Preliminary Assessment of the Mucosal Toxicity of Tea Tree (Melaleuca alternifolia) and Rosemary (Rosmarinus officinalis) Essential Oils on Novel Porcine Uterus Models
Abstract
:1. Introduction
2. Results
2.1. Quantitative Evaluation of Uterine Mucosa Permeability to Evans Blue (EB) Dye
2.2. Histology
2.3. Immunohistochemistry and Immunofluorescence
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. In Vitro Model
4.3. Ex Vivo Model
4.4. Evans Blue Permeability Assay
4.5. Histological, Immunohistochemical and Immunofluorescence Analyses
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial insemination |
EOs | Essential oils |
TTO | Tea tree oil |
Ma | M. alternifolia |
Ro | R. officinalis |
3Rs | Replacement, Reduction and Refinement |
EB | Evans Blue |
DMSO | Dimethylsulfoxide |
SFM | Swine Fertilization Medium |
IHC | Immunohistochemical |
IF | Immunofluorescence |
ZO-1 | Zonula occludens 1 |
BSA | Bovine serum albumin |
PBS | Phosphate-buffered saline |
DPBS | Dulbecco’s phosphate-buffered saline |
IC50 | Half maximal inhibitory concentration |
References
- The Interagency Coordination Group (IACG) on Antimicrobial Resistance. No Time to Wait: Securing the Future from Drug-Resistant Infections; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Pérez-Rodríguez, F.; Mercanoglu Taban, B. A State-of-Art Review on Multi-Drug Resistant Pathogens in Foods of Animal Origin: Risk Factors and Mitigation Strategies. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chokshi, A.; Sifri, Z.; Cennimo, D.; Horng, H. Global Contributors to Antibiotic Resistance. J. Glob. Infect. Dis. 2019, 11, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Paruch, L.; Chen, X.; van Eerde, A.; Skomedal, H.; Wang, Y.; Liu, D.; Liu Clarke, J. Antibiotic Application and Resistance in Swine Production in China: Current Situation and Future Perspectives. Front. Vet. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Waberski, D.; Riesenbeck, A.; Schulze, M.; Weitze, K.F.; Johnson, L. Application of preserved boar semen for artificial insemination: Past, present and future challenges. Theriogenology 2019, 137, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Nitsche-Melkus, E.; Jakop, U.; Jung, M.; Waberski, D. New trends in production management in European pig AI centers. Theriogenology 2019, 137, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Council of the European Union. Council Directive 90/429/EEC of 26 June 1990 Laying Down the Animal Health Requirements Applicable to Intra-Community Trade in and Imports of Semen of Domestic Animals of the Porcine Species; Publications Office of the European Union: Luxembourg, 1990. [Google Scholar]
- Araújo, É.B.; da Costa, E.P.; Costa, A.H.A.; Lopes, F.G.; Macedo, G.G.; de Paula, T.A.R. Reproductive performance of sows submitted to intrauterine insemination. Rev. Bras. Zootec. 2009, 38, 1460–1467. [Google Scholar] [CrossRef] [Green Version]
- WHO|Critically Important Antimicrobials for Human Medicine, 5th revision. Available online: http://www.who.int/foodsafety/publications/antimicrobials-fifth/en/ (accessed on 7 February 2020).
- Morrell, J.M.; Wallgren, M. Removal of bacteria from boar ejaculates by Single Layer Centrifugation can reduce the use of antibiotics in semen extenders. Anim. Reprod. Sci. 2011, 123, 64–69. [Google Scholar] [CrossRef]
- Barone, F.; Ventrella, D.; Zannoni, A.; Forni, M.; Bacci, M.L. Can Microfiltered Seminal Plasma Preserve the Morphofunctional Characteristics of Porcine Spermatozoa in the Absence of Antibiotics? A Preliminary Study. Reprod. Domest. Anim. 2016, 51, 604–610. [Google Scholar] [CrossRef]
- Sancho, S.; Briz, M.; Yeste, M.; Bonet, S.; Bussalleu, E. Effects of the antimicrobial peptide protegrine 1 on sperm viability and bacterial load of boar seminal doses. Reprod. Domest. Anim. 2017, 52, 69–71. [Google Scholar] [CrossRef] [Green Version]
- Schulze, M.; Junkes, C.; Mueller, P.; Speck, S.; Ruediger, K.; Dathe, M.; Mueller, K. Effects of Cationic Antimicrobial Peptides on Liquid-Preserved Boar Spermatozoa. PLoS ONE 2014, 9, e100490. [Google Scholar] [CrossRef] [Green Version]
- Cavalleri, R.; Becker, J.S.; Pavan, A.M.; Bianchetti, P.; Goettert, M.I.; Ethur, E.M.; Bustamante-Filho, I.C. Essential oils rich in monoterpenes are unsuitable as additives to boar semen extender. Andrologia 2018, 50, e13074. [Google Scholar] [CrossRef] [PubMed]
- Touazi, L.; Aberkane, B.; Bellik, Y.; Moula, N.; Iguer-Ouada, M. Effect of the essential oil of Rosmarinus officinalis (L.) on rooster sperm motility during 4 °C short-term storage. Vet World 2018, 11, 590–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benberkane, A.; Khellouf, A.; Benhenia, K.; Fatmi, S.; Iguer-Ouada, M. Rosmarinus officinalis Essential Oil Preloaded in β-Cyclodextrin: Effect on Ram Spermatozoa Motility, Membrane Integrity and Oxidative Status During 4 °C Storage. Cryo Lett 2019, 40, 219–225. [Google Scholar]
- Santos, M.V.d.O.; da Silva, A.M.; Praxedes, É.A.; Borges, A.A.; Filho, A.C.d.A.T.; Souza-Junior, J.B.F.; Bertini, L.M.; Silva, A.R.; Pereira, A.F. Antioxidant effects of the essential oil of Syzygium aromaticum on bovine epididymal spermatozoa. Andrologia 2019, 51, e13448. [Google Scholar] [CrossRef] [PubMed]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents-Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [Green Version]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- The International Standard Organization ISO 4730:2004 Oil of Melaleuca, terpinen-4-ol type (Tea Tree oil). Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/70/37033.html (accessed on 21 February 2020).
