Anti-Epileptogenic Effects of Antiepileptic Drugs
Abstract
:1. Antiepileptic Drugs—Mechanisms of Action
2. Epileptogenesis
3. Do Antiepileptic Drugs Inhibit Epileptogenesis?
4. Can Non-Antiepileptic Drugs Suppress Epileptogenesis?
5. Clinical Data
6. Examples of New Antiepileptogenic Agents among Diverse Groups of Chemicals, Including Already Approved Drugs
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lasoń, W.; Dudra-Jastrzębska, M.; Rejdak, K.; Czuczwar, S.J. Basic mechanisms of antiepileptic drugs and their pharmacokinetic/pharmacodynamic interactions: An update. Pharmacol. Rep. 2011, 63, 271–292. [Google Scholar] [CrossRef]
- Miziak, B.; Borowicz-Reutt, K.; Rola, R.; Blaszczyk, B.; Czuczwar, M.; Czuczwar, S.J. The prophylactic use of antiepileptic drugs in patients scheduled for neurosurgery. Curr. Pharm. Des. 2017, 23, 6411–6427. [Google Scholar] [CrossRef] [PubMed]
- Luszczki, J.J. Third-generation antiepileptic drugs: Mechanisms of action, pharmacokinetics and interactions. Pharmacol. Rep. 2009, 61, 197–216. [Google Scholar] [CrossRef]
- Deckers, C.L.; Czuczwar, S.J.; Hekster, Y.A.; Keyser, A.; Kubova, H.; Meinardi, H.; Patsalos, P.N.; Renier, W.O.; Van Rijn, C.M. Selection of antiepileptic drug polytherapy based on mechanisms of action: The evidence reviewed. Epilepsia 2000, 41, 1364–1374. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.M.; Liang, X.L.; Zhou, X.; Liu, J.P.; Zhang, Z.; Zheng, J.O. Alterations in intra- and internetwork functional connectivity associated with levetiracetam treatment in temporal lobe epilepsy. Neurol. Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Koepp, M.J.; Årstad, E.; Bankstahl, J.P.; Dedeurwaerdere, S.; Friedman, A.; Potschka, H.; Ravizza, T.; Theodore, W.H.; Baram, T.Z. Neuroinflammation imaging markers for epileptogenesis. Epilepsia 2017, 58, 11–19. [Google Scholar] [CrossRef]
- Williams, P.A.; Hellier, J.L.; White, A.M.; Staley, K.J.; Dudek, F.E. Development of spontaneous seizures after experimental status epilepticus: Implications for understanding epileptgenesis. Epilepsia 2007, 48, 157–163. [Google Scholar] [CrossRef]
- Łukawski, K.; Andres-Mach, M.; Czuczwar, M.; Łuszczki, J.J.; Kruszyński, K.; Czuczwar, S.J. Mechanisms of epileptogenesis and preclinical approach to antiepileptogenic therapies. Pharmacol. Rep. 2018, 70, 284–293. [Google Scholar] [CrossRef]
- Koyama, R. Dentate circuitry as a model to study epileptogenesis. Biol. Pharm. Bull. 2016, 39, 891–896. [Google Scholar] [CrossRef] [Green Version]
- Trojnar, M.K.; Małek, R.; Chroscinska, M.; Nowak, S.; Błaszczyk, B.; Czuczwar, S.J. Neuroprotective effects of antiepileptic drugs. Pol. J. Pharmacol. 2002, 54, 557–566. [Google Scholar]
- Pitkänen, A.; Tuunanen, J.; Halonen, T. Vigabatrin and carbamazepine have different efficacies in the prevention of status epilepticus induced neuronal damage in the hippocampus and amygdala. Epilepsy Res. 1996, 24, 29–45. [Google Scholar] [CrossRef]
- Miziak, B.; Chrościńska-Krawczyk, M.; Błaszczyk, B.; Radzik, I.; Czuczwar, S.J. Novel approaches to anticonvulsant drug discovery. Expert Opin. Drug Discov. 2013, 8, 1415–1427. [Google Scholar] [CrossRef] [PubMed]
