Atopic Dermatitis: Identification and Management of Complicating Factors
Abstract
:1. Introduction
2. Irritants
3. Aeroallergens
3.1. House Dust Mites (HDM)
3.2. Animal Dander
3.3. Pollen
4. Food
4.1. Blood and Skin Tests
4.2. Allergen-Free Diet for Pregnant/Lactating Women
4.3. Percutaneous Sensitization in Food Allergy
5. Microbial Organisms
5.1. Staphylococcus Aureus
5.2. Malassezia Furfur
6. Contact Allergens
6.1. Contact Allergy
6.2. Intrinsic AD
7. Sweating
7.1. The Function and Composition of Sweat
7.2. Decreased Sweating in AD Patients
7.3. Sweat Allergies
7.4. Measures for Sweating
8. Scratching Behavior
8.1. Scratching-Induced Aggravation of AD Lesions
8.2. Factors Influencing Scratching Behavior
9. Other Factors
9.1. Psychological Stressors
9.2. Circadian Rhythms
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Katoh, N.; Ohya, Y.; Ikeda, M.; Ebihara, T.; Katayama, I.; Saeki, H.; Shimojo, N.; Tanaka, A.; Nakahara, T.; Nagao, M.; et al. Clinical practice guidelines for the management of atopic dermatitis 2018. J. Dermatol. 2019, 46, 1053–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ring, J.; Alomar, A.; Bieber, T.; Deleuran, M.; Fink-Wagner, A.; Gelmetti, C.; Gieler, U.; Lipozencic, J.; Luger, T.; Oranje, A.P.; et al. Guidelines for treatment of atopic eczema (atopic dermatitis) Part I. J. Eur. Acad. Dermatol. Venereol. 2012, 26, 1045–1060. [Google Scholar] [CrossRef] [PubMed]
- Eichenfield, L.F.; Tom, W.L.; Chamlin, S.L.; Feldman, S.R.; Hanifin, J.M.; Simpson, E.L.; Berger, T.G.; Bergman, J.N.; Cohen, D.E.; Cooper, K.D.; et al. Guidelines of care for the management of atopic dermatitis: Section 1 diagnosis and assessment of atopic dermatitis. J. Am. Acad. Dermatol. 2014, 70, 338–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, H.C. Atopic dermatitis. In The Epidemiology, Causes and Prevention of Atopic Eczema; Williams, H.C., Ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Elias, P.M. Stratum corneum defensive functions: An integrated view. J. Gen. Intern Med. 2005, 125, 183–200. [Google Scholar] [CrossRef] [PubMed]
- Melnik, B.; Hollmann, J.; Plewig, G. Decreased stratum corneum ceramides in atopic individuals–a pathobiochemical factor in xerosis? Br. J. Dermatol. 1988, 119, 547–549. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas, B.; Novak, N. Atopic dermatitis and filaggrin. Curr. Opin. Immunol. 2016, 42, 1–8. [Google Scholar] [CrossRef]
- Kono, M.; Nomura, T.; Ohguchi, Y.; Mizuno, O.; Suzuki, S.; Tsujiuchi, H.; Hamajima, N.; McLean, W.H.; Shimizu, H.; Akiyama, M. Comprehensive screening for a complete set of Japanese-population-specific filaggrin gene mutations. Allergy 2014, 69, 537–540. [Google Scholar] [CrossRef]
- Eichenfield, L.F.; Tom, W.L.; Berger, T.G.; Krol, A.; Paller, A.S.; Schwarzenberger, K.; Bergman, J.N.; Chamlin, S.L.; Cohen, D.E.; Cooper, K.D.; et al. Guidelines of care for the management of atopic dermatitis: Section Management and treatment of atopic dermatitis with topical therapies. J. Am. Acad. Dermatol. 2014, 71, 116–132. [Google Scholar] [CrossRef] [Green Version]
- Sidbury, R.; Davis, D.M.; Cohen, D.E.; Cordoro, K.M.; Berger, T.G.; Bergman, J.N.; Chamlin, S.L.; Cooper, K.D.; Feldman, S.R.; Hanifin, J.M.; et al. Guidelines of care for the management of atopic dermatitis: Section 3. Management and treatment with phototherapy and systemic agents. J. Am. Acad. Dermatol. 2014, 71, 327–349. [Google Scholar] [CrossRef] [Green Version]
- Elias, P.M.; Hatano, Y.; Williams, M.L. Basis for the barrier abnormality in atopic dermatitis: Outside-inside-outside pathogenic mechanisms. J. Allergy Clin. Immunol. 2008, 121, 1337–13343. [Google Scholar] [CrossRef] [Green Version]
- Diepgen, T.L.; Stäbler, A.; Hornstein, O.P. Textile intolerance in atopic eczema -a controlled clinical study. Z. Hautkr. 1990, 65, 907–910. [Google Scholar] [PubMed]
- Wahlgren, C.F.; Hägermark, O.; Bergström, R. Patients’ perception of itch induced by histamine, compound 48/80 and wool fibres in atopic dermatitis. Acta. Derm. Venereol. 1991, 71, 488–494. [Google Scholar] [PubMed]
- Sidbury, R.; Tom, W.L.; Bergman, J.N.; Cooper, K.D.; Silverman, R.A.; Berger, T.G.; Chamlin, S.L.; Cohen, D.E.; Cordoro, K.M.; Davis, D.M. Guidelines of care for the management of atopic dermatitis: Section 4. J. Am. Acad. Dermatol. 2014, 71, 1218–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, W.R. Hierarchy and molecular properties of house dust mite allergens. Allergol. Int. 2015, 64, 304–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allergen Nomenclature. WHO/IUIS Allergen Nomenclature Sub-Committee. Available online: www.allergen.org/ (accessed on 15 August 2019).
