Hereditary Ataxia and Spastic Paraplegia: A Systematic Review of Prevalence Studies. Neuroepidemiology 2014, 42, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Paulson, H.L.; Shakkottai, V.G.; Clark, H.B.; Orr, H.T. Polyglutamine spinocerebellar ataxias — From genes to potential treatments. Nat. Rev. Neurosci. 2017, 18, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Klockgether, T.; Mariotti, C.; Paulson, H.L. Spinocerebellar ataxia. Nat. Rev. Dis. Prim. 2019, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Synofzik, M.; Németh, A.H. Recessive ataxias. Handb. Clin. Neurol. 2018, 155, 73–89. [Google Scholar]
- Zanni, G.; Bertini, E. X-linked ataxias. In Handbook of Clinical Neurology, 1st ed.; Manto, M., Huisman, T.A.G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 155, pp. 175–189. [Google Scholar]
- Nagafuchi, S.; Yanagisawa, H.; Ohsaki, E.; Shirayama, T.; Tadokoro, K.; Inoue, T.; Yamada, M. Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nat. Genet. 1994, 8, 177–182. [Google Scholar] [CrossRef]
- Jen, J.C.; Graves, T.D.; Hess, E.J.; Hanna, M.G.; Griggs, R.C.; Baloh, R.W. Primary episodic ataxias: Diagnosis, pathogenesis and treatment. Brain 2007, 130, 2484–2493. [Google Scholar] [CrossRef] [Green Version]
- Dürr, A.; Cossee, M.; Agid, Y.; Campuzano, V.; Mignard, C.; Penet, C.; Mandel, J.L.; Brice, A.; Koenig, M. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N. Engl. J. Med. 1996, 335, 1169–1175. [Google Scholar] [CrossRef]
- Gatti, R.A.; Berkel, I.; Boder, E.; Braedt, G.; Charmley, P.; Concannon, P.; Ersoy, F.; Foroud, T.; Jaspers, N.G.; Lange, K. Localization of an ataxia-telangiectasia gene to chromosome 11q22–23. Nature 1988, 336, 577–580. [Google Scholar] [CrossRef]
- Le Ber, I.; Moreira, M.C.; Rivaud-Péchoux, S.; Chamayou, C.; Ochsner, F.; Kuntzer, T.; Tardieu, M.; Saïd, G.; Habert, M.O.; Demarquay, G.; et al. Cerebellar ataxia with oculomotor apraxia type 1: Clinical and genetic studies. Brain 2003, 126, 2761–2772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Ber, I.; Bouslam, N.; Rivaud-Péchoux, S.; Guimarães, J.; Benomar, A.; Chamayou, C.; Goizet, C.; Moreira, M.C.; Klur, S.; Yahyaoui, M.; et al. Frequency and phenotypic spectrum of ataxia with oculomotor apraxia 2: A clinical and genetic study in 18 patients. Brain 2004, 127, 759–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mai, N.; Bolsinger, P.; Avarello, M.; Diener, H.C.; Dichgans, J. Control of isometric finger force in patients with cerebellar disease. Brain 1988, 111, 973–998. [Google Scholar] [CrossRef] [PubMed]
- Roy, C.N.; Andrews, N.C. Recent advances in disorders of iron metabolism: Mutations, mechanisms and modifiers. Hum. Mol. Genet. 2001, 10, 2181–2186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouahchi, K.; Arita, M.; Kayden, H.; Hentati, F.; Hamida, M.B.; Sokol, R.; Arai, H.; Inoue, K.; Mandel, J.L.; Koenig, M. Ataxia with isolated vitamin E deficiency is caused by mutations in the α–tocopherol transfer protein. Nat. Genet. 1995, 9, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Cortese, A.; Simone, R.; Sullivan, R.; Vandrovcova, J.; Tariq, H.; Yan, Y.W.; Humphrey, J.; Jaunmuktane, Z.; Sivakumar, P.; Polke, J.; et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat. Genet. 2019, 51, 649–658. [Google Scholar] [CrossRef]
- Cali, J.J.; Hsieh, C.L.; Francke, U.; Russell, D.W. Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J. Biol. Chem. 1991, 266, 7779–7783. [Google Scholar]
