Clinical-Grade Human Pluripotent Stem Cells for Cell Therapy: Characterization Strategy
Abstract
:1. Introduction
2. Requirements for the Manufacture of Clinical-Grade hPSCs
2.1. Current Good Manufacturing Practices
2.2. Regulations
3. Characterization Methods
3.1. Markers of Human Pluripotent Stem Cells
3.1.1. Flow Cytometry
3.1.2. Immunocytochemistry
3.1.3. Alkaline Phosphatase
3.2. Genetic Testing
3.2.1. Fingerprinting
3.2.2. Karyotype
3.2.3. Whole-Genome Analysis
3.2.4. Single Nucleotide Polymorphism
3.2.5. Array CGH
3.2.6. Cancer Predisposition Testing
3.2.7. Residual Vector
3.2.8. HLA Typing
3.3. Differentiation Assays of hPSCs
3.3.1. Embryoid Bodies Formation
3.3.2. Directed Differentiation
3.3.3. Teratoma Formation
3.4. Sterility Testing—Bacteria, Endotoxins, Mycoplasma, Viruses
3.5. Morphology
3.6. Viability
4. Overview of Characterization Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
cGMP | current good manufacturing practices |
CNVs | copy number variations |
EBs | embryoid bodies |
EP | early phase |
hESC | human embryonic stem cell |
hiPSC | human induced pluripotent stem cell |
hPSC | human pluripotent stem cell |
ISCF | International Stem Cell Forum |
ISSCR | International Society for Stem Cell Research |
IVF | in vitro fertilization |
MCB | master cell bank |
SOP | standard operating procedures |
STR | short tandem repeat |
WCB | working cell bank |
References
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 1998, 282, 1145–1147. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, M. Differentiation and proliferation of hematopoietic stem cells. Blood 1993, 81, 2844–2853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, S.M.; Hoyland, J.A.; Mobasheri, R.; Csaki, C.; Shakibaei, M.; Mobasheri, A. Mesenchymal stem cells in regenerative medicine: Opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. J. Cell. Physiol. 2010, 222, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Shoemaker, R.; Xie, B.; Gore, A.; LeProust, E.M.; Antosiewicz-Bourget, J.; Egli, D.; Maherali, N.; Park, I.-H.; Yu, J.; et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat. Biotechnol. 2009, 27, 353–360. [Google Scholar] [CrossRef]
- Ruiz, S.; Diep, D.; Gore, A.; Panopoulos, A.D.; Montserrat, N.; Plongthongkum, N.; Kumar, S.; Fung, H.-L.; Giorgetti, A.; Bilic, J.; et al. Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 2012, 109, 16196–16201. [Google Scholar] [CrossRef] [Green Version]
- Lister, R.; Pelizzola, M.; Kida, Y.S.; Hawkins, R.D.; Nery, J.R.; Hon, G.; Antosiewicz-Bourget, J.; O’Malley, R.; Castanon, R.; Klugman, S.; et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 2011, 471, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, Z.; Wilson, K.D.; Wu, Y.; Hu, S.; Quertermous, T.; Wu, J.C. Persistent Donor Cell Gene Expression among Human Induced Pluripotent Stem Cells Contributes to Differences with Human Embryonic Stem Cells. PloS ONE 2010, 5, e8975. [Google Scholar] [CrossRef]
- Kim, K.; Zhao, R.; Doi, A.; Ng, K.; Unternaehrer, J.; Cahan, P.; Hongguang, H.; Loh, Y.-H.; Aryee, M.J.; Lensch, M.W.; et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat. Biotechnol. 2011, 29, 1117–1119. [Google Scholar] [CrossRef] [Green Version]