- Itoh, K.; Inamine, M.; Oshima, W.; Kotani, M.; Chiba, Y.; Ueno, M.; Ishihara, Y. Prevention of status epilepticus-induced brain edema and neuronal cell loss by repeated treatment with high-dose levetiracetam. Brain Res. 2015, 1608, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Pitkänen, A.; Lukasiuk, K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol. 2011, 10, 173–186. [Google Scholar] [CrossRef]
- Halonen, T.; Nissinen, J.; Jansen, J.A.; Pitkänen, A. Tiagabine prevents seizures, neuronal damage and memory impairment in experimental status epilepticus. Eur. J. Pharmacol. 1996, 299, 69–81. [Google Scholar] [CrossRef]
- Halonen, T.; Nissinen, J.; Pitkänen, A. Effect of lamotrigine treatment on status epilepticus-induced neuronal damage and memory impairment in rat. Epilepsy Res. 2001, 46, 205–223. [Google Scholar] [CrossRef]
- Pitkänen, A.; Kharatishvili, I.; Narkilahti, S.; Lukasiuk, K.; Nissinen, J. Administration of diazepam during status epilepticus reduces development and severity of epilepsy in rat. Epilepsy Res. 2005, 63, 27–42. [Google Scholar] [CrossRef]
- Rigoulot, M.A.; Koning, E.; Ferrandon, A.; Nehlig, A. Neuroprotective properties of topiramate in the lithium—Pilocarpine model of epilepsy. J. Pharmacol. Exp. Ther. 2004, 308, 787–795. [Google Scholar] [CrossRef]
- Andre, V.; Dube, C.; Francois, J.; Rigoulot, M.A.; Roch, C.; Namer, I.J.; Nehlig, A. Pathogenesis and pharmacology of epilepsy in the lithium-pilocarpine model. Epilepsia 2007, 48, 41–47. [Google Scholar] [CrossRef]
- Brandt, C.; Gastens, A.M.; Sun, M.Z.; Hausknecht, M.; Löscher, W. Treatment with valproate after status epilepticus: Effect on neuronal damage, epileptogenesis, and behavioral alterations in rats. Neuropharmacology 2006, 51, 789–804. [Google Scholar] [CrossRef]
- Bolanos, A.R.; Sarkisian, M.; Yang, Y.; Hori, A.; Helmers, S.L.; Mikati, M.; Tandon, P.; Stafstrom, C.E.; Holmes, G.L. Comparison of valproate and phenobarbital treatment after status epilepticus in rats. Neurology 1998, 51, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Mikati, M.A.; Holmes, G.L.; Chronopoulos, A.; Hyde, P.; Thurber, S.; Gatt, A.; Liu, Z.; Werner, S.; Stafstrom, C.E. Phenobarbital modifies seizure-related brain injury in the developing brain. Ann. Neurol. 1994, 36, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Klitgaard, H.V.; Matagne, A.C.; Vanneste-Goemare, J.; Margineanu, D.G. Effects of prolonged administration of levetiracetam on pilocarpine-induced epileptogenesis. Epilepsia 2001, 42, 114–115. [Google Scholar]
- Santana-Gómez, C.E.; Valle-Dorado, M.G.; Domínguez-Valentín, A.E.; Hernández-Moreno, A.; Orozco-Suárez, S.; Rocha, L. Neuroprotective effects of levetiracetam, both alone and combined with propylparaben, in the long-term consequences induced by lithium-pilocarpine status epilepticus. Neurochem. Int. 2018, 120, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Brandt, C.; Glien, M.; Gastens, A.M.; Fedrowitz, M.; Bethmann, K.; Volk, H.A.; Potschka, H.; Löscher, W. Prophylactic treatment with levetiracetam after status epilepticus: Lack of effect on epileptogenesis, neuronal damage, and behavioral alterations in rats. Neuropharmacology 2007, 53, 207–221. [Google Scholar] [CrossRef]
