Network of Palladium-Based Nanorings Synthesized by Liquid-Phase Reduction Using DMSO-H2O: In Situ Monitoring of Structure Formation and Drying Deformation by ASEM
Abstract
:1. Introduction
2. Results
2.1. In situ Monitoring of Pd-Based Nanostructure Formation and Deformation
2.2. Production of 3D Nanostructure
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Pd Dissolution and Deposition
4.3. ASEM Monitoring
4.4. Critical Point Drying
4.5. Characterization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ASEM | Atmospheric scanning electron microscopy |
3D | 3-dimensional |
DMSO | Dimethyl sulfoxide |
References
- Cushing, B.L.; Kolesnichenko, V.L.; O’Connor, C.J. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles. Chem. Rev. 2004, 104, 3893–3946. [Google Scholar] [CrossRef] [PubMed]
- Daniel, M.-C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef] [PubMed]
- Suleiman, M.; Jisrawi, N.M.; Dankert, O.; Reetz, M.T.; Bahtz, C.; Kirchheim, R.; Pundt, A. Phase transition and lattice expansion during hydrogen loading of nanometer sized palladium clusters. J. Alloys Compd. 2003, 356–357, 644–648. [Google Scholar] [CrossRef]
- Favier, F.; Walter, E.C.; Zach, M.P.; Benter, T.; Penner, R.M. Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays. Sci. 2001, 293, 2227–2231. [Google Scholar] [CrossRef]
- Blaser, H.-U.; Indolese, A.; Schnyder, A.; Steiner, H.; Studer, M. Supported palladium catalysts for fine chemicals synthesis. J. Mol. Catal. A Chem. 2001, 173, 3–18. [Google Scholar] [CrossRef]
- Zhang, X.; Long, E.; Li, Y.; Guo, J.; Zhang, L.; Gong, M.; Wang, M.; Chen, Y. CeO2-ZrO2-La2O3-Al2O3 composite oxide and its supported palladium catalyst for the treatment of exhaust of natural gas engined vehicles. J. Nat. Gas Chem. 2009, 18, 139–144. [Google Scholar] [CrossRef]
- Bowker, M. Automotive catalysis studied by surface science. Chem. Soc. Rev. 2008, 37, 2204–2211. [Google Scholar] [CrossRef]
- Chen, A.; Ostrom, C. Palladium-Based Nanomaterials: Synthesis and Electrochemical Applications. Chem. Rev. 2015, 115, 11999–12044. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Liu, X.; Han, M.; Bao, J. Facile synthesis of ultrathin single-crystalline palladium nanowires with enhanced electrocatalytic activities. Chem. Commun. 2016, 52, 12996–12999. [Google Scholar] [CrossRef]
- Yoshimura, A.; Matsuno, Y. A Novel Process for the Production of Gold Micrometer-Sized Particles from Secondary Sources. Mater. Trans. 2016, 57, 357–361. [Google Scholar] [CrossRef] [Green Version]
- Matsuno, Y.; Okonogi, E.; Yoshimura, A.; Sato, M.; Sato, C. Observation for Formations of Gold Micrometer-Sized Particles in Liquid Phase Using Atmospheric Scanning Electron Microscopy (ASEM). Mater. Trans. 2018, 59, 146–149. [Google Scholar] [CrossRef]
- Suga, M.; Nishiyama, H.; Konyuba, Y.; Iwamatsu, S.; Watanabe, Y.; Yoshiura, C.; Ueda, T.; Sato, C. The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas. Ultramicroscopy 2011, 111, 1650–1658. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, Y.; Ebihara, T.; Nishiyama, H.; Konyuba, Y.; Senda, M.; Numaga-Tomita, T.; Senda, T.; Suga, M.; Sato, C. Direct Observation of Protein Microcrystals in crystallization buffer by Atmospheric Scanning Electron Microscopy. Int. J. Mol. Sci. 2012, 13, 10553–10567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murai, T.; Sato, M.; Nishiyama, H.; Suga, M.; Sato, C. Ultrastructural Analysis of Nanogold-Labeled Cell Surface Microvilli in Liquid by Atmospheric Scanning Electron Microscopy and Their Relevance in Cell Adhesion. Int. J. Mol. Sci. 2013, 14, 20809–20819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishiyama, H.; Suga, M.; Ogura, T.; Maruyama, Y.; Koizumi, M.; Mio, K.; Kitamura, S.; Sato, C. Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J. Struct. Biol. 2010, 169, 439–449. [Google Scholar] [CrossRef]
- Hirano, K.; Kinoshita, T.; Uemura, T.; Motohashi, H.; Watanabe, Y.; Ebihara, T.; Nishiyama, H.; Sato, M.; Suga, M.; Maruyama, Y.; et al. Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM. Ultramicroscopy. 2014, 143, 52–66. [Google Scholar] [CrossRef]