- Tovey, E.R.; Willenborg, C.M.; Crisafulli, D.A.; Rimmer, J.; Marks, G.B. Marks most personal exposure to house dust mite aeroallergen occurs during the day. PLoS ONE 2013, 8, e69900. [Google Scholar] [CrossRef] [PubMed]
- Darsow, U.; Vieluf, D.; Ring, J. Evaluating the relevance of aeroallergen sensitization in atopic eczema with the atopy patch test: A randomized, double-blind multicenter study. Atopy Patch Test Study Group. J. Am. Acad. Dermatol. 1999, 40, 187–193. [Google Scholar] [CrossRef]
- Darsow, U.; Laifaoui, J.; Kerschenlohr, K.; Wollenberg, A.; Przybilla, B.; Wüthrich, B.; Borelli, S., Jr.; Giusti, F.; Seidenari, S.; Drzimalla, K.; et al. The prevalence of positive reactions in the atopy patch test with aeroallergens and food allergens in subjects with atopic eczema: A European multicenter study. Allergy 2004, 59, 1318–1325. [Google Scholar] [CrossRef]
- Katoh, N.; Hirano, S.; Suehiro, M.; Masuda, K.; Kishimoto, S. The characteristics of patients with atopic dermatitis demonstrating a positive reaction in a scratch test after 48 hours against house dust mite antigen. J. Dermatol. 2004, 31, 720–726. [Google Scholar] [CrossRef]
- Bruijnzeel-Koomen, C.; van Wicker, D.; Toonstra, J.; Bruijnzeel, P. The presence of IgE molecules on epidermal Langerhans cells from patients with atopic dermatitis. Arch. Dermatol. Res. 1986, 278, 199–205. [Google Scholar] [CrossRef]
- Mudde, G.C.; van Reijsen, F.C.; Boland, G.J.; de Gast, G.C.; Bruijnzeel, P.L.; Bruijnzeel-Koomen, C.A. Allergen presentation by epidermal Langerhans’ cells from patients with atopic dermatitis is mediated by IgE. Immunology 1990, 69, 335–341. [Google Scholar]
- Bieber, T.; de la Salle, H.; Wollenberg, A. Human epidermal Langerhans cells express the high affinity receptor for immunoglobulin E (FcεRI). J. Exp. Med. 1992, 175, 1285–1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Rieger, A.; Kilgus, O. Epidermal Langerhans cells from normal human skin bind monomeric IgE via FcεRI. J. Exp. Med. 1992, 175, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- Jürgens, M.L.; Wollenberg, A.; Hanau, D.; de la Salle, H.; Bieber, T. Activation of human epidermal Langerhans cells by engagement of the high affinity receptor for IgE, FcεRI. J. Immunol. 1995, 155, 5184–5189. [Google Scholar] [PubMed]
- Darsow, U.; Vieluf, D.; Ring, J. The atopy patch test: An increased rate of reactivity in patients who have an air-exposed pattern of atopic eczema. Br. J. Dermatol. 1996, 135, 182–186. [Google Scholar] [CrossRef]
- Ricci, G.; Patrizi, A.; Specchia, F.; Menna, L.; Bottau, P.; D’Angelo, V.; Masi, M. Effect of house dust mite avoidance measures in children with atopic dermatitis. Br. J. Dermatol. 2000, 143, 379–384. [Google Scholar] [CrossRef]
- Oosting, A.J.; de Bruin-Weller, M.S.; Terreehorst, I.; Tempels-Pavlica, Z.; Aalberse, R.C.; de Monchy, J.G.; van Wijk, R.G.; Bruijnzeel-Koomen, C.A. Effect of mattress encasings on atopic dermatitis outcome measures in a double-blind, placebo-controlled study: The Dutch mite avoidance study. J. Allergy. Clin. Immunol. 2002, 110, 500–506. [Google Scholar] [CrossRef]
- Gutgesell, C.; Heise, S.; Seubert, S.; Seubert, A.; Domhof, S.; Brunner, E.; Neumann, C. Double-blind placebo-controlled house dust mite control measures in adult patients with atopic dermatitis. Br. J. Dermatol. 2001, 145, 70–74. [Google Scholar] [CrossRef]
- Ridolo, E.; Martignago, I.; Galeazzo Riario-Sforza, G.; Incorvaia, C. Allergen immunotherapy in atopic dermatitis. Expert Rev. Clin. Immunol. 2018, 14, 61–68. [Google Scholar] [CrossRef]
- Bussmann, C.; Bo¨ckenhoff, A.; Henke, H.; Werfel, T.; Novak, N. Does allergen-specific immunotherapy represent a therapeutic option for patients with atopic dermatitis? J. Allergy Clin. Immunol. 2006, 118, 1292–1298. [Google Scholar] [CrossRef]