- Hagerman, R.; Hagerman, P. Advances in clinical and molecular understanding of the FMR1 premutation and fragile X-associated tremor/ataxia syndrome. Lancet Neurol. 2013, 12, 786–798. [Google Scholar] [CrossRef] [Green Version]
- Zeviani, M.; Simonati, A.; Bindoff, L.A. Ataxia in mitochondrial disorders. In Handbook of Clinical Neurology, 1st ed.; Subramony, S.H., Dürr, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 103, pp. 359–372. [Google Scholar]
- Gilman, S.; Wenning, G.K.; Low, P.A.; Brooks, D.J.; Mathias, C.J.; Trojanowski, J.Q.; Wood, N.W.; Colosimo, C.; Dürr, A.; Fowler, C.J.; et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 2008, 71, 670–676. [Google Scholar] [CrossRef]
- Schwartz, S.; Besenthal, I.; Dichgans, J.; Zu, C.; Scho, L.; Riess, O.; Abele, M.; Bu, K. The aetiology of sporadic adult-onset ataxia. Brain 2002, 125, 961–968. [Google Scholar]
- Kanazawa, M.; Shimohata, T.; Toyoshima, Y.; Tada, M.; Kakita, A.; Morita, T.; Ozawa, T.; Takahashi, H.; Nishizawa, M. Cerebellar involvement in progressive supranuclear palsy: A clinicopathological study. Mov. Disord. 2009, 24, 1312–1318. [Google Scholar] [CrossRef]
- Höglinger, G.U.; Respondek, G.; Stamelou, M.; Kurz, C.; Josephs, K.A.; Lang, A.E.; Mollenhauer, B.; Müller, U.; Nilsson, C.; Whitwell, J.L.; et al. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Mov. Disord. 2017, 32, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Zesiewicz, T.A.; Wilmot, G.; Kuo, S.-H.; Perlman, S.; Greenstein, P.E.; Ying, S.H.; Ashizawa, T.; Subramony, S.H.; Schmahmann, J.D.; Figueroa, K.P.; et al. Comprehensive systematic review summary: Treatment of cerebellar motor dysfunction and ataxia. Neurology 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maas, R.P.P.W.M.; Helmich, R.C.G.; van de Warrenburg, B.P.C. The role of the cerebellum in degenerative ataxias and essential tremor: Insights from noninvasive modulation of cerebellar activity. Mov. Disord. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimaldi, G.; Argyropoulos, G.P.; Bastian, A.; Cortes, M.; Davis, N.J.; Edwards, D.J.; Ferrucci, R.; Fregni, F.; Galea, J.M.; Hamada, M.; et al. Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease. Neuroscientist 2016, 22, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Manto, M.; Taib, N.O. Ben A novel approach for treating cerebellar ataxias. Med. Hypotheses 2008, 71, 58–60. [Google Scholar] [CrossRef]
- Grimaldi, G.; Argyropoulos, G.P.; Boehringer, A.; Celnik, P.; Edwards, M.J.; Ferrucci, R.; Galea, J.M.; Groiss, S.J.; Hiraoka, K.; Kassavetis, P.; et al. Non-invasive cerebellar stimulation—A consensus paper. Cerebellum 2014, 13, 121–138. [Google Scholar] [CrossRef]
- Gandini, J.; Manto, M.; Bremova-Ertl, T.; Feil, K.; Strupp, M. The neurological update: Therapies for cerebellar ataxias in 2020. J. Neurol. 2020. [Google Scholar] [CrossRef]
- Ferrucci, R.; Bocci, T.; Cortese, F.; Ruggiero, F.; Priori, A. Cerebellar transcranial direct current stimulation in neurological disease. Cerebellum Ataxias 2016, 3, 643. [Google Scholar] [CrossRef] [Green Version]
- Mitoma, H.; Manto, M. The Era of Cerebellar Therapy. Curr. Neuropharmacol. 2018, 17, 3–6. [Google Scholar] [CrossRef]
- Miterko, L.N.; Baker, K.B.; Beckinghausen, J.; Bradnam, L.V.; Cheng, M.Y.; Cooperrider, J.; DeLong, M.R.; Gornati, S.V.; Hallett, M.; Heck, D.H.; et al. Consensus Paper: Experimental Neurostimulation of the Cerebellum. Cerebellum 2019, 18, 1064–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossini, P.M.; Burke, D.; Chen, R.; Cohen, L.G.; Daskalakis, Z.; Di Iorio, R.; Di Lazzaro, V.; Ferreri, F.; Fitzgerald, P.B.; George, M.S.; et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin. Neurophysiol. 2015, 126, 1071–1107. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Labrada, R.; Velázquez-Pérez, L.; Ziemann, U. Transcranial magnetic stimulation in hereditary ataxias: Diagnostic utility, pathophysiological insight and treatment. Clin. Neurophysiol. 2018, 129, 1688–1698. [Google Scholar] [CrossRef] [PubMed]