- Goldfarb, D.L.; de Pablo, J.J.; Nealeya, P.F.; Simons, J.P.; Moreau, W.M.; Angelopoulos, M. Aqueous-based photoresist drying using supercritical carbon dioxide to prevent pattern collapse. J. Vac. Sci. Technol. 2000, 18, 3313–3317. [Google Scholar] [CrossRef]
- Xu, Y.; Yamazaki, M.; Villars, P. Inorganic Materials Database for Exploring the Nature of Material. J. Appl. Phys. 2011, 50, 11RH02. [Google Scholar] [CrossRef]
- Sharutin, V.V.; Senchurin, V.S.; Sharutina, O.K. Synthesis and structure of palladium complexes [Ph3PhCH2P]+[PdCl3(DMSO)]−·DMSO, [Ph4P]+[PdCl3(DMSO)]−, and [Ph4Sb(DMSO)]+[PdCl3 (DMSO)]−. Russ. J. Inorg. Chem. 2013, 58, 543–547. [Google Scholar]
- Wayland, B.B.; Schramm, R.F. Cationic and neutral chloride complexes of palladium(II) with the nonaqueous solvent donors acetonitrile, dimethyl sulfoxide, and a series of amides. Mixed sulfur and oxygen coordination sites in a dimethyl sulfoxide complex. Inorg. Chem. 1969, 8, 971–976. [Google Scholar] [CrossRef]
- Derjaguin, B.; Landau, L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog. Surf. Sci. 1993, 43, 30–59. [Google Scholar] [CrossRef]
- Verwey, E.J.W. Theory of the Stability of Lyophobic Colloids. J. Phys. Colloid Chem. 1947, 51, 631–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, M.N.; Jones, M.R.; Kohlstedt, K.L.; Schatz, G.C.; Mirkin, C.A. Uniform circular disks with synthetically tailorable diameters: Two-dimensional nanoparticles for plasmonics. Nano Lett. 2015, 15, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yan, Y.; Zhou, N.; Zhang, H.; Li, D.; Yang, D. Seed-mediated growth of Au nanorings with size control on Pd ultrathin nanosheets and their tunable surface plasmonic properties. Nanoscale 2016, 8, 3704–3710. [Google Scholar] [CrossRef]
- Ketelson, H.A.; Pelton, R.; Brook, M.A. Colloidal Stability of Stöber Silica in Acetone. Langmuir 1996, 12, 1134–1140. [Google Scholar] [CrossRef]
- Onuki, A.; Araki, T.; Okamoto, R. Solvation effects in phase transitions in soft matter. J. Phys. Condens. Matter. 2011, 23, 284113. [Google Scholar] [CrossRef]
- Iritani, E.; Mukai, Y.; Kamiya, M.; Katagiri, N. Properties of a Filter Cake Formed in Dead-End Microfiltration of Colloidal Particles Suspended in Aqueous Organic Solvents. J. Chem. Eng. Japan 2005, 38, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Beysens, D.; Esteve, D. Adsorption Phenomena at the Surface of Silica Spheres in a Binary Liquid Mixture. Phys. Rev. Lett. 1985, 4, 2123–2126. [Google Scholar] [CrossRef]
- Liu, J.; Ruffini, N.; Pollet, P.; Llopis-Mestre, V.; Dilek, C.; Eckert, C.A.; Liotta, C.L.; Roberts, C.B. More benign synthesis of palladium nanoparticles in dimethyl sulfoxide and their extraction into an organic phase. Ind. Eng. Chem. Res. 2010, 49, 8174–8179. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komenami, T.; Yoshimura, A.; Matsuno, Y.; Sato, M.; Sato, C. Network of Palladium-Based Nanorings Synthesized by Liquid-Phase Reduction Using DMSO-H2O: In Situ Monitoring of Structure Formation and Drying Deformation by ASEM. Int. J. Mol. Sci. 2020, 21, 3271. https://doi.org/10.3390/ijms21093271
Komenami T, Yoshimura A, Matsuno Y, Sato M, Sato C. Network of Palladium-Based Nanorings Synthesized by Liquid-Phase Reduction Using DMSO-H2O: In Situ Monitoring of Structure Formation and Drying Deformation by ASEM. International Journal of Molecular Sciences. 2020; 21(9):3271. https://doi.org/10.3390/ijms21093271
Chicago/Turabian StyleKomenami, Takuki, Akihiro Yoshimura, Yasunari Matsuno, Mari Sato, and Chikara Sato. 2020. "Network of Palladium-Based Nanorings Synthesized by Liquid-Phase Reduction Using DMSO-H2O: In Situ Monitoring of Structure Formation and Drying Deformation by ASEM" International Journal of Molecular Sciences 21, no. 9: 3271. https://doi.org/10.3390/ijms21093271
APA StyleKomenami, T., Yoshimura, A., Matsuno, Y., Sato, M., & Sato, C. (2020). Network of Palladium-Based Nanorings Synthesized by Liquid-Phase Reduction Using DMSO-H2O: In Situ Monitoring of Structure Formation and Drying Deformation by ASEM. International Journal of Molecular Sciences, 21(9), 3271. https://doi.org/10.3390/ijms21093271