- Ohi, Y.; Qin, H.; Hong, C.; Blouin, L.; Polo, J.M.; Guo, T.; Qi, Z.; Downey, S.L.; Manos, P.D.; Rossi, D.J.; et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat. Cell Biol. 2011, 13, 541–549. [Google Scholar] [CrossRef]
- Haase, A.; Glienke, W.; Engels, L.; Göhring, G.; Esser, R.; Arseniev, L.; Martin, U. GMP-compatible manufacturing of three iPS cell lines from human peripheral blood. Stem Cell Res. 2019, 35, 101394. [Google Scholar] [CrossRef] [PubMed]
- Loh, Y.-H.; Agarwal, S.; Park, I.-H.; Urbach, A.; Huo, H.; Heffner, G.C.; Kim, K.; Miller, J.D.; Ng, K.; Daley, G.Q. Generation of induced pluripotent stem cells from human blood. Blood 2009, 113, 5476–5479. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induced pluripotent stem cells in medicine and biology. Development 2013, 140, 2457–2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravery, C.A. Do Human Leukocyte Antigen-Typed Cellular Therapeutics Based on Induced Pluripotent Stem Cells Make Commercial Sense? Stem Cells Dev. 2014, 24, 1–10. [Google Scholar] [CrossRef]
- Taylor, C.J.; Bolton, E.M.; Pocock, S.; Sharples, L.D.; Pedersen, R.A.; Bradley, J.A. Banking on human embryonic stem cells: Estimating the number of donor cell lines needed for HLA matching. Lancet 2005, 366, 7. [Google Scholar] [CrossRef]
- Taylor, C.J.; Peacock, S.; Chaudhry, A.N.; Bradley, J.A.; Bolton, E.M. Generating an iPSC Bank for HLA-Matched Tissue Transplantation Based on Known Donor and Recipient HLA Types. Cell Stem Cell 2012, 11, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Gourraud, P.-A.; Gilson, L.; Girard, M.; Peschanski, M. The Role of Human Leukocyte Antigen Matching in the Development of Multiethnic “Haplobank” of Induced Pluripotent Stem Cell Lines. Stem Cells 2012, 30, 180–186. [Google Scholar] [CrossRef]
- Xiang, M.; Lu, M.; Quan, J.; Xu, M.; Meng, D.; Cui, A.; Li, N.; Liu, Y.; Lu, P.; Kang, X.; et al. Direct in vivo application of induced pluripotent stem cells is feasible and can be safe. Theranostics 2019, 9, 290–310. [Google Scholar] [CrossRef]
- Lu, M.; Peng, L.; Ming, X.; Wang, X.; Cui, A.; Li, Y.; Wang, X.; Meng, D.; Sun, N.; Xiang, M.; et al. Enhanced wound healing promotion by immune response-free monkey autologous iPSCs and exosomes vs. their allogeneic counterparts. EBioMedicine 2019, 42, 443–457. [Google Scholar] [CrossRef] [Green Version]
- Ilic, D.; Devito, L.; Miere, C.; Codognotto, S. Human embryonic and induced pluripotent stem cells in clinical trials. Br. Med. Bull. 2015, 116, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Biotherapeutics, A. Asterias Provides Top Line 12 Month Data Update for its OPC1 Phase 1/2a Clinical Trial in Severe Spinal Cord Injury. Available online: http://www.globenewswire.com/news-release/2019/01/24/1704757/0/en/Asterias-Provides-Top-Line-12-Month-Data-Update-for-its-OPC1-Phase-1-2a-Clinical-Trial-in-Severe-Spinal-Cord-Injury.html (accessed on 23 February 2020).
- Treating Heart Failure With hPSC-CMs—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03763136 (accessed on 25 July 2019).
- ICTRP Search Portal. Available online: http://apps.who.int/trialsearch/Trial2.aspx?TrialID=JPRN-jRCT2053190081 (accessed on 28 February 2020).