- Sugaya, Y.; Maru, E.; Kudo, K.; Shibasaki, T.; Kato, N. Levetiracetam supresses development of spontaneous EEG seizures and aberrant neurogenesis following kainate-induced status epilepticus. Brain Res. 2010, 1352, 187–199. [Google Scholar] [CrossRef]
- Cilio, M.R.; Bolanos, A.R.; Liu, Z.; Schmid, R.; Yang, Y.; Stafstrom, C.E.; Mikati, M.A.; Holmes, G.L. Anticonvulsant action and long—Term effects of gabapentin in the immature brain. Neuropharmacology 2001, 40, 139–147. [Google Scholar] [CrossRef]
- André, V.; Rigoulot, M.A.; Koning, E.; Ferrandon, A.; Nehlig, A. Long-term pregabalin treatment protects basal cortices and delays the occurrence of spontaneous seizures in the lithium-pilocarpine model in the rat. Epilepsia 2003, 44, 893–903. [Google Scholar] [CrossRef] [Green Version]
- André, V.; Ferrandon, A.; Marescaux, C.; Nehlig, A. Vigabatrin protects against hippocampal damage but is not antiepileptogenic in the lithium-pilocarpine model of temporal lobe epilepsy. Epilepsy Res. 2001, 47, 99–117. [Google Scholar] [CrossRef]
- Doeser, A.; Dickhof, G.; Reitze, M.; Uebachs, M.; Schaub, C.; Pires, N.M.; Bonifácio, M.J.; Soares-da-Silva, P.; Beck, H. Targeting pharmacoresistant epilepsy and epileptogenesis with a dual-purpose antiepileptic drug. Brain 2015, 138, 371–387. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yu, Y.; Ma, R.; Shao, N.; Meng, H. Lacosamide modulates collapsin response mediator protein 2 and inhibits mossy fiber sprouting after kainic acid-induced status epilepticus. Neuroreport 2018, 29, 1384–1390. [Google Scholar] [CrossRef] [PubMed]
- François, J.; Koning, E.; Ferrandon, A.; Nehlig, A. The combination of topiramate and diazepam is partially neuroprotective in the hippocampus but not antiepileptogenic in the lithium-pilocarpine model of temporal lobe epilepsy. Epilepsy Res. 2006, 72, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Schidlitzki, A.; Bascuñana, P.; Srivastava, P.K.; Welzel, L.; Twele, F.; Töllner, K.; Käufer, C.; Gericke, B.; Feleke, R.; Meier, M.; et al. Proof-of-concept that network pharmacology is effective to modify development of acquired temporal lobe epilepsy. Neurobiol. Dis. 2020, 134, 104664. [Google Scholar] [CrossRef] [PubMed]
- Bar-Klein, G.; Cacheaux, L.P.; Kamintsky, L.; Prager, O.; Weissberg, I.; Schoknecht, K.; Cheng, P.; Kim, S.Y.; Wood, L.; Heinemann, U.; et al. Losartan prevents acquired epilepsy via TGF-β signaling suppression. Ann. Neurol. 2014, 75, 864–875. [Google Scholar] [CrossRef] [PubMed]
- Tchekalarova, J.D.; Ivanova, N.M.; Pechlivanova, D.M.; Atanasova, D.; Lazarov, N.; Kortenska, L.; Mitreva, R.; Lozanov, V.; Stoynev, A. Antiepileptogenic and neuroprotective effects of losartan in kainate model of temporal lobe epilepsy. Pharmacol. Biochem. Behav. 2014, 127, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Tchekalarova, J.D.; Ivanova, N.; Atanasova, D.; Pechlivanova, D.M.; Lazarov, N.; Kortenska, L.; Mitreva, R.; Lozanov, V.; Stoynev, A. Long-term treatment with losartan attenuates seizure activity and neuronal damage without affecting behavioral changes in a model of co-morbid hypertension and epilepsy. Cell Mol. Neurobiol. 2016, 36, 927–941. [Google Scholar] [CrossRef]