- Thomas, W.R. Innate affairs of allergens. Clin. Exp. Allergy 2013, 43, 152–163. [Google Scholar] [CrossRef]
- Bonnet, B.; Messaoudi, K.; Jacomet, F.; Michaud, E.; Fauquert, J.L.; Caillaud, D.; Evrard, B. An update on molecular cat allergens: Fel d 1 and what else? Chapter 1: Fel d 1, the major cat allergen. Allergy Asthma. Clin. Immunol. 2018, 14, 14. [Google Scholar] [CrossRef] [PubMed]
- Čelakovská, J.; Ettlerová, K.; Ettler, K.; Vaněčková, J.; Bukač, J. Sensitization to aeroallergens in atopic dermatitis patients: Association with concomitant allergic diseases. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1500–1505. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Cuesta, E.; Berges-Gimeno, P.; González-Mancebo, E.; Mancebo, E.G.; Fernández-Caldas, E.; Cuesta-Herranz, J.; Casanovas, M. Sublingual immunotherapy with a standardized cat dander extract: Evaluation of efficacy in a double blind placebo controlled study. Allergy 2007, 62, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Yokozeki, H.; Takayama, K.; Katayama, I.; Nishioka, K. Japanese cedar pollen as an exacerbation factor in atopic dermatitis: Results of atopy patch testing and histological examination. Acta. Derm. Venereol. 2006, 86, 148–151. [Google Scholar]
- Darsow, U.; Behrendt, H.; Ring, J. Gramineae pollen as trigger factors of atopic eczema: Evaluation of diagnostic measures using the atopy patch test. Br. J. Dermatol. 1997, 137, 201–207. [Google Scholar] [CrossRef]
- Werfel, T.; Heratizadeh, A.; Niebuhr, M.; Kapp, A.; Roesner, L.M.; Karch, A.; Erpenbeck, V.J.; Lösche, C.; Jung, T.; Krug, N. Exacerbation of atopic dermatitis on grass pollen exposure in an environmental challenge chamber. J. Allergy Clin. Immunol. 2015, 136, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Bock, S.A.; Lee, W.Y.; Remigio, L.; Holst, A.; May, C.D. Appraisal of skin tests with food extracts for diagnosis of food hypersensitivity. Clin. Allergy 1978, 8, 559–564. [Google Scholar] [CrossRef]
- Sampson, H.A.; Albergo, R. Comparison of results of skin tests, RAST, and double-blind, placebo-controlled food challenges in children with atopic dermatitis. J. Allergy Clin. Immunol. 1984, 74, 26–33. [Google Scholar] [CrossRef]
- Lemon-Mule, H.; Nowak-Wegrzyn, A.; Berin, C.; Knight, A.K. Pathophysiology of food-induced anaphylaxis. Curr. Allergy Asthma. Rep. 2008, 8, 201–208. [Google Scholar] [CrossRef]
- Kramer, M.S.; Kakuma, R. Maternal dietary antigen avoidance during pregnancy or lactation, or both, for preventing or treating atopic disease in the child. Cochrane Database Syst. Rev. 2012, 9, CD000133. [Google Scholar] [CrossRef] [PubMed]
- Lack, G.; Fox, D.; Northstone, K.; Golding, J. Avon Longitudinal Study of Parents and Children Study Team. Factors associated with the development of peanut allergy in childfood. N Engl. J. Med. 2003, 348, 977–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lack, G. Epidemiologic risks for food allergy. J. Allergy Clin. Immunol. 2008, 129, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.H.; Oh, J.; Deming, C.; Conlan, S.; Grice, E.A.; Beatson, M.A.; Nomicos, E.; Polley, E.C.; Komarow, H.D.; NISC Comparative Sequence Program; et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome. Res. 2012, 22, 850–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, E.L.; Villarreal, M.; Jepson, B.; Rafaels, N.; David, G.; Hanifin, J.; Taylor, P.; Boguniewicz, M.; Yoshida, T.; De Benedetto, A.; et al. Patients with atopic dermatitis colonized with Staphylococcus aureus have a distinct phenotype and endotype. J. Investig. Dermatol. 