- Ugawa, Y.; Terao, Y.; Nagai, C.; Nakamura, K.; Kanazawa, I. Electrical stimulation of the cerebellum normally suppresses motor cortical excitability in a patient with ataxia due to a lesion of the middle cerebellar peduncle. Eur. Neurol. 1995, 35, 243–244. [Google Scholar] [CrossRef] [PubMed]
- Ugawa, Y.; Uesaka, Y.; Terao, Y.; Hanajima, R.; Kanazawa, I. Magnetic stimulation over the cerebellum in humans. Ann. Neurol. 1995, 37, 703–713. [Google Scholar] [CrossRef]
- Benussi, A.; Dell’Era, V.; Cantoni, V.; Turrone, R.; Pilotto, A.; Alberici, A.; Cotelli, M.S.; Rizzetti, C.; Padovani, A.; Borroni, B. Stimulation over the cerebellum with a regular figure-of-eight coil induces reduced motor cortex inhibition in patients with progressive supranuclear palsy. Brain Stimul. 2019, 12, 1290–1297. [Google Scholar] [CrossRef]
- Fernandez, L.; Major, B.P.; Teo, W.-P.; Byrne, L.K.; Enticott, P.G. Assessing cerebellar brain inhibition (CBI) via transcranial magnetic stimulation (TMS): A systematic review. Neurosci. Biobehav. Rev. 2018, 86, 176–206. [Google Scholar] [CrossRef]
- Ugawa, Y.; Terao, Y.; Hanajima, R.; Sakai, K.; Furubayashi, T.; Machii, K.; Kanazawa, I. Magnetic stimulation over the cerebellum in patients with ataxia. Electroencephalogr. Clin. Neurophysiol. 1997, 104, 453–458. [Google Scholar] [CrossRef]
- Ugawa, Y.; Genba, K.; Iwata, M.; Kanazawa, I. Suppression of motor cortical excitability by cerebellar stimulation in ataxia. Electroencephalogr. Clin. Neurophysiol. 1993, 87, S125. [Google Scholar]
- Matsunaga, K.; Uozumi, T.; Hashimoto, T.; Tsuji, S. Cerebellar stimulation in acute cerebellar ataxia. Clin. Neurophysiol. 2001, 112, 619–622. [Google Scholar] [CrossRef]
- Ugawa, Y.; Genba-Shimizu, K.; Rothwell, J.C.; Iwata, M.; Kanazawa, I. Suppression of motor cortical excitability by electrical stimulation over the cerebellum in ataxia. Ann. Neurol. 1994, 36, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Ugawa, Y.; Hanajima, R.; Kanazawa, I. Motor cortex inhibition in patients with ataxia. Electroencephalogr. Clin. Neurophysiol. 1994, 93, 225–229. [Google Scholar] [CrossRef]
- Iwata, N.; Ugawa, Y. The effects of cerebellar stimulation on the motor cortical excitability in neurological disorders: A review. Cerebellum 2005, 4, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Matsugi, A.; Kikuchi, Y.; Kaneko, K.; Seko, Y.; Odagaki, M. Cerebellar transcranial magnetic stimulation facilitates excitability of spinal reflex, but does not affect cerebellar inhibition and facilitation in spinocerebellar ataxia. Neuroreport 2018, 29, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Leone, A.; Valls-Solé, J.; Wassermann, E.M.; Hallett, M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 1994, 117, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Maeda, F.; Keenan, J.P.; Tormos, J.M.; Topka, H.; Pascual-Leone, A. Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin. Neurophysiol. 2000, 111, 800–805. [Google Scholar] [CrossRef]
- Davila-Pérez, P.; Jannati, A.; Fried, P.J.; Cudeiro Mazaira, J.; Pascual-Leone, A. The Effects of Waveform and Current Direction on the Efficacy and Test–Retest Reliability of Transcranial Magnetic Stimulation. Neuroscience 2018, 393, 97–109. [Google Scholar] [CrossRef]