- McIntyre, D.C.; Goddard, G.V. Transfer, interference and spontaneous recovery of convulsions kindled from the rat amygdala. Electroencephalogr. Clin. Neurophysiol. 1973, 35, 533–543. [Google Scholar] [CrossRef]
- Nozaki, T.; Ura, H.; Takumi, I.; Kobayashi, S.; Maru, E.; Morita, A. The angiotensin II type I receptor antagonist losartan retards amygdala kindling-induced epileptogenesis. Brain Res. 2018, 1694, 121–128. [Google Scholar] [CrossRef]
- Bar-Klein, G.; Klee, R.; Brandt, C.; Bankstahl, M.; Bascuñana, P.; Töllner, K.; Dalipaj, H.; Bankstahl, J.P.; Friedman, A.; Löscher, W. Isoflurane prevents acquired epilepsy in rat models of temporal lobe epilepsy. Ann. Neurol. 2016, 80, 896–908. [Google Scholar] [CrossRef]
- Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [Green Version]
- Sosanya, N.M.; Brager, D.H.; Wolfe, S.; Niere, F.; Raab-Graham, K.F. Rapamycin reveals an mTOR-independent repression of Kv1.1 expression during epileptogenesis. Neurobiol. Dis. 2015, 73, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, E.A.; Forte, G.; Holtman, L.; Den Burger, J.C.; Sinjewel, A.; De Vries, H.E.; Aronica, E.; Gorter, J.A. Inhibition of mammalian target of rapamycin reduces epileptogenesis and blood-brain barrier leakage but not microglia activation. Epilepsia 2012, 53, 1254–1263. [Google Scholar] [CrossRef] [PubMed]
- Buckmaster, P.S.; Lew, F.H. Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy. J. Neurosci. 2011, 31, 2337–2347. [Google Scholar] [CrossRef] [Green Version]
- Heng, K.; Haney, M.M.; Buckmaster, P.S. High–dose rapamycin blocks mossy fiber sprouting but not seizures in a mouse model of temporal lobe epilepsy. Epilepsia 2013, 54, 1535–1541. [Google Scholar] [CrossRef]
- Gericke, B.; Brandt, C.; Theilmann, W.; Welzel, L.; Schidlitzki, A.; Twele, F.; Kaczmarek, E.; Anjum, M.; Hillmann, P.; Löscher, W. Selective inhibition of mTORC1/2 or PI3K/mTORC1/2 signaling does not prevent or modify epilepsy in the intrahippocampal kainate mouse model. Neuropharmacology 2020, 162, 107817. [Google Scholar] [CrossRef] [PubMed]
- Shima, A.; Nitta, N.; Suzuki, F.; Laharie, A.M.; Nozaki, K.; Depaulis, A. Activation of mTOR signaling pathway is secondary to neuronal excitability in a mouse model of mesio-temporal lobe epilepsy. Eur. J. Neurosci. 2015, 41, 976–988. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.H.; Chu, K.; Lee, S.T.; Kim, J.; Sinn, D.I.; Kim, J.M.; Park, D.K.; Lee, J.J.; Kim, S.U.; Kim, M.; et al. Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol. Dis. 2006, 23, 237–246. [Google Scholar] [CrossRef]
- Szaflarski, J.P.; Nazzal, Y.; Dreer, L.E. Post-traumatic epilepsy: Current and emerging treatment options. Neuropsychiatr. Dis. Treat. 2014, 10, 1469–1477. [Google Scholar] [CrossRef] [Green Version]
- Herman, S.T. Epilepsy after brain insult: Targeting epileptogenesis. Neurology 2002, 29, S21–S26. [Google Scholar] [CrossRef]
- Temkin, N.R. Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: Meta-analysis of controlled trials. Epilepsia 2001, 42, 515–524. [Google Scholar] [CrossRef] [Green Version]