2018, 138, 2224–2233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.T.; Abrams, M.; Tlougan, B.; Rademaker, A.; Paller, A.S. Treatment of staphylococcus aureus colonization in atopic dermatitis decreases disease severity. Pediatrics 2009, 123, e808–e814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, C.; Sandström, M.H.; Bartosik, J.; Särnhult, T.; Christiansen, J.; Zargari, A.; Bäck, O.; Wahlgren, C.F.; Faergemann, J.; Scheynius, A.; et al. Atopy patch test reactions to Malassezia allergens differentiate subgroups of atopic dermatitis patients. Br. J. Dermatol. 2003, 148, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.Y.; Jang, I.G.; Park, Y.M.; Kim, H.O.; Kim, C.W. Head and neck dermatitis: The role of Malassezia furfur, topical steroid use and environmental factors in its causation. Clin. Exp. Dermatol. 1999, 24, 226–231. [Google Scholar] [CrossRef]
- Johansson, C.; Eshaghi, H.; Linder, M.T.; Jakobson, E.; Scheynius, A. Positive atopy patch test reaction to Malassezia furfur in atopic dermatitis correlates with a T helper 2-like peripheral blood mononuclear cells response. J. Investig. Dermatol. 2002, 118, 1044–1051. [Google Scholar] [CrossRef] [Green Version]
- Takechi, M. Minimum effective dosage in the treatment of chronic atopic dermatitis with itraconazole. J. Int. Med. Res. 2005, 33, 2732–2783. [Google Scholar] [CrossRef]
- Mayser, P.; Kupfer, J.; Nemetz, D.; Schäfer, U.; Nilles, M.; Hort, W.; Gieler, U. Treatment of head and neck dermatitis with ciclopiroxolamine cream-results of a double-blind, placebo-controlled study. Skin. Pharmacol. Physiol. 2006, 19, 1531–1558. [Google Scholar] [CrossRef]
- Tamagawa-Mineoka, R.; Masuda, K.; Ueda, S.; Nakamura, N.; Hotta, E.; Hattori, J.; Minamiyama, R.; Yamazaki, A.; Katoh, N. Contact sensitivity in patients with recalcitrant atopic dermatitis. J. Dermatol. 2015, 42, 720–722. [Google Scholar] [CrossRef] [PubMed]
- Thyssen, J.P.; Johansen, J.D.; Linneberg, A.; Menné, T.; Engkilde, K. The association between contact sensitization and atopic disease by linkage of a clinical database and a nationwide patient registry. Allergy 2012, 67, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Giordano-Labadie, F.; Rance, F.; Pellegrin, F.; Bazex, J.; Dutau, G.; Schwarze, H.P. Frequency of contact allergy in children with atopic dermatitis: Results of a prospective study of 137 cases. Contact Dermatitis 1999, 40, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Tokura, Y. Extrinsic and intrinsic types of atopic dermatitis. J. Dermatol. Sci. 2010, 58, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kabashima-Kubo, R.; Nakamura, M.; Sakabe, J.; Sugita, K.; Hino, R.; Mori, T.; Kobayashi, M.; Bito, T.; Kabashima, K.; Ogasawara, K.; et al. A group of atopic dermatitis without IgE elevation or barrier impairment shows a high Th1 frequency: Possible immunological state of the intrinsic type. J. Dermatol. Sci. 2012, 67, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, H.; Kabashima-Kubo, R.; Bito, T.; Sakabe, J.; Shimauchi, T.; Ito, T.; Hirakawa, S.; Hirasawa, N.; Ogasawara, K.; Tokura, Y. High frequencies of positive nickel/cobalt patch tests and high sweat nickel concentration in patients with intrinsic atopic dermatitis. J. Dermatol. Sci. 2013, 72, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Murota, H.; Yamaga, K.; Ono, E.; Katayama, I. Sweat in the pathogenesis of atopic dermatitis. Allergol. Int. 2018, 67, 455–459. [Google Scholar] [CrossRef]
- Shelmire, J.B., Jr. Some interrelations between sebum, sweat and the skin surface. J. Investig. Dermatol. 1959, 32, 471–472. [Google Scholar] [CrossRef] [Green Version]
- Liebke, C.; Wahn, U.; Niggemann, B. Sweat electrolyte concentrations in children with atopic dermatitis. Lancet 1997, 350, 1678–1679. [Google Scholar] [CrossRef]