- Maeda, F.; Keenan, J.P.; Tormos, J.M.; Topka, H.; Pascual-Leone, A. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp. Brain Res. 2000, 133, 425–430. [Google Scholar] [CrossRef]
- Huang, Y.-Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta burst stimulation of the human motor cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Bliss, T.V.P.; Lømo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 1973, 232, 331–356. [Google Scholar] [CrossRef]
- Wang, D.J.; Su, L.D.; Wang, Y.N.; Yang, D.; Sun, C.L.; Zhou, L.; Wang, X.X.; Shen, Y. Long-term potentiation at cerebellar parallel fiber-Purkinje cell synapses requires presynaptic and postsynaptic signaling cascades. J. Neurosci. 2014, 34, 2355–2364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, H.; Tsuda, T.; Shiga, Y.; Miyazawa, K.; Onodera, Y.; Matsuzaki, M.; Nakashima, I.; Furukawa, K.; Aoki, M.; Kato, H.; et al. Therapeutic efficacy of transcranial magnetic stimulation for hereditary spinocerebellar degeneration. Tohoku J. Exp. Med. 1999, 189, 203–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiga, Y.; Tsuda, T.; Itoyama, Y.; Shimizu, H.; Miyazawa, K.-I.; Jin, K.; Yamazaki, T. Transcranial magnetic stimulation alleviates truncal ataxia in spinocerebellar degeneration. J. Neurol. Neurosurg. Psychiatry 2002, 72, 124–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ihara, Y.; Nobukuni, K.; Takata, H.; Sakai, K.; Nishinaka, T.; Tanabe, Y.; Takahashi, K. Influence of repetitive transcranial magnetic stimulation on ataxia severity and biochemical parameters in cerebrospinal fluid of patients with spinocerebellar degeneration. IRYO Jpn. J. Natl. Med. Serv. 2006, 60, 233–238. [Google Scholar]
- Schulz, J.B.; Dehmer, T.; Schöls, L.; Mende, H.; Hardt, C.; Vorgerd, M.; Bürk, K.; Matson, W.; Dichgans, J.; Beal, M.F.; et al. Oxidative stress in patients with Friedreich ataxia. Neurology 2000, 55, 1719–1721. [Google Scholar] [CrossRef]
- Yamashita, T.; Ando, Y.; Obayashi, K.; Terazaki, H.; Sakashita, N.; Uchida, K.; Ohama, E.; Ando, M.; Uchino, M. Oxidative injury is present in Purkinje cells in patients with olivopontocerebellar atrophy. J. Neurol. Sci. 2000, 175, 107–110. [Google Scholar] [CrossRef]
- Post, A.; Müller, M.B.; Engelmann, M.; Keck, M.E. Repetitive transcranial magnetic stimulation in rats: Evidence for a neuroprotective effect in vitro and in vivo. Eur. J. Neurosci. 1999, 11, 3247–3254. [Google Scholar] [CrossRef]
- Farzan, F.; Wu, Y.; Manor, B.; Anastasio, E.M.; Lough, M.; Novak, V.; Greenstein, P.E.; Pascual-Leone, A. Cerebellar TMS in treatment of a patient with cerebellar ataxia: Evidence from clinical, biomechanics and neurophysiological assessments. Cerebellum 2013, 12, 707–712. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, M.; Bekki, M.; Miura, Y.; Itatani, M.; Jie, L.X. Cerebellar Transcranial Magnetic Stimulation Improves Ataxia in Minamata Disease. Case Rep. Neurol. 2019, 11, 167–172. [Google Scholar] [CrossRef]
- Kawamura, K.; Etoh, S.; Shimodozono, M. Transcranial magnetic stimulation for diplopia in a patient with spinocerebellar ataxia type 6: A case report. Cerebellum Ataxias 2018, 5, 1–7. [Google Scholar] [CrossRef]
- Dang, G.; Su, X.; Zhou, Z.; Che, S.; Zeng, S.; Chen, S.; Guo, Y. Beneficial effects of cerebellar rTMS stimulation on a patient with spinocerebellar ataxia type 6. Brain Stimul. 2019, 12, 767–769. [Google Scholar] [CrossRef] [PubMed]