- Temkin, N.R. Preventing and treating posttraumatic seizures: The human experience. Epilepsia 2009, 50, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Mani, R.; Pollard, J.; Dichter, M.A. Human clinical trials in antiepileptogenesis. Neurosci. Lett. 2011, 497, 251–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, P.; Herr, D.; Pearl, P.L.; Natale, J.; Levine, Z.; Nogay, C.; Sandoval, F.; Trzcinski, S.; Atabaki, S.M.; Tsuchida, T.; et al. Results of phase 2 safety and feasibility study of treatment with levetiracetam for prevention of posttraumatic epilepsy. Arch. Neurol. 2012, 69, 1290–1295. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.D.; Burks, J.D.; Rodgers, R.B.; Evans, R.M.; Bakare, A.A.; Safavi-Abbasi, S. Early and late posttraumatic epilepsy in the setting of traumatic brain injury: A meta-analysis and review of antiepileptic management. World Neurosurg. 2018, 110, e901–e906. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, Q.; Zhang, L.; Kong, D.; Ma, R.; Wang, L. Protective effect of resveratrol against kainate-induced temporal lobe epilepsy in rats. Neurochem. Res. 2009, 34, 1393–1400. [Google Scholar] [CrossRef]
- Saha, L.; Chakrabarti, A. Understanding the anti-kindling role and its mechanism of resveratrol in pentylenetetrazole induced-kindling in a rat model. Pharmacol. Biochem. Behav. 2014, 120, 57–64. [Google Scholar] [CrossRef]
- Meng, X.J.; Wang, F.; Li, C.K. Resveratrol is neuroprotective and improves cognition in pentylenetetrazole-kindling model of epilepsy in rats. Indian J. Pharm. Sci. 2014, 76, 125–131. [Google Scholar]
- Suleymanova, E.M.; Shangaraeva, V.A.; Van Rijn, C.M.; Vinogradova, L.V. The cannabinoid receptor agonist WIN55.212 reduces consequences of status epilepticus in rats. Neuroscience 2016, 334, 191–200. [Google Scholar] [CrossRef]
- Upadhya, D.; Castro, O.W.; Upadhya, R.; Shetty, A.K. Prospects of cannabidiol for easing status epilepticus-induced epileptogenesis and related comorbidities. Mol. Neurobiol. 2018, 55, 6956–6964. [Google Scholar] [CrossRef]
- Miziak, B.; Walczak, A.; Szponar, J.; Pluta, R.; Czuczwar, S.J. Drug-drug interactions between antiepileptics and cannabinoids. Expert Opin. Drug Metab. Toxicol. 2019, 15, 407–415. [Google Scholar] [CrossRef]
- Morris, G.; Reschke, C.R.; Henshall, D.C. Targeting microRNA-134 for seizure control and disease modification in epilepsy. EBioMedicine 2019, 45, 646–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtman, L.; Van Vliet, E.A.; Van Schaik, R.; Queiroz, C.M.; Aronica, E.; Gorter, J.A. Effects of SC58236, a selective COX-2 inhibitor, on epileptogenesis and spontaneous seizures in a rat model for temporal lobe epilepsy. Epilepsy Res. 2009, 84, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Holtman, L.; Van Vliet, E.A.; Edelbroek, P.M.; Aronica, E.; Gorter, J.A. Cox-2 inhibition can lead to adverse effects in a rat model for temporal lobe epilepsy. Epilepsy Res. 2010, 91, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.S.; Pineda, E.; Auvin, S.; Shin, D.; Mazarati, A.; Sankar, R. Neuroprotective and antiepileptogenic effects of combination of anti-inflammatory drugs in immature brain. J. Neuroinflammation 2013, 10, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lusardi, T.A.; Akula, K.K.; Coffman, S.Q.; Ruskin, D.N.; Masino, S.A.; Boison, D. Ketogenic diet prevents epileptogenesis and disease progression in adult mice and rats. Neuropharmacology 2015, 99, 500–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łukawski, K.; Gryta, P.; Łuszczki, J.; Czuczwar, S.J. Exploring the latest avenues for antiepileptic drug discovery and development. Expert Opin. Drug Discov. 2016, 11, 369–382. [Google Scholar] [CrossRef]