- Takashima, K.; Inoue, Y.; Tashiro, S.; Muto, K. Lessons for reviewing clinical trials using induced pluripotent stem cells: Examining the case of a first-in-human trial for age-related macular degeneration. Regen. Med. 2017, 13, 123–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, S.D.; Hubschman, J.-P.; Heilwell, G.; Franco-Cardenas, V.; Pan, C.K.; Ostrick, R.M.; Mickunas, E.; Gay, R.; Klimanskaya, I.; Lanza, R. Embryonic stem cell trials for macular degeneration: A preliminary report. Lancet 2012, 379, 713–720. [Google Scholar] [CrossRef]
- ICTRP Search Portal. Available online: http://apps.who.int/trialsearch/Trial2.aspx?TrialID=JPRN-UMIN000036539 (accessed on 28 February 2020).
- Anonymous Good Manufacturing Practice. Available online: https://www.ema.europa.eu/en/human-regulatory/research-development/compliance/good-manufacturing-practice (accessed on 20 March 2020).
- Unger, C.; Skottman, H.; Blomberg, P.; Dilber, M.S.; Hovatta, O. Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum. Mol. Genet. 2008, 17, R48–R53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merkle, F.T.; Ghosh, S.; Kamitaki, N.; Mitchell, J.; Avior, Y.; Mello, C.; Kashin, S.; Mekhoubad, S.; Ilic, D.; Charlton, M.; et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature 2017, 545, 229–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Närvä, E.; Autio, R.; Rahkonen, N.; Kong, L.; Harrison, N.; Kitsberg, D.; Borghese, L.; Itskovitz-Eldor, J.; Rasool, O.; Dvorak, P.; et al. High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat. Biotechnol. 2010, 28, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.J.; Muotri, A.; Gage, F.; Varki, A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med. 2005, 11, nm1181. [Google Scholar] [CrossRef] [PubMed]
- Cobo, F.; Navarro, J.M.; Herrera, M.I.; Vivo, A.; Porcel, D.; Hernández, C.; Jurado, M.; García-Castro, J.; Menendez, P. Electron Microscopy Reveals the Presence of Viruses in Mouse Embryonic Fibroblasts But Neither in Human Embryonic Fibroblasts Nor in Human Mesenchymal Cells Used for hESC Maintenance: Toward an Implementation of Microbiological Quality Assurance Program in Stem Cell Banks. Cloning Stem Cells 2008, 10, 65–74. [Google Scholar]
- Tannenbaum, S.E.; Turetsky, T.T.; Singer, O.; Aizenman, E.; Kirshberg, S.; Ilouz, N.; Gil, Y.; Berman-Zaken, Y.; Perlman, T.S.; Geva, N.; et al. Derivation of Xeno-Free and GMP-Grade Human Embryonic Stem Cells – Platforms for Future Clinical Applications. PloS ONE 2012, 7, e35325. [Google Scholar] [CrossRef]
- Baghbaderani, B.A.; Tian, X.; Neo, B.H.; Burkall, A.; Dimezzo, T.; Sierra, G.; Zeng, X.; Warren, K.; Kovarcik, D.P.; Fellner, T.; et al. cGMP-Manufactured Human Induced Pluripotent Stem Cells Are Available for Pre-clinical and Clinical Applications. Stem Cell Rep. 2015, 5, 647–659. [Google Scholar] [CrossRef] [Green Version]
- The International Stem Cell Initiative* Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 2007, 25, 803–816. [CrossRef]
- Pera, M.F.; Reubinoff, B.; Trounson, A. Human embryonic stem cells. J. Cell Sci. 2000, 113, 5–10. [Google Scholar] [PubMed]