- Manor, B.; Greenstein, P.E.; Davila-Perez, P.; Wakefield, S.; Zhou, J.; Pascual-Leone, A. Repetitive transcranial magnetic stimulation in spinocerebellar ataxia: A pilot randomized controlled trial. Front. Neurol. 2019, 10, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellicciari, M.C.; Miniussi, C. Transcranial Direct Current Stimulation in Neurodegenerative Disorders. J. ECT 2018, 34, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Liebetanz, D.; Nitsche, M.A.; Tergau, F.; Paulus, W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 2002, 125, 2238–2247. [Google Scholar] [CrossRef] [Green Version]
- Hoxha, E.; Balbo, I.; Miniaci, M.C.; Tempia, F. Purkinje cell signaling deficits in animal models of ataxia. Front. Synaptic Neurosci. 2018, 10, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Galea, J.M.; Jayaram, G.; Ajagbe, L.; Celnik, P. Modulation of Cerebellar Excitability by Polarity-Specific Noninvasive Direct Current Stimulation. J. Neurosci. 2009, 29, 9115–9122. [Google Scholar] [CrossRef]
- Jayaram, G.; Tang, B.; Pallegadda, R.; Vasudevan, E.V.L.; Celnik, P.; Bastian, A. Modulating locomotor adaptation with cerebellar stimulation. J. Neurophysiol. 2012, 107, 2950–2957. [Google Scholar] [CrossRef] [Green Version]
- Galea, J.M.; Vazquez, A.; Pasricha, N.; Orban de Xivry, J.J.; Celnik, P. Dissociating the Roles of the Cerebellum and Motor Cortex during Adaptive Learning: The Motor Cortex Retains What the Cerebellum Learns. Cereb. Cortex 2011, 21, 1761–1770. [Google Scholar] [CrossRef] [Green Version]
- Poortvliet, P.; Hsieh, B.; Cresswell, A.; Au, J.; Meinzer, M. Cerebellar transcranial direct current stimulation improves adaptive postural control. Clin. Neurophysiol. 2018, 129, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Cantarero, G.; Spampinato, D.; Reis, J.; Ajagbe, L.; Thompson, T.; Kulkarni, K.; Celnik, P. Cerebellar Direct Current Stimulation Enhances On-Line Motor Skill Acquisition through an Effect on Accuracy. J. Neurosci. 2015, 35, 3285–3290. [Google Scholar] [CrossRef] [PubMed]
- Batsikadze, G.; Rezaee, Z.; Chang, D.I.; Gerwig, M.; Herlitze, S.; Dutta, A.; Nitsche, M.A.; Timmann, D. Effects of cerebellar transcranial direct current stimulation on cerebellar-brain inhibition in humans: A systematic evaluation. Brain Stimul. 2019, 12, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, G.; Manto, M. Anodal transcranial direct current stimulation (tDCS) decreases the amplitudes of long-latency stretch reflexes in cerebellar ataxia. Ann. Biomed. Eng. 2013, 41, 2437–2447. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, G.; Oulad Ben Taib, N.; Manto, M.; Bodranghien, F. Marked reduction of cerebellar deficits in upper limbs following transcranial cerebello-cerebral DC stimulation: Tremor reduction and re-programming of the timing of antagonist commands. Front. Syst. Neurosci. 2014, 8, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hore, J.; Flament, D. Changes in motor cortex neural discharge associated with the development of cerebellar limb ataxia. J. Neurophysiol. 1988, 60, 1285–1302. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, N.G.; Minafra, B.; Zangaglia, R.; Marzi, R.; Sandrini, G.; Priori, A.; Pacchetti, C. Transcranial Direct Current Stimulation (tDCS) of the Cortical Motor Areas in Three Cases of Cerebellar Ataxia. Cerebellum 2013. [Google Scholar] [CrossRef]