- Turski, W.A.; Cavalheiro, E.A.; Schwarz, M.; Czuczwar, S.J.; Kleinrok, Z.; Turski, L. Limbic seizures produced by pilocarpine in rats: Behavioural, electroencephalographic and neuropathological study. Behav. Brain Res. 1983, 9, 315–335. [Google Scholar] [CrossRef]
- Broekaart, D.W.M.; Anink, J.J.; Baayen, J.C.; Idema, S.; De Vries, H.E.; Aronica, E.; Gorter, J.A.; Van Vliet, E.A. Activation of the innate immune system is evident throughout epileptogenesis and is associated with blood-brain barrier dysfunction and seizure progression. Epilepsia 2018, 59, 1931–1944. [Google Scholar] [CrossRef] [Green Version]
- Błaszczyk, B.; Miziak, B.; Czuczwar, P.; Wierzchowska-Cioch, E.; Pluta, R.; Czuczwar, S.J. A viewpoint on rational and irrational fixed-drug combinations. Expert Rev. Clin. Pharmacol. 2018, 11, 761–771. [Google Scholar] [CrossRef]
- Luszczki, J.J.; Andres, M.M.; Czuczwar, P.; Cioczek-Czuczwar, A.; Ratnaraj, N.; Patsalos, P.N.; Czuczwar, S.J. Pharmacodynamic and pharmacokinetic characterization of interactions between levetiracetam and numerous antiepileptic drugs in the mouse maximal electroshock seizure model: An isobolographic analysis. Epilepsia 2006, 47, 10–20. [Google Scholar] [CrossRef]
- Dixit, A.B.; Tripathi, M.; Chandra, P.S.; Banerjee, J. Molecular biomarkers in drug-resistant epilepsy: Facts & possibilities. Int. J. Surg. 2016, 36, 483–491. [Google Scholar] [PubMed]
- Zhao, M.; Alleva, R.; Ma, H.; Daniel, A.G.; Schwartz, T.H. Optogenetic tools for modulating and probing the epileptic network. Epilepsy Res. 2015, 116, 15–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, C.R.; Boychuk, J.A.; Pomerleau, F.; Alcala, R.; Huettl, P.; Ai, Y.; Jakobsson, J.; Whiteheart, S.W.; Gerhardt, G.A.; Smith, B.N.; et al. Modulation of epileptogenesis: A paradigm for the integration of enzyme-based microelectrode arrays and optogenetics. Epilepsy Res. 2020, 159, 106244. [Google Scholar] [CrossRef] [PubMed]
Antiepileptic Drug | Status Epilepticus | Neuroprotection | Spontaneous Seizures | Behavioral Deficit |
---|---|---|---|---|
Carbamazepine (14 days) | Electrical stimulation of perforant path | Not evaluated | Not evaluated | Present [16] |
Diazepam (single injection in a high dose) | Electrical stimulation of amygdala | Present | Reduced | Not evaluated [17] |
Diazepam (single injection in a low dose) | Lithium/pilocarpi- ne | Moderate | Not affected | Not evaluated [18] |
Phenobarbital (in immature rats for 117 days) | Kainate | None | Not affected | Enhanced [22] |
Phenobarbital (for 40 days) | Kainate | None | Not affected | Present [21] |
Valproate (for 28 days) | Electrical stimulation of amygdala | Present | Not affected | None [20] |