- De Sousa, P.A.; Downie, J.M.; Tye, B.J.; Bruce, K.; Dand, P.; Dhanjal, S.; Serhal, P.; Harper, J.; Turner, M.; Bateman, M. Development and production of good manufacturing practice grade human embryonic stem cell lines as source material for clinical application. Stem Cell Res. 2016, 17, 379–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crook, J.M.; Peura, T.T.; Kravets, L.; Bosman, A.G.; Buzzard, J.J.; Horne, R.; Hentze, H.; Dunn, N.R.; Zweigerdt, R.; Chua, F.; et al. The Generation of Six Clinical-Grade Human Embryonic Stem Cell Lines. Cell Stem Cell 2007, 1, 490–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, P.; Baker, D.; Benvinisty, N.; Miranda, B.; Bruce, K.; Brüstle, O.; Choi, M.; Choi, Y.-M.; Crook, J.; de Sousa, P.; et al. Points to consider in the development of seed stocks of pluripotent stem cells for clinical applications: International Stem Cell Banking Initiative (ISCBI). Regen. Med. 2015, 10, 1–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, S.; Stacey, G.N.; Akazawa, C.; Aoyama, N.; Baptista, R.; Bedford, P.; Bennaceur Griscelli, A.; Chandra, A.; Elwood, N.; Girard, M.; et al. Quality control guidelines for clinical-grade human induced pluripotent stem cell lines. Regen. Med. 2018, 13, 859–866. [Google Scholar] [CrossRef] [Green Version]
- Andrews, P.W.; Arias-Diaz, J.; Auerbach, J.; Alvarez, M.; Ahrlund-Richter, L.; Baker, D.; Benvenisty, N.; Ben-Josef, D.; Blin, G.; Borghese, L.; et al. Consensus Guidance for Banking and Supply of Human Embryonic Stem Cell Lines for Research Purposes. Stem Cell Rev. Rep. 2009, 5, 301–314. [Google Scholar]
- De Sousa, P.A.; Tye, B.J.; Bruce, K.; Dand, P.; Russell, G.; Collins, D.M.; Greenshields, A.; McDonald, K.; Bradburn, H.; Canham, M.A.; et al. Derivation of the clinical grade human embryonic stem cell line RCe013-A (RC-9). Stem Cell Res. 2016, 17, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Bates, N.; Soteriou, D.; Grady, L.; Edmond, C.; Ross, A.; Kerby, A.; Lewis, P.A.; Adeniyi, T.; Wright, R.; et al. High quality clinical grade human embryonic stem cell lines derived from fresh discarded embryos. Stem Cell Res. Ther. 2017, 8, 128. [Google Scholar] [CrossRef]
- Miere, C.; Wood, V.; Kadeva, N.; Cornwell, G.; Codognotto, S.; Stephenson, E.; Ilic, D. Generation of KCL038 clinical grade human embryonic stem cell line. Stem Cell Res. 2016, 16, 137–139. [Google Scholar] [CrossRef] [Green Version]
- Štefková, K.; Procházková, J.; Pacherník, J. Alkaline Phosphatase in Stem Cells. Stem Cells Int. 2015, 2015, 11. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.-E.; Tsai, M.-S.; Yang, Y.-C.; Yuan, C.-C.; Wang, T.-H.; Lin, X.-Z.; Tseng, C.-P.; Hwang, S.-M. Selection of alkaline phosphatase-positive induced pluripotent stem cells from human amniotic fluid-derived cells by feeder-free system. Exp. Cell Res. 2011, 317, 1895–1903. [Google Scholar] [CrossRef] [PubMed]
- Freedman, L.P.; Gibson, M.C.; Ethier, S.P.; Soule, H.R.; Neve, R.M.; Reid, Y.A. Reproducibility: Changing the policies and culture of cell line authentication. Nat. Methods 2015, 12, 493–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarafian, R.; Morato-Marques, M.; Borsoi, J.; Pereira, L.V. Monitoring cell line identity in collections of human induced pluripotent stem cells. Stem Cell Res. 2018, 28, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Kerrigan, L.; Nims, R.W. Authentication of human cell-based products: The role of a new consensus standard. Regen. Med. 2011, 6, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Draper, J.S.; Smith, K.; Gokhale, P.; Moore, H.D.; Maltby, E.; Johnson, J.; Meisner, L.; Zwaka, T.P.; Thomson, J.A.; Andrews, P.W. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 2004, 22, 53–54. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.E.C.; Harrison, N.J.; Maltby, E.; Smith, K.; Moore, H.D.; Shaw, P.J.; Heath, P.R.; Holden, H.; Andrews, P.W. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat. Biotechnol. 2007, 25, 207–215. [Google Scholar] [CrossRef]
- Tapia, N.; Schöler, H.R. Molecular Obstacles to Clinical Translation of iPSCs. Cell Stem Cell 2016, 19, 298–309. [Google Scholar] [CrossRef] [Green Version]
- Assou, S.; Bouckenheimer, J.; Vos, J.D. Concise Review: Assessing the Genome Integrity of Human Induced Pluripotent Stem Cells: What Quality Control Metrics? Stem Cells 2018, 36, 814–821. [Google Scholar] [CrossRef] [Green Version]
- Simonson, O.E.; Domogatskaya, A.; Volchkov, P.; Rodin, S. The safety of human pluripotent stem cells in clinical treatment. Ann. Med. 2015, 47, 370–380. [Google Scholar] [CrossRef]
- Lund, R.J.; Närvä, E.; Lahesmaa, R. Genetic and epigenetic stability of human pluripotent stem cells. Nat. Rev. Genet. 2012, 13, 732–744. [Google Scholar] [CrossRef]
- Nowakowska, B. Clinical interpretation of copy number variants in the human genome. J. Appl. Genet. 2017, 58, 449–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagahashi, M.; Shimada, Y.; Ichikawa, H.; Kameyama, H.; Takabe, K.; Okuda, S.; Wakai, T. Next generation sequencing-based gene panel tests for the management of solid tumors. Cancer Sci. 2019, 110, 6–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soukupová, J.; Zemánková, P.; Kleiblová, P.; Janatová, M.; Kleibl, Z. CZECANCA: CZEch CAncer paNel for Clinical Application – Design and Optimization of the Targeted Sequencing Panel for the Identification of Cancer Susceptibility in High-risk Individuals from the Czech Republic. Klin Onkol. 2016, 29, S46–S54. [Google Scholar] [CrossRef] [PubMed]
- The Allele Frequency Net Database—Allele, haplotype and genotype frequencies in Worldwide Populations. Available online: http://allelefrequencies.net/default.asp (accessed on 19 February 2020).
- Nakatsuji, N.; Nakajima, F.; Tokunaga, K. HLA-haplotype banking and iPS cells. Nat. Biotechnol. 2008, 26, 739–740. [Google Scholar] [CrossRef] [PubMed]
- Itskovitz-Eldor, J.; Schuldiner, M.; Karsenti, D.; Eden, A.; Yanuka, O.; Amit, M.; Soreq, H.; Benvenisty, N. Differentiation of Human Embryonic Stem Cells into Embryoid Bodies Comprising the Three Embryonic Germ Layers. Mol. Med. 2000, 6, 88–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Sousa, P.A.; Tye, B.J.; Bruce, K.; Dand, P.; Russell, G.; Collins, D.M.; Greenshields, A.; McDonald, K.; Bradburn, H.; Laurie, A.; et al. Derivation of the clinical grade human embryonic stem cell line RCe015-A (RC-11). Stem Cell Res. 2016, 17, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Martí, M.; Mulero, L.; Pardo, C.; Morera, C.; Carrió, M.; Laricchia-Robbio, L.; Esteban, C.R.; Belmonte, J.C.I. Characterization of pluripotent stem cells. Nat. Protoc. 2013, 8, 223–253. [Google Scholar] [CrossRef]