- Benussi, A.; Koch, G.; Cotelli, M.; Padovani, A.; Borroni, B. Cerebellar transcranial direct current stimulation in patients with ataxia: A double-blind, randomized, sham-controlled study. Mov. Disord. 2015, 30, 1701–1705. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Nitsche, M.A.; Bolognini, N.; Bikson, M.; Wagner, T.; Merabet, L.; Edwards, D.J.; Valero-Cabre, A.; Rotenberg, A.; Pascual-Leone, A.; et al. Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimul. 2012, 5, 175–195. [Google Scholar] [CrossRef] [Green Version]
- Benussi, A.; Dell’Era, V.; Cotelli, M.S.; Turla, M.; Casali, C.; Padovani, A.; Borroni, B. Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain Stimul. 2017, 10, 242–250. [Google Scholar] [CrossRef]
- Benussi, A.; Dell’Era, V.; Cantoni, V.; Bonetta, E.; Grasso, R.; Manenti, R.; Cotelli, M.; Padovani, A.; Borroni, B. Cerebello-spinal tDCS in ataxia: A randomized, double-blind, sham-controlled, crossover trial. Neurology 2018, 91, e1090–e1101. [Google Scholar] [CrossRef]
- Benussi, A.; Borroni, B. Author response: Cerebello-spinal tDCS in ataxia: A randomized, double-blind, sham-controlled, crossover trial. Neurology 2019, 92, 1122. [Google Scholar] [CrossRef] [PubMed]
- Barretto, T.L.; Bandeira, I.D.; Jagersbacher, J.G.; Barretto, B.L.; de Oliveira e Torres, Â.F.S.; Peña, N.; Miranda, J.G.V.; Lucena, R. Transcranial direct current stimulation in the treatment of cerebellar ataxia: A two-phase, double-blind, auto-matched, pilot study. Clin. Neurol. Neurosurg. 2019, 182, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Pilloni, G.; Shaw, M.; Feinberg, C.; Clayton, A.; Palmeri, M.; Datta, A.; Charvet, L.E. Long term at-home treatment with transcranial direct current stimulation (tDCS) improves symptoms of cerebellar ataxia: A case report. J. Neuroeng. Rehabil. 2019, 16, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulst, T.; John, L.; Küper, M.; Van Der Geest, J.N.; Göricke, S.L.; Donchin, O.; Timmann, D. Cerebellar patients do not benefit from cerebellar or M1 transcranial direct current stimulation during force-field reaching adaptation. J. Neurophysiol. 2017, 118, 732–748. [Google Scholar] [CrossRef]
- John, L.; Küper, M.; Hulst, T.; Timmann, D.; Hermsdörfer, J. Effects of transcranial direct current stimulation on grip force control in patients with cerebellar degeneration. Cerebellum Ataxias 2017, 4, 698. [Google Scholar] [CrossRef] [Green Version]
- Biabani, M.; Aminitehrani, M.; Zoghi, M.; Farrell, M.; Egan, G.; Jaberzadeh, S. The effects of transcranial direct current stimulation on short-interval intracortical inhibition and intracortical facilitation: A systematic review and meta-analysis. Rev. Neurosci. 2017, 29, 99–114. [Google Scholar] [CrossRef]
- Razza, L.B.; Moffa, A.H.; Moreno, M.L.; Carvalho, A.F.; Padberg, F.; Fregni, F.; Brunoni, A.R. A systematic review and meta-analysis on placebo response to repetitive transcranial magnetic stimulation for depression trials. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 81, 105–113. [Google Scholar] [CrossRef]
- Horvath, J.C.; Forte, J.D.; Carter, O. Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: A systematic review. Neuropsychologia 2015, 66, 213–236. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Keeser, D.; Priori, A.; Padberg, F.; Nitsche, M.A. Conceptual and procedural shortcomings of the systematic review “evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: A systematic review” by horvath and co-workers. Brain Stimul. 2015, 8, 846–849. [Google Scholar]
- Fonteneau, C.; Mondino, M.; Arns, M.; Baeken, C.; Bikson, M.; Brunoni, A.R.; Burke, M.J.; Neuvonen, T.; Padberg, F.; Pascual-Leone, A.; et al. Sham tDCS: A hidden source of variability? Reflections for further blinded, controlled trials. Brain Stimul. 2019, 12, 668–673. [Google Scholar] [CrossRef]