- Sugawara, T.; Kikuchi, K.; Tagami, H.; Aiba, S.; Sakai, S. Decreased lactate and potassium levels in natural moisturizing factor from the stratum corneum of mild atopic dermatitis patients are involved with the reduced hydration state. J. Dermatol. Sci. 2012, 66, 154–159. [Google Scholar] [CrossRef]
- Rieg, S.; Steffen, H.; Seeber, S.; Humeny, A.; Kalbacher, H.; Dietz, K.; Garbe, C.; Schittek, B. Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J. Immunol. 2005, 174, 8003–8010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imayama, S.; Shimozono, Y.; Hoashi, M.; Yasumoto, S.; Ohta, S.; Yoneyama, K.; Hori, Y. Reduced secretion of IgA to skin surface of patients with atopic dermatitis. J. Allergy Clin. Immunol. 1994, 94, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Eishi, K.; Lee, J.B.; Bae, S.J.; Takenaka, M.; Katayama, I. Impaired sweating function in adult atopic dermatitis: Results of the quantitative sudomotor axon reflex test. Br. J. Dermatol. 2002, 147, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Kijima, A.; Murota, H.; Matsui, S.; Takahashi, A.; Kimura, A.; Kitaba, S.; Lee, J.B.; Katayama, I. Abnormal axon reflex-mediated sweating correlates with high state of anxiety in atopic dermatitis. Allergol. Int. 2012, 61, 469–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, A.; Murota, H.; Matsui, S.; Kijima, A.; Kitaba, S.; Lee, J.B.; Katayama, I. Decreased sudomotor function is involved in the formation of atopic eczema in the cubital fossa. Allergol. Int. 2013, 62, 473–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulzberger, M.B.; Herrmann, F.; Zak, F.G. Studies of sweating; preliminary report with particular emphasis of a sweat retention syndrome. J. Investig. Dermatol. 1947, 9, 221–242. [Google Scholar] [CrossRef] [Green Version]
- Papa, C.M.; Kligman, A.M. Mechanisms of eccrine anidrosis. I. High level blockade. J. Investig. Dermatol. 1966, 47, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Murota, H.; Matsui, S.; Ono, E.; Kijima, A.; Kikuta, J.; Ishii, M.; Katayama, I. Sweat, the driving force behind normal skin: An emerging perspective on functional biology and regulatory mechanisms. J. Dermatol. Sci. 2015, 77, 3–10. [Google Scholar] [CrossRef]
- Matsui, S.; Murota, H.; Takahashi, A.; Yang, L.; Lee, J.B.; Omiya, K.; Ohmi, M.; Kikuta, J.; Ishii, M.; Katayama, I. Dynamic Analysis of Histamine-Mediated Attenuation of Acetylcholine-Induced Sweating via GSK3β Activation. J. Investig. Dermatol. 2014, 134, 326–334. [Google Scholar] [CrossRef] [Green Version]
- Shiohara, T.; Doi, T.; Hayakawa, J. Defective sweating responses in atopic dermatitis. Curr. Probl. Dermatol. 2011, 41, 68–79. [Google Scholar]
- Hide, M.; Tanaka, T.; Yamamura, Y.; Koro, O.; Yamamoto, S. IgE-mediated hypersensitivity against human sweat antigen in patients with atopic dermatitis. Acta. Derm. Venereol. 2002, 82, 335–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiragun, T.; Ishii, K.; Hiragun, M.; Suzuki, H.; Kan, T.; Mihara, S.; Yanase, Y.; Bartels, J.; Schröder, J.M.; Hide, M. Fungal protein MGL_1304 in sweat is an allergen for atopic dermatitis patients. J. Allergy Clin. Immunol. 2013, 132, 608–615. [Google Scholar] [CrossRef]
- Murota, H.; Takahashi, A.; Nishioka, M.; Matsui, S.; Terao, M.; Kitaba, S.; Katayama, I. Showering reduces atopic dermatitis in elementary school students. Eur. J. Dermatol. 2010, 20, 4104–4111. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, H.; Muramatsu, R.; Tadaki, H.; Mizuno, T.; Arakawa, H.; Morikawa, A. Effects of skin care with shower therapy on children with atopic dermatitis in elementary schools. Pediatr. Dermatol. 2009, 26, 223–225. [Google Scholar] [CrossRef] [PubMed]