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (Tea Tree) Oil: A Review of Antimicrobial and Other Medicinal Properties. Clin. Microbiol. Rev. 2006, 19, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Brun, P.; Bernabè, G.; Filippini, R.; Piovan, A. In Vitro Antimicrobial Activities of Commercially Available Tea Tree (Melaleuca alternifolia) Essential Oils. Curr. Microbiol. 2019, 76, 108–116. [Google Scholar] [CrossRef]
- Oliva, A.; Costantini, S.; De Angelis, M.; Garzoli, S.; Božović, M.; Mascellino, M.T.; Vullo, V.; Ragno, R. High Potency of Melaleuca alternifolia Essential Oil against Multi-Drug Resistant Gram-Negative Bacteria and Methicillin-Resistant Staphylococcus aureus. Molecules 2018, 23, 2584. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, J.; Salehi, B.; Varoni, E.M.; Sharopov, F.; Yousaf, Z.; Ayatollahi, S.A.; Kobarfard, F.; Sharifi-Rad, M.; Afdjei, M.H.; Sharifi-Rad, M.; et al. Plants of the Melaleuca Genus as Antimicrobial Agents: From Farm to Pharmacy. Phytother. Res. 2017, 31, 1475–1494. [Google Scholar] [CrossRef]
- Lorenzo-Leal, A.C.; Palou, E.; López-Malo, A.; Bach, H. Antimicrobial, Cytotoxic, and Anti-Inflammatory Activities of Pimenta dioica and Rosmarinus officinalis Essential Oils. Biomed. Res. Int. 2019, 2019, 1639726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, R.S.; Ortiz, B.L.S.; Pereira, A.C.M.; Keita, H.; Carvalho, J.C.T. Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J. Ethnopharmacol. 2019, 229, 29–45. [Google Scholar] [CrossRef] [PubMed]
- El Fawal, G.F.; Omer, A.M.; Tamer, T.M. Evaluation of antimicrobial and antioxidant activities for cellulose acetate films incorporated with Rosemary and Aloe Vera essential oils. J. Food. Sci. Technol. 2019, 56, 1510–1518. [Google Scholar] [CrossRef] [PubMed]
- Satyal, P.; Jones, T.H.; Lopez, E.M.; McFeeters, R.L.; Ali, N.A.A.; Mansi, I.; Al-kaf, A.G.; Setzer, W.N. Chemotypic Characterization and Biological Activity of Rosmarinus officinalis. Foods 2017, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Elmi, A.; Ventrella, D.; Barone, F.; Filippini, G.; Benvenuti, S.; Pisi, A.; Scozzoli, M.; Bacci, M.L. Thymbra capitata (L.) Cav. and Rosmarinus officinalis (L.) Essential Oils: In Vitro Effects and Toxicity on Swine Spermatozoa. Molecules 2017, 22, 2162. [Google Scholar] [CrossRef] [Green Version]
- Elmi, A.; Ventrella, D.; Barone, F.; Carnevali, G.; Filippini, G.; Pisi, A.; Benvenuti, S.; Scozzoli, M.; Bacci, M.L. In Vitro Effects of Tea Tree Oil (Melaleuca Alternifolia Essential Oil) and its Principal Component Terpinen-4-ol on Swine Spermatozoa. Molecules 2019, 24, 1071. [Google Scholar] [CrossRef] [Green Version]
- Elmi, A.; Prosperi, A.; Zannoni, A.; Bertocchi, M.; Scorpio, D.G.; Forni, M.; Foni, E.; Bacci, M.L.; Ventrella, D. Antimicrobial capabilities of non-spermicidal concentrations of tea tree (Melaleuca alternifolia) and rosemary (Rosmarinus officinalis) essential oils on the liquid phase of refrigerated swine seminal doses. Res. Vet. Sci. 2019, 127, 76–81. [Google Scholar] [CrossRef]
- Squier, C.A.; Mantz, M.J.; Schlievert, P.M.; Davis, C.C. Porcine Vagina Ex Vivo as a Model for Studying Permeability and Pathogenesis in Mucosa. J. Pharm. Sci. 2008, 97, 9–21. [Google Scholar] [CrossRef]
- Di Simone, M.P.; Baldi, F.; Vasina, V.; Scorrano, F.; Bacci, M.L.; Ferrieri, A.; Poggioli, G. Barrier effect of Esoxx® on esophageal mucosal damage: Experimental study on ex-vivo swine model. Clin. Exp. Gastroenterol. 2012, 5, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Kaya, M.; Ahishali, B. Assessment of Permeability in Barrier Type of Endothelium in Brain Using Tracers: Evans Blue, Sodium Fluorescein, and Horseradish Peroxidase. In Permeability Barrier: Methods and Protocols; Turksen, K., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2011; pp. 369–382. ISBN 978-1-61779-191-8. [Google Scholar]
