Patches and Blebs: A Comparative Study of the Composition and Biophysical Properties of Two Plasma Membrane Preparations from CHO Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. PM Purification
2.2. Laurdan Fluorescence GP
2.3. AFM Microscopy and Force Spectroscopy
2.4. Lipidomic Studies
3. Materials and Methods
3.1. Cell Growth
3.2. Sample Preparation
3.2.1. Cell Lipid Extraction
3.2.2. GPMV (bleb) Formation
3.2.3. Isolation of PM Patches
3.2.4. GUV Formation
3.2.5. SUV Formation
3.3. Laurdan General Polarization
3.3.1. Intact Cells
3.3.2. Blebs (GPMV)
3.3.3. Patches
3.3.4. GUV
3.4. Image Acquisition
3.5. Data and Image Analysis
3.6. Fluorescence Spectrometric Analysis
3.7. AFM
3.7.1. Blebs
3.7.2. PM Patches
3.7.3. Topographic Measurements
3.7.4. Force Spectroscopy Measurements
3.8. Mass Spectroscopic Analysis
3.8.1. Lipid Extraction
3.8.2. Glycerophospholipid and Sphingolipid Detection on a Triple Quadrupole Mass Spectrometer
3.9. Gas Chromatography–Mass Spectrometry for Cholesterol Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garcia-Arribas, A.B.; Busto, J.V.; Alonso, A.; Goñi, F.M. Atomic Force Microscopy Characterization of Palmitoylceramide and Cholesterol Effects on Phospholipid Bilayers: A Topographic and Nanomechanical Study. Langmuir 2015, 31, 3135–3145. [Google Scholar] [CrossRef] [PubMed]
- Sezgin, E.; Schwille, P. Model membrane platforms to study protein-membrane interactions. Mol. Membr. Boil. 2012, 29, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Sezgin, E.; Kaiser, H.-J.; Baumgart, T.; Schwille, P.; Simons, K.; Levental, I. Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat. Protoc. 2012, 7, 1042–1051. [Google Scholar] [CrossRef] [PubMed]
- Boone, C.W.; Ford, L.E.; Bond, H.E.; Stuart, D.C.; Lorenz, D. Isolation of plasma membrane fragments from HeLa cells. J. Cell Boil. 1969, 41, 378–392. [Google Scholar] [CrossRef] [Green Version]
- Lawson, E.L.; Clifton, J.; Huang, F.; Li, X.; Hixson, U.C.; Josić, D. Use of magnetic beads with immobilized monoclonal antibodies for isolation of highly pure plasma membranes. Electrophor. 2006, 27, 2747–2758. [Google Scholar] [CrossRef]
- Tharkeshwar, A.K.; Trekker, J.; Vermeire, W.; Pauwels, J.; Sannerud, R.; Priestman, D.A.; Vruchte, D.T.; Vints, K.; Baatsen, P.; Decuypere, J.-P.; et al. A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics: The case of NPC1 deficiency. Sci. Rep. 2017, 7, 41408. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Goldstein, J.L.; Anderson, N.D.; Brown, M.S.; Radhakrishnan, A. Use of mutant 125I-Perfringolysin O to probe transport and organization of cholesterol in membranes of animal cells. Proc. Natl. Acad. Sci. USA 2013, 110, 10580–10585. [Google Scholar] [CrossRef] [Green Version]
- Choen, C.M.; Calish, D.I.; Jacobson, B.S.; Branton, D. Membrane isolation on polylysine-coated beads. Plasma membrane from HeLa cells. J. Biol. 1977, 75, 119–134. [Google Scholar]
- Bhattacharyya, L.; Ceccarini, C.; Lorenzoni, P.; Brewer, C.F. Concanavalin A interactions with asparagine-linked glycopeptides. Bivalency of high mannose and bisected hybrid type glycopeptides. J. Biol. Chem. 1987, 262, 1288–1293. [Google Scholar]
- Lee, Y.-C.; Block, G.; Chen, H.; Folch-Puy, E.; Foronjy, R.; Jalili, R.; Jendresen, C.B.; Kimura, M.; Kraft, E.; Lindemose, S.; et al. One-step isolation of plasma membrane proteins using magnetic beads with immobilized concanavalin A. Protein Expr. Purif. 2008, 62, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Bezrukov, L.; Blank, P.S.; Polozov, I.V.; Zimmerberg, J. An adhesion-based method for plasma membrane isolation: Evaluating cholesterol extraction from cells and their membranes. Anal. Biochem. 2009, 394, 171–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, R. Plasma membrane vesiculation: A new technique for isolation of plasma membranes. Science 1976, 194, 743–745. [Google Scholar] [CrossRef] [PubMed]