- Neri, F.; Mencarelli, L.; Menardi, A.; Giovannelli, F.; Rossi, S.; Sprugnoli, G.; Rossi, A.; Pascual-Leone, A.; Salvador, R.; Ruffini, G.; et al. A novel tDCS sham approach based on model-driven controlled shunting. Brain Stimul. 2020, 13, 507–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maas, R.P.P.W.M.; Toni, I.; Doorduin, J.; Klockgether, T.; Schutter, D.J.L.G.; Van De Warrenburg, B.P.C. Cerebellar transcranial direct current stimulation in spinocerebellar ataxia type 3 (SCA3-tDCS): Rationale and protocol of a randomized, double-blind, sham-controlled study. BMC Neurol. 2019, 19, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teive, H.A.G.; Arruda, W.O. Cognitive dysfunction in spinocerebellar ataxias. Dement. Neuropsychol. 2009, 3, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Hoche, F.; Guell, X.; Vangel, M.G.; Sherman, J.C.; Schmahmann, J.D. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain 2018, 141, 248–270. [Google Scholar] [CrossRef] [Green Version]
- Schmahmann, J.D.; Sherman, J.C. The cerebellar cognitive affective syndrome. Brain 1998, 121, 561–579. [Google Scholar] [CrossRef]
- Blumberger, D.M.; Vila-Rodriguez, F.; Thorpe, K.E.; Feffer, K.; Noda, Y.; Giacobbe, P.; Knyahnytska, Y.; Kennedy, S.H.; Lam, R.W.; Daskalakis, Z.J.; et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): A randomised non-inferiority trial. Lancet 2018, 391, 1683–1692. [Google Scholar] [CrossRef]
- Koch, G.; Bonnì, S.; Casula, E.P.; Iosa, M.; Paolucci, S.; Pellicciari, M.C.; Cinnera, A.M.; Ponzo, V.; Maiella, M.; Picazio, S.; et al. Effect of Cerebellar Stimulation on Gait and Balance Recovery in Patients With Hemiparetic Stroke: A Randomized Clinical Trial. JAMA Neurol. 2019, 76, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Bonnì, S.; Ponzo, V.; Caltagirone, C.; Koch, G. Cerebellar theta burst stimulation in stroke patients with ataxia. Funct. Neurol. 2014, 29, 41–45. [Google Scholar] [CrossRef]
- Antal, A.; Boros, K.; Poreisz, C.; Chaieb, L.; Terney, D.; Paulus, W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008. [Google Scholar] [CrossRef]
- Naro, A.; Bramanti, A.; Leo, A.; Manuli, A.; Sciarrone, F.; Russo, M.; Bramanti, P.; Calabrò, R.S. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function. Brain Struct. Funct. 2017, 222, 2891–2906. [Google Scholar] [CrossRef]
- Miyaguchi, S.; Otsuru, N.; Kojima, S.; Saito, K.; Inukai, Y.; Masaki, M.; Onishi, H. Transcranial alternating current stimulation with gamma oscillations over the primary motor cortex and cerebellar hemisphere improved visuomotor performance. Front. Behav. Neurosci. 2018, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Miyaguchi, S.; Otsuru, N.; Kojima, S.; Yokota, H.; Saito, K.; Inukai, Y.; Onishi, H. Gamma tACS over M1 and cerebellar hemisphere improves motor performance in a phase-specific manner. Neurosci. Lett. 2019. [Google Scholar] [CrossRef] [PubMed]
- Miyaguchi, S.; Otsuru, N.; Kojima, S.; Yokota, H.; Saito, K.; Inukai, Y.; Onishi, H. The effect of gamma tACS over the M1 region and cerebellar hemisphere does not depend on current intensity. J. Clin. Neurosci. 2019. [Google Scholar] [CrossRef] [PubMed]
- Naro, A.; Leo, A.; Russo, M.; Cannavò, A.; Milardi, D.; Bramanti, P.; Calabrò, R.S. Does Transcranial Alternating Current Stimulation Induce Cerebellum Plasticity? Feasibility, Safety and Efficacy of a Novel Electrophysiological Approach. Brain Stimul. 2016. [Google Scholar] [CrossRef]