- Kabashima, K. New concept of the pathogenesis of atopic dermatitis: Interplay among the barrier, allergy, and pruritus as a trinity. J. Dermatol. Sci. 2013, 70, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Tamagawa-Mineoka, R.; Okuzawa, Y.; Masuda, K.; Katoh, N. Increased serum levels of interleukin 33 in patients with atopic dermatitis. J. Am. Acad. Dermatol. 2014, 70, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, N.; Tamagawa-Mineoka, R.; Ueta, M.; Kinoshita, S.; Katoh, N. Toll-like receptor 3 increases allergic and irritant contact dermatitis. J. Investig. Dermatol. 2015, 135, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.; Leyva-Castillo, J.M.; Wang, G.; Galand, C.; Oyoshi, M.K.; Kumar, L.; Hoff, S.; He, R.; Chervonsky, A.; Oppenheim, J.J.; et al. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. J. Exp. Med. 2016, 213, 2147–2166. [Google Scholar] [CrossRef]
- Bernard, J.J.; Cowing-Zitron, C.; Nakatsuji, T.; Muehleisen, B.; Muto, J.; Borkowski, A.W.; Martinez, L.; Greidinger, E.L.; Yu, B.D.; Gallo, R.L. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat. Med. 2012, 18, 1286–1290. [Google Scholar] [CrossRef]
- Tominaga, M.; Takamori, K. Itch and nerve fibers with special reference to atopic dermatitis: Therapeutic implications. J. Dermatol. 2014, 41, 205–212. [Google Scholar] [CrossRef]
- Murota, H.; Katayama, I. Exacerbating factors of itch in atopic dermatitis. Allergol. Int. 2017, 66, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, J.; Moriyama, M.; Feld, M.; Buddenkotte, J.; Buhl, T.; Szöllösi, A.; Zhang, J.; Miller, P.; Ghetti, A.; Fischer, M.; et al. New mechanism underlying IL-31–induced atopic dermatitis. J. Allergy Clin. Immunol. 2018, 141, 1677–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gooderham, M.J.; Hong, H.C.; Eshtiaghi, P.; Papp, K.A. Dupilumab: A review of its use in the treatment of atopic dermatitis. J. Am. Acad. Dermatol. 2018, 78, S28–S36. [Google Scholar] [CrossRef]
- Uchida, H.; Kamata, M.; Mizukawa, I.; Watanabe, A.; Agematsu, A.; Nagata, M.; Fukaya, S.; Hayashi, K.; Fukuyasu, A.; Tanaka, T.; et al. Real-world effectiveness and safety of dupilumab for the treatment of atopic dermatitis in Japanese patients: A single-centre retrospective study. Br. J. Dermatol. 2019, 181, 1083–1085. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.R.; Thé, L.; Batia, L.M.; Beattie, K.; Katibah, G.E.; McClain, S.P.; Pellegrino, M.; Estandian, D.M.; Bautista, D.M. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 2013, 155, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Bautista, D.M.; Wilson, S.R.; Hoon, M.A. Why we scratch an itch: The molecules, cells and circuits of itch. Nat. Neurosci. 2014, 17, 175–182. [Google Scholar] [CrossRef]
- Steinhoff, M.; Neisius, U.; Ikoma, A.; Fartasch, M.; Heyer, G.; Skov, P.S.; Luger, T.A.; Schmelz, M. Proteinase-activated receptor-2 mediates itch: A novel pathway for pruritus in human skin. J. Neurosci. 2003, 23, 6176–6180. [Google Scholar] [CrossRef]
- Kempkes, C.; Buddenkotte, J.; Cevikbas, F.; Buhl, T.; Steinhoff, M. Role of PAR-2 in Neuroimmune Communication and Itch. In Itch: Mechanisms and Treatment; Carstens, E., Akiyama, T., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2014. [Google Scholar]
- Hon, K.L.; Lam, M.C.; Wong, K.Y.; Leung, T.F.; Ng, P.C. Pathophysiology of nocturnal scratching in childhood atopic dermatitis: The role of brain-derived neurotrophic factor and substance P. Br. J. Dermatol. 2007, 157, 922–925. [Google Scholar] [CrossRef]
- Heyer, G.; Hornstein, O.P.; Handwerker, H.O. Reactions to intradermally injected substance P and topically applied mustard oil in atopic dermatitis patients. Acta. Derm. Venereol. 1991, 71, 291–295. [Google Scholar]