- Baumgart, T.; Hammond, A.T.; Sengupta, P.; Hess, S.T.; Holowka, D.A.; Baird, B.A.; Webb, W.W. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl. Acad. Sci. USA 2007, 104, 3165–3170. [Google Scholar] [CrossRef] [Green Version]
- Del Piccolo, N.; Placone, J.; He, L.; Agudelo, S.C.; Hristova, K. Production of Plasma Membrane Vesicles with Chloride Salts and Their Utility as a Cell Membrane Mimetic for Biophysical Characterization of Membrane Protein Interactions. Anal. Chem. 2012, 84, 8650–8655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen, D.M.; Rentero, C.; Magenau, A.; Abu-Siniyeh, A.; Gaus, K. Quantitative imaging of membrane lipid order in cells and organisms. Nat. Protoc. 2011, 7, 24–35. [Google Scholar] [CrossRef]
- Aron, M.; Browning, R.; Carugo, D.; Sezgin, E.; De La Serna, J.B.; Eggeling, C.; Stride, E. Spectral imaging toolbox: Segmentation, hyperstack reconstruction, and batch processing of spectral images for the determination of cell and model membrane lipid order. BMC Bioinform. 2017, 18, 254. [Google Scholar] [CrossRef] [Green Version]
- Sezgin, E.; Schneider, F.; Zilles, V.; Urbančič, I.; García, E.; Waithe, D.; Klymchenko, A.S.; Eggeling, C. Polarity-sensitive probes for superresolution stimulated emission depletion microscopy. Biophys. J. 2017, 113, 1321–1330. [Google Scholar] [CrossRef] [Green Version]
- Dawaliby, R.; Trubbia, C.; Delporte, C.; Noyon, C.; Ruysschaert, J.M.; Van Antwerpen, P.; Govaerts, C. Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells. J. Biol. Chem. 2016, 291, 3658–3667. [Google Scholar] [CrossRef] [Green Version]
- Kalvodova, L.; Sampaio, J.; Cordo, S.; Ejsing, C.S.; Shevchenko, A.; Simons, K. The Lipidomes of Vesicular Stomatitis Virus, Semliki Forest Virus, and the Host Plasma Membrane Analyzed by Quantitative Shotgun Mass Spectrometry. J. Virol. 2009, 83, 7996–8003. [Google Scholar] [CrossRef] [Green Version]
- Lorizate, M.; Sachsenheimer, T.; Glass, B.; Habermann, A.; Gerl, M.; Kräusslich, H.-G.; Brügger, B. Comparative lipidomics analysis of HIV-1 particles and their producer cell membrane in different cell lines. Cell. Microbiol. 2013, 15, 292–304. [Google Scholar] [CrossRef]
- Van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Boil. 2008, 9, 112–124. [Google Scholar] [CrossRef]
- Sampaio, J.; Gerl, M.; Klose, C.; Ejsing, C.S.; Beug, H.; Simons, K.; Shevchenko, A. Membrane lipidome of an epithelial cell line. Proc. Natl. Acad. Sci. 2011, 108, 1903–1907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guri, Y.; Colombi, M.; Dazert, E.; Hindupur, S.K.; Roszik, J.; Moes, S.; Jenoe, P.; Heim, M.H.; Riezman, I.; Riezman, H.; et al. mTORC2 Promotes Tumorigenesis via Lipid Synthesis. Cancer Cell 2017, 32, 807–823.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harayama, T.; Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Boil. 2018, 19, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Sezgin, E.; Waithe, D.; De La Serna, J.B.; Eggeling, C. Spectral Imaging to Measure Heterogeneity in Membrane Lipid Packing. Chem. Phys. Chem. 2015, 16, 1387–1394. [Google Scholar] [CrossRef] [Green Version]
- Keller, H.; Lorizate, M.; Schwille, P. PI(4,5)P2 Degradation Promotes the Formation of Cytoskeleton-Free Model Membrane Systems. Chem. Phys. Chem. 2009, 10, 2805–2812. [Google Scholar] [CrossRef]
- Ahyayauch, H.; García-Arribas, A.B.; Sot, J.; Ramírez, E.J.G.; Busto, J.V.; Monasterio, B.G.; Jiménez-Rojo, N.; Contreras, F.X.; Rendón-Ramírez, A.; Martin, C.; et al. Pb(II) Induces Scramblase Activation and Ceramide-Domain Generation in Red Blood Cells. Sci. Rep. 2018, 8, 7456. [Google Scholar] [CrossRef] [Green Version]
- Manni, M.; Sot, J.; Goñi, F.M. Interaction of Clostridium perfringens epsilon-toxin with biological and model membranes: A putative protein receptor in cells. Biochim. et Biophys. Acta (BBA)-Biomembr. 2015, 1848, 797–804. [Google Scholar] [CrossRef] [Green Version]