- Lange, S.; Delbro, D.S.; Jennische, E. Evans Blue Permeation of Intestinal Mucosa in the Rat. Scand. J. Gastroenterol. 1994, 29, 38–46. [Google Scholar] [CrossRef]
- Vidovic, N.; Vidovic, S. Antimicrobial Resistance and Food Animals: Influence of Livestock Environment on the Emergence and Dissemination of Antimicrobial Resistance. Antibiotics 2020, 9, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Squier, C.A.; Mantz, M.J. Use of an Ex Vivo Porcine Mucosal Model to Study Superantigen Penetration. In Superantigens: Methods and Protocols; Brosnahan, A.J., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2016; pp. 133–147. ISBN 978-1-4939-3344-0. [Google Scholar]
- Pereira, M.N.; Reis, T.A.; Matos, B.N.; Cunha-Filho, M.; Gratieri, T.; Gelfuso, G.M. Novel ex vivo protocol using porcine vagina to assess drug permeation from mucoadhesive and colloidal pharmaceutical systems. Colloids Surfaces B: Biointerfaces 2017, 158, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Geisler, K.; Künzel, J.; Grundtner, P.; Müller, A.; Beckmann, M.W.; Dittrich, R. The perfused swine uterus model: Long-term perfusion. Reprod. Biol. Endocrinol. 2012, 10, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Biswas, D.; Yoon, J.D.; Jeon, Y.; Hyun, S.H. Effect of porcine uterus as ex vivo model of fertilizing ability and gene expression pattern on blastocysts. Theriogenology 2019, 129, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Fair, S.; Romero-Aguirregomezcorta, J. Implications of boar sperm kinematics and rheotaxis for fertility after preservation. Theriogenology 2019, 137, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Martínez, H.; Saravia, F.; Wallgren, M.; Tienthai, P.; Johannisson, A.; Vázquez, J.M.; Martínez, E.; Roca, J.; Sanz, L.; Calvete, J.J. Boar spermatozoa in the oviduct. Theriogenology 2005, 63, 514–535. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.A.; Carson, C.F.; Riley, T.V.; Nielsen, J.B. A review of the toxicity of Melaleuca alternifolia (tea tree) oil. Food Chem. Toxicol. 2006, 44, 616–625. [Google Scholar] [CrossRef]
- Greay, S.J.; Ireland, D.J.; Kissick, H.T.; Levy, A.; Beilharz, M.W.; Riley, T.V.; Carson, C.F. Induction of necrosis and cell cycle arrest in murine cancer cell lines by Melaleuca alternifolia (tea tree) oil and terpinen-4-ol. Cancer Chemother. Pharmacol. 2010, 65, 877–888. [Google Scholar] [CrossRef]
- Wu, C.-S.; Chen, Y.-J.; Chen, J.J.W.; Shieh, J.-J.; Huang, C.-H.; Lin, P.-S.; Chang, G.-C.; Chang, J.-T.; Lin, C.-C. Terpinen-4-ol Induces Apoptosis in Human Nonsmall Cell Lung Cancer In Vitro and In Vivo. Evidence-Based Complement. Altern. Med. 2012, 2012, 1–13. [Google Scholar] [CrossRef]
- Shen, Z.-Y.; Zhang, J.; Song, H.-L.; Zheng, W.-P. Bone-marrow mesenchymal stem cells reduce rat intestinal ischemia-reperfusion injury, ZO-1 downregulation and tight junction disruption via a TNF-α-regulated mechanism. World J. Gastroenterol. 2013, 19, 3583–3595. [Google Scholar] [CrossRef]
- Citi, S. The mechanobiology of tight junctions. Biophys. Rev. 2019, 11, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Cencič, A.; Guillomot, M.; Koren, S.; La Bonnardière, C. Trophoblastic Interferons: Do they Modulate Uterine Cellular Markers at the Time of Conceptus Attachment in the Pig? Placenta 2003, 24, 862–869. [Google Scholar] [CrossRef]
- Turner, J.R.; Buschmann, M.M.; Romero-Calvo, I.; Sailer, A.; Shen, L. The role