- Murry, C.E.; Keller, G. Differentiation of Embryonic Stem Cells to Clinically Relevant Populations: Lessons from Embryonic Development. Cell 2008, 132, 661–680. [Google Scholar] [CrossRef] [Green Version]
- Bock, C.; Kiskinis, E.; Verstappen, G.; Gu, H.; Boulting, G.; Smith, Z.D.; Ziller, M.; Croft, G.F.; Amoroso, M.W.; Oakley, D.H.; et al. Reference Maps of Human ES and iPS Cell Variation Enable High-Throughput Characterization of Pluripotent Cell Lines. Cell 2011, 144, 439–452. [Google Scholar] [CrossRef] [Green Version]
- Nelakanti, R.V.; Kooreman, N.G.; Wu, J.C. Teratoma Formation: A Tool for Monitoring Pluripotency in Stem Cell Research. Curr. Protoc. Stem Cell Biol. 2015, 32. [Google Scholar] [CrossRef]
- Müller, F.-J.; Goldmann, J.; Löser, P.; Loring, J.F. A Call to Standardize Teratoma Assays Used to Define Human Pluripotent Cell Lines. Cell Stem Cell 2010, 6, 412–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prokhorova, T.A.; Harkness, L.M.; Frandsen, U.; Ditzel, N.; Schrøder, H.D.; Burns, J.S.; Kassem, M. Teratoma Formation by Human Embryonic Stem Cells Is Site Dependent and Enhanced by the Presence of Matrigel. Stem Cells Dev. 2008, 18, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Gropp, M.; Shilo, V.; Vainer, G.; Gov, M.; Gil, Y.; Khaner, H.; Matzrafi, L.; Idelson, M.; Kopolovic, J.; Zak, N.B.; et al. Standardization of the Teratoma Assay for Analysis of Pluripotency of Human ES Cells and Biosafety of Their Differentiated Progeny. PLoS ONE 2012, 7, e45532. [Google Scholar] [CrossRef] [PubMed]
- Amit, M.; Itskovitz-Eldor, J. Morphology of Human Embryonic and Induced Pluripotent Stem Cell Colonies Cultured with Feeders. In Atlas of Human Pluripotent Stem Cells; Amit, M., Itskovitz-Eldor, J., Eds.; Humana Press: Totowa, NJ, USA, 2012; pp. 15–39. ISBN 978-1-61779-547-3. [Google Scholar]
- Orozco-Fuentes, S.; Neganova, I.; Wadkin, L.E.; Baggaley, A.W.; Barrio, R.A.; Lako, M.; Shukurov, A.; Parker, N.G. Quantification of the morphological characteristics of hESC colonies. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodin, S.; Antonsson, L.; Hovatta, O.; Tryggvason, K. Monolayer culturing and cloning of human pluripotent stem cells on laminin-521–based matrices under xeno-free and chemically defined conditions. Nat. Protoc. 2014, 9, 2354–2368. [Google Scholar] [CrossRef]
- Chen, Y.-M.; Chen, L.-H.; Li, M.-P.; Li, H.-F.; Higuchi, A.; Kumar, S.S.; Ling, Q.-D.; Alarfaj, A.A.; Munusamy, M.A.; Chang, Y.; et al. Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs. Sci. Rep. 2017, 7, 45146. [Google Scholar] [CrossRef] [Green Version]
- Shafa, M.; Yang, F.; Fellner, T.; Rao, M.S.; Baghbaderani, B.A. Human-Induced Pluripotent Stem Cells Manufactured Using a Current Good Manufacturing Practice-Compliant Process Differentiate Into Clinically Relevant Cells From Three Germ Layers. Front. Med. (Lausanne) 2018, 5, 69. [Google Scholar] [CrossRef] [Green Version]
Directive/Regulation | Title |
---|---|
2004/23/EC | Standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells |
2003/94/EC | The principles and guidelines of good manufacturing practice in respect of medicinal products for human use and investigational medicinal products for human use |
EudraLex—Volume 4 | “The rules governing medicinal products in the European Union” contains guidance for the interpretation of the principles and guidelines of good manufacturing practices for medicinal products for human and veterinary use |