- Murota, H.; Izumi, M.; Abd El-Latif, M.I.; Nishioka, M.; Terao, M.; Tani, M.; Matsui, S.; Sano, S.; Katayama, I. Artemin causes hypersensitivity to warm sensation, mimicking warmth-provoked pruritus in atopic dermatitis. J. Allergy. Clin. Immunol. 2012, 130, 671–682. [Google Scholar] [CrossRef]
- Heyer, G.; Vogelgsang, M.; Hornstein, O.P. Acetylcholine is an inducer of itching in patients with atopic eczema. J. Dermatol. 1997, 24, 621–625. [Google Scholar]
- Tominaga, M.; Ozawa, S.; Tengara, S.; Ogawa, H.; Takamori, K. Intraepidermal nerve fibers increase in dry skin of acetone-treated mice. J. Dermatol. Sci. 2007, 48, 103–111. [Google Scholar]
- Fujisawa, H. Discovery of semaphorin receptors, neuropilin and plexin, and their functions in neural development. J. Neurobiol. 2004, 59, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.Q.; Tanelian, D.L.; Smith, G.M. Semaphorin 3A inhibits nerve growth factor-induced sprouting of nociceptive afferents in adult rat spinal cord. J. Neurosci. 2004, 24, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Bigliardi, P.L.; Bigliardi-Qi, M.; Buechner, S.; Rufli, T. Expression of mu-opiate receptor in human epidermis and keratinocytes. J. Investig. Dermatol. 1998, 111, 297–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumagai, H.; Ebata, T.; Takamori, K.; Muramatsu, T.; Nakamoto, H.; Suzuki, H. Effect of a novel kappa-receptor agonist, nalfurafine hydrochloride, on severe itch in 337 haemodialysis patients: A Phase III, randomized, double-blind, placebo-controlled study. Nephrol. Dial. Transplant. 2010, 25, 1251–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tominaga, M.; Ogawa, H.; Takamori, K. Possible roles of epidermal opioid systems in pruritus of atopic dermatitis. J. Investig. Dermatol. 2007, 127, 2228–2235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashizume, H.; Horibe, T.; Ohshima, A.; Ito, T.; Yagi, H.; Takigawa, M. Anxiety accelerates T-helper 2-tilted immune responses in patients with atopic dermatitis. Br. J. Dermatol. 2005, 152, 1161–1164. [Google Scholar] [CrossRef]
- Hashiro, M.; Okumura, M. The relationship between the psychological and immunological state in patients with atopic dermatitis. J. Dermatol. Sci. 1998, 16, 231–235. [Google Scholar] [CrossRef]
- Smolensky, M.H.; Portaluppi, F.; Manfredini, R.; Hermida, R.C.; Tiseo, R.; Sackett-Lundeen, L.L.; Haus, E.L. Diurnal and twenty-four hour patterning of human diseases: Acute and chronic common and uncommon medical conditions. Sleep Med. Rev. 2015, 21, 12–22. [Google Scholar] [CrossRef]
- Hashiramoto, A.; Yamane, T.; Tsumiyama, K.; Yoshida, K.; Komai, K.; Yamada, H.; Yamazaki, F.; Doi, M.; Okamura, H.; Shiozawa, S. Mammalian clock gene Cryptochrome regulates arthritis via proinflammatory cytokine TNF-alpha. J. Immunol. 2010, 184, 1560–1565. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Harama, D.; Shimokawa, N.; Hara, M.; Suzuki, R.; Tahara, Y.; Ishimaru, K.; Katoh, R.; Okumura, K.; Ogawa, H.; et al. Circadian clock gene Period2 regulates a time-of-day-dependent variation in cutaneous anaphylactic reaction. J. Allergy Clin. Immunol. 2011, 127, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Takita, E.; Yokota, S.; Tahara, Y.; Hirao, A.; Aoki, N.; Nakamura, Y.; Nakao, A.; Shibata, S. Biological clock dysfunction exacerbates contact hypersensitivity in mice. Br. J. Dermatol. 2013, 168, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, H.; Tamagawa-Mineoka, R.; Minami, Y.; Yagita, K.; Katoh, N. Constant light exposure impairs immune tolerance development in mice. J. Dermatol. Sci. 2017, 86, 63–70. [Google Scholar] [CrossRef] [PubMed]
Irritants | Management | References |
---|---|---|
Scrubbing the body | Wash the body gently without using nylon towels | [1,2] |
Soap and shampoo | Use non-irritating soap and shampoo | [1,2,7] |