- Kuo, S.H.; Lin, C.Y.; Wang, J.; Sims, P.A.; Pan, M.K.; Liou, J.Y.; Lee, D.; Tate, W.J.; Kelly, G.C.; Louis, E.D.; et al. Climbing fiber-Purkinje cell synaptic pathology in tremor and cerebellar degenerative diseases. Acta Neuropathol. 2017, 133, 121–138. [Google Scholar] [CrossRef] [Green Version]
Study | Patients | Sham | Blinding | Stimulation | Protocol |
---|---|---|---|---|---|
[54] | 4 | No | Not reported | Inion and cerebellar hemispheres | 30 pulses (100% MSO) at 0.17 Hz every day for 21 days |
[55] | 74 | Yes | Patients and examiners | Inion and cerebellar hemispheres | 30 pulses (100% MSO) at 0.17 Hz every day for 21 days |
[56] | 20 | No | Yes | Inion and cerebellar hemispheres | 30 pulses (100% MSO) at 0.2 Hz every day for 8 weeks |
[60] | 1 | No | Not reported | Inion and cerebellar hemispheres | 30 pulses (100% MSO) at 0.17 Hz every day for 21 days |
[61] | 1 | Yes | Not reported | Inion and cerebellar hemispheres | 500 pulses (90% RMT) at 5 Hz for 10 s with a 50 s interval, every day for 2 days/week for 4 months |
[62] | 1 | Yes | Not reported | Motor cortices and cerebellar hemispheres | 40 pulses (100% RMT) over Cz at 0.2 Hz + 20 pulses (50% RMT) over inion at 0.5 Hz every day for 4 weeks |
[63] | 1 | No | Not reported | Inion | 1500 pulses (100% MSO) at 10 Hz for 1 s with a 10 s interval, every day for 4 weeks |
[64] | 20 | Yes | Yes | Inion and cerebellar hemispheres | 30 pulses (100% MSO) at 0.17 Hz every day for 21 days |
Study | Patients | Sham | Blinding | Anode | Cathode | Protocol |
---|---|---|---|---|---|---|
[75] | 9 | Yes | Patients | Right cerebellar hemisphere | L supraorbital area | 1–2 mA, 20 min |
[76] | 2 | Yes | Patients | Right cerebellar hemisphere/left motor cortex | Contralateral supraorbital area | 1 mA, 20 min |
[78] | 3 | Yes | Patients and examiners | Motor cortex affected side | Motor cortex unaffected side | 2 mA, 20 min for five sessions |
[79] | 19 | Yes | Patients and examiners | Cerebellar hemispheres | Right deltoid muscle | 2 mA, 20 min |
[81] | 20 | Yes | Patients and examiners | Cerebellar hemispheres | Right deltoid muscle | 2 mA, 20 min for 10 days |
[82] | 21 | Yes | Patients and examiners | Cerebellar hemispheres | Spinal lumbar enlargement | 2 mA, 20 min for 10 days |
[84] | 7 | Yes | Patients and examiners | Motor cortices | Contralateral supraorbital area | 2 mA, 20 min for five days |
[85] | 1 | No | Not reported | Cerebellar hemispheres | Right shoulder | 2.5 mA, 20 min for 60 days |
[86] | 20 | Yes | Patients and examiners | Right cerebellar hemisphere/motor cortex | Right buccinator muscle/contralateral supraorbital region | 2 mA, 22 min |
[87] | 14 | Yes | Patients and examiners | Right cerebellar hemisphere/motor cortex | Right buccinator muscle/contralateral supraorbital region | 2 mA, 22 min |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benussi, A.; Pascual-Leone, A.; Borroni, B. Non-Invasive Cerebellar Stimulation in Neurodegenerative Ataxia: A Literature Review. Int. J. Mol. Sci. 2020, 21, 1948. https://doi.org/10.3390/ijms21061948
Benussi A, Pascual-Leone A, Borroni B. Non-Invasive Cerebellar Stimulation in Neurodegenerative Ataxia: A Literature Review. International Journal of Molecular Sciences. 2020; 21(6):1948. https://doi.org/10.3390/ijms21061948
Chicago/Turabian StyleBenussi, Alberto, Alvaro Pascual-Leone, and Barbara Borroni. 2020. "Non-Invasive Cerebellar Stimulation in Neurodegenerative Ataxia: A Literature Review" International Journal of Molecular Sciences 21, no. 6: 1948. https://doi.org/10.3390/ijms21061948