hPSCs | Oct3/4 | SSEA3 | SSEA4 | TRA-1-60 | TRA-1-81 | Sox2 | Nanog | AP (TRA-2-54) | SSEA1 | CD34 | Source |
---|---|---|---|---|---|---|---|---|---|---|---|
hESCs | - | ≥50% | - | ≥50% | ≥50% | - | - | ≥50% | ≤50% | - | Tannenbaum [33] |
hESCs | >65% | - | >65% | >50% | - | - | - | <15% | - | De Sousa [42] | |
hiPSCs | >70% | - | >70% | >70% | >70% | - | - | - | - | <5% | Baghbaderani [34] |
hPSCs | Oct3/4 | SSEA3 | SSEA4 | TRA-1-60 | TRA-1-81 | Sox2 | Nanog | AP (TRA-2-54) | SSEA1 | Source |
---|---|---|---|---|---|---|---|---|---|---|
hESCs | ≥60%* | ≥60%* | ≥60%* | ≥60%* | ≥60%* | - | ≥60%* | - | - | Tannenbaum [33] |
hESCs | ≥70% | - | ≥70% | ≥70% | ≥70% | ≥70% | ≥70% | - | NA | Ye [43] |
Characteristics | Method | Release Criteria | Test Interval |
---|---|---|---|
Differentiation | Embryoid bodies formation/directed differentiation | detection of endoderm, mesoderm and ectoderm | MCB, WCP |
Genetic stability | Karyotype analysis | normal diploid (>20 metaphases) | EP, WCB, every 10th passage |
Identity | STR analysis | hiPSCs: identical with donor and over time; hESCs: identical over time | hiPSCs: donor cells, WCB |
hESCs: EP, WCB | |||
Vector clearance* | PCR | negative | MCB, WCB |
Morphology | Photography | normal morphology** | Continuously |
Pluripotency | Flow cytometry | >70% for at least 2 surface and 2 intracellular markers; <10% for SSEA1 | EP, MCB, WCB, every 10th passage |
Sterility | Endotoxin testing | negative | WCB |
Mycoplasma testing | negative | hiPSCs: donor cells, WCB | |
hESCs: EP, WCB | |||
Adventitious agents | negative | hiPSCs: donor cells, WCB | |
hESCs: donors, WCB | |||
Bacterial contamination | negative | hiPSCs: donor cells, WCB | |
hESCs: EP, WCB | |||
Viability | Viability | >60% | EP, MCB, WCP, every 10th passage |
Characteristics | Method | Test interval |
---|---|---|
Differentiation | Teratoma formation | WCB |
Genetic stability | SNP analysis | WCB |
Whole-genome sequencing | WCB | |
Cancer predisposition testing | WCB | |
Histocompatibility | HLA typing | Dependent on application* |
Pluripotency | Immunocytochemistry | EP, MCB, WCB |
Alkaline phosphatase | EP, MCB, WCB | |
Pluripotency/Differentiation | Transcriptome analysis | WCB |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehakova, D.; Souralova, T.; Koutna, I. Clinical-Grade Human Pluripotent Stem Cells for Cell Therapy: Characterization Strategy. Int. J. Mol. Sci. 2020, 21, 2435. https://doi.org/10.3390/ijms21072435
Rehakova D, Souralova T, Koutna I. Clinical-Grade Human Pluripotent Stem Cells for Cell Therapy: Characterization Strategy. International Journal of Molecular Sciences. 2020; 21(7):2435. https://doi.org/10.3390/ijms21072435
Chicago/Turabian StyleRehakova, Daniela, Tereza Souralova, and Irena Koutna. 2020. "Clinical-Grade Human Pluripotent Stem Cells for Cell Therapy: Characterization Strategy" International Journal of Molecular Sciences 21, no. 7: 2435. https://doi.org/10.3390/ijms21072435
APA StyleRehakova, D., Souralova, T., & Koutna, I. (2020). Clinical-Grade Human Pluripotent Stem Cells for Cell Therapy: Characterization Strategy. International Journal of Molecular Sciences, 21(7), 2435. https://doi.org/10.3390/ijms21072435