- Dimitrov, D.S.; Angelova, M.I. Lipid swelling and liposome formation mediated by electric fields. Bioelectrochem. Bioenerg. 1988, 19, 323–336. [Google Scholar] [CrossRef]
- Krasnowska, E.K.; Gratton, E.; Parasassi, T. Prodan as a membrane surface fluorescence probe: Partitioning between water and phospholipid phases. Biophys. J. 1998, 74, 1984–1993. [Google Scholar] [CrossRef] [Green Version]
- Parasassi, T.; Gratton, E.; Yu, W.; Wilson, P.; Levi, M. Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys. J. 1997, 72, 2413–2429. [Google Scholar] [CrossRef] [Green Version]
- Carravilla, P.; Nieva, J.L.; Goñi, F.M.; Requejo-Isidro, J.; Huarte, N. Two-Photon Laurdan Studies of the Ternary Lipid Mixture DOPC:SM:Cholesterol Reveal a Single Liquid Phase at Sphingomyelin:Cholesterol Ratios Lower Than 1. Langmuir 2015, 31, 2808–2817. [Google Scholar] [CrossRef] [PubMed]
- De Santis, A.; Varela, Y.; Sot, J.; D’Errico, G.; Goñi, F.M.; Alonso, A. Omega-3 polyunsaturated fatty acids do not fluidify bilayers in the liquid-crystalline state. Sci. Rep. 2018, 8, 16240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monasterio, B.G.; Alonso, B.; Sot, J.; García-Arribas, A.B.; Gil-Carton, D.; Valle, M.; Zurutuza, A.; Goñi, F.M. Coating Graphene Oxide with Lipid Bilayers Greatly Decreases Its Hemolytic Properties. Langmuir 2017, 33, 8181–8191. [Google Scholar] [CrossRef]
- Guan, X.L.; Riezman, I.; Wenk, M.R.; Riezman, H. Yeast Lipid Analysis and Quantification by Mass Spectrometry; Academic Press: Cambridge, MA, USA, 2010; Volume 470, pp. 369–391. [Google Scholar]
Lipid Class | Standard | Polarity | Mode | m/z ion | Collision Energy |
---|---|---|---|---|---|
Phosphatidylcholine [M+H]+ | DLPC | + | Product ion | 184.07 | 30 |
Phosphatidylethanolamine [M+H]+ | PE31:1 | + | Neutral ion loss | 141.02 | 20 |
Phosphatidylinositol [M-H]− | PI31:1 | - | Product ion | 241.01 | 44 |
Phosphatidylserine [M-H]− | PS31:1 | - | Neutral ion loss | 87.03 | 23 |
Cardiolipin [M-2H]2− | CL56:0 | - | Product ion | acyl chain | 32 |
Ceramide [M+H]+ | C17Cer | + | Product ion | 264.34 | 25 |
Dihydroceramide [M+H]+ | C17Cer | + | Product ion | 266.40 | 25 |
Hexosylceramide [M+H]+ | C8GC | + | Product ion | 264.34 | 30 |
Hexosyldihydroceramide [M+H]+ | C8GC | + | Product ion | 266.40 | 30 |
Sphingomyelin [M+H]+ | C12SM | + | Product ion | 184.07 | 26 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monasterio, B.G.; Jiménez-Rojo, N.; García-Arribas, A.B.; Riezman, H.; Goñi, F.M.; Alonso, A. Patches and Blebs: A Comparative Study of the Composition and Biophysical Properties of Two Plasma Membrane Preparations from CHO Cells. Int. J. Mol. Sci. 2020, 21, 2643. https://doi.org/10.3390/ijms21072643
Monasterio BG, Jiménez-Rojo N, García-Arribas AB, Riezman H, Goñi FM, Alonso A. Patches and Blebs: A Comparative Study of the Composition and Biophysical Properties of Two Plasma Membrane Preparations from CHO Cells. International Journal of Molecular Sciences. 2020; 21(7):2643. https://doi.org/10.3390/ijms21072643
Chicago/Turabian StyleMonasterio, Bingen G., Noemi Jiménez-Rojo, Aritz B. García-Arribas, Howard Riezman, Félix M. Goñi, and Alicia Alonso. 2020. "Patches and Blebs: A Comparative Study of the Composition and Biophysical Properties of Two Plasma Membrane Preparations from CHO Cells" International Journal of Molecular Sciences 21, no. 7: 2643. https://doi.org/10.3390/ijms21072643
APA StyleMonasterio, B. G., Jiménez-Rojo, N., García-Arribas, A. B., Riezman, H., Goñi, F. M., & Alonso, A. (2020). Patches and Blebs: A Comparative Study of the Composition and Biophysical Properties of Two Plasma Membrane Preparations from CHO Cells. International Journal of Molecular Sciences, 21(7), 2643. https://doi.org/10.3390/ijms21072643