Valproate (for 21 days) | Pilocarpine | None | Not affected | Not evaluated [21] |
Valproate (for 40 days) | Kainate | Present | Reduced | None [20] |
Antiepileptic Drug | Status Epilepticus | Neurodegeneration | Spontaneous Convulsions | Behavioral Deficit |
---|---|---|---|---|
Eslicarbazepine (in mice for 42 days) | Pilocarpine | Present with mossy fiber sprouting reduced | Reduced | Not evaluated [30] |
Gabapentin (for 40 days) | Kainate | Present | Reduced | Reduced [27] |
Lacosamide | Kainate | Present with mossy fiber sprouting reduced | Reduced | Not evaluated [31] |
Lamotrigine (for 14 days) | Electrical stimulation of performant path | Moderate | Not evaluated | Present [16] |
Levetiracetam (for 5 days) | Lithium/pilocar-pine | Present | Not affected | Not evaluated [24] |
Levetiracetam (for 35 or 56 days via osmotic pumps) | Electrical stimulation of amygdala | None | Not affected | Present [25] |
Levetiracetam (for 21 days) | Pilocarpine | Moderate | Not affected | Not evaluated [23] |
Levetiracetam (for 25 days) intracerebroventicularly via osmotic minipumps) | Kainate | Reduced number of ectopic granule cells | Reduced | Not evaluated [26] |
Pregabalin (for 7 days) | Lithium/pilocar-pine | Present in entorhinal and piriform cortex | Only latency extension | Not evaluated [28] |
Topiramate (for 6 days) | Lithium/pilocar-pine | Moderate (CA1 and CA3) | Not affected | Not evaluated [18] |
Topiramate (for 7 days) | Lithium/pilocar-pine | Potent in CA1, moderate in CA3 | Not affected | Not evaluated [19] |
Vigabatrin (for 45 days) | Lithium/pilocar-pine | Pronounced in CA1 and CA3, moderate in the hilus | Not affected | Not evaluated [29] |
Antiepileptic Drugs | Status Epilepticus | Neurodegeneration | Spontaneous Seizures |
---|---|---|---|
Topiramate + diazepam (for 7 days in rats) | Lithium/pilocarpine intraperitoneally | Partial in CA1, hilus and entorhinal cortex | Not affected [31] |
Levetiracetam + topiramate (for 5 days in mice) | Intrahippocampal kainate | Present | Reduced [32] |
Levetiracetam + phenobarbital (for 5 days in mice) | Intrahippocampal kainate | Present | Not affected [32] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miziak, B.; Konarzewska, A.; Ułamek-Kozioł, M.; Dudra-Jastrzębska, M.; Pluta, R.; Czuczwar, S.J. Anti-Epileptogenic Effects of Antiepileptic Drugs. Int. J. Mol. Sci. 2020, 21, 2340. https://doi.org/10.3390/ijms21072340
Miziak B, Konarzewska A, Ułamek-Kozioł M, Dudra-Jastrzębska M, Pluta R, Czuczwar SJ. Anti-Epileptogenic Effects of Antiepileptic Drugs. International Journal of Molecular Sciences. 2020; 21(7):2340. https://doi.org/10.3390/ijms21072340
Chicago/Turabian StyleMiziak, Barbara, Agnieszka Konarzewska, Marzena Ułamek-Kozioł, Monika Dudra-Jastrzębska, Ryszard Pluta, and Stanisław J. Czuczwar. 2020. "Anti-Epileptogenic Effects of Antiepileptic Drugs" International Journal of Molecular Sciences 21, no. 7: 2340. https://doi.org/10.3390/ijms21072340
APA StyleMiziak, B., Konarzewska, A., Ułamek-Kozioł, M., Dudra-Jastrzębska, M., Pluta, R., & Czuczwar, S. J. (2020). Anti-Epileptogenic Effects of Antiepileptic Drugs. International Journal of Molecular Sciences, 21(7), 2340. https://doi.org/10.3390/ijms21072340