Irritating clothes (e.g., wool-based clothes) | Choose suitable non-irritating clothes (e.g., cotton clothes) | [1,2,8,9] |
Hair | Tie hair up | [1] |
Saliva (during infancy) | Wash away or wipe off | [1] |
Allergen | Biochemical Name | Molecular Weight (kDa) |
---|---|---|
Der p 1/Der f 1 | Cysteine protease | 24 and 27 |
Der p 2/Der f 2 | NPC2 family | 15 |
Der p 3/Der f 3 | Trypsin | 31 and 29 |
Der p 4/Der f 4 | Alpha-amylase | 60 and 57.9 |
Der p 5/Der f 5 | Unknown | 14 and 15.5 |
Der p 6/Der f 6 | Chymotrypsin | 25 |
Der p 7/Der f 7 | Bactericidal permeability-increasing like protein | 26, 30, and 31 |
Der p 8/Der f 8 | Glutathione S-transferase | 27 and 32 |
Der p 9 | Collagenolytic serine protease | 29 |
Der p 10/Der f 10 | Tropomyosin | 36 and 37 |
Allergen | Evaluation | Management | References |
---|---|---|---|
HDM | Serum-specific IgE antibody levels Skin prick testing and patch testing Evaluating changes in skin symptoms caused by environmental changes (e.g., trips, hospitalization, or moving house) | Ventilation Cleaning room Cleaning bedclothes with a vacuum cleaner, drying them in the sun, and washing sheets Encasing mattresses and bedding to protect patients from mites | [1,2,14] |
Animal dander | Serum-specific IgE antibody levels Asking the patient about experiences involving the worsening of skin symptoms due to contact with animals | Giving up pets Washing pets Prohibiting pets in the bedroom | [1,2,14] |
Pollen | Serum-specific IgE antibody levels Skin prick testing and patch testing Asking the patient about experiences involving the worsening of skin symptoms on exposed areas during a period of pollen scattering | Brushing pollen off clothes and washing face when arriving home Using protective glasses and masks Using air conditioning with pollen filters | [1,2,14] |
Contact Allergens | Details of Contents | References |
---|---|---|
Metals | Nickel sulfate Cobalt chloride Potassium dichromate | [53,54,55] |
Fragrances | Fragrance mix Myroxylon pereirae (Balsam of Peru) | [53,54,55] |
Preservatives | Paraben mix Thiomersal | [53,54] |
Rubber accelerators | Mercapto mix Thiuram mix Dithiocarbamate mix | [53,54] |
Topical drugs | Steroids Antibiotics Moisturizer Eye drops | [53,54,55] |
Cosmetics | [53] | |
Other chemicals | Lanolin | [53,55] |
Factors | Details of Contents | References |
---|---|---|
Inflammatory mediators | Amines (histamine, serotonin) | [13,88] |
Cytokines (IL-4, IL-13, IL-31, IL-33, and TSLP) | [77,82,83] | |
Proteases (kallikreins, tryptase, endogenous/exogenous proteases) | [89,90] | |
Neuropeptides (substance P) | [91,92] | |
Neurotrophic factors (nerve growth factor, artemin) | [82,93] | |
Neurotransmitters (acetylcholine) | [94] | |
Environmental factors | Temperature, humidity, dry environments | [83] |
Psychological stress | [1,83] | |
Habitual scratching | [1] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamagawa-Mineoka, R.; Katoh, N. Atopic Dermatitis: Identification and Management of Complicating Factors. Int. J. Mol. Sci. 2020, 21, 2671. https://doi.org/10.3390/ijms21082671
Tamagawa-Mineoka R, Katoh N. Atopic Dermatitis: Identification and Management of Complicating Factors. International Journal of Molecular Sciences. 2020; 21(8):2671. https://doi.org/10.3390/ijms21082671
Chicago/Turabian StyleTamagawa-Mineoka, Risa, and Norito Katoh. 2020. "Atopic Dermatitis: Identification and Management of Complicating Factors" International Journal of Molecular Sciences 21, no. 8: 2671. https://doi.org/10.3390/ijms21082671
APA StyleTamagawa-Mineoka, R., & Katoh, N. (2020). Atopic Dermatitis: Identification and Management of Complicating Factors. International Journal of Molecular Sciences, 21(8), 2671. https://doi.org/10.3390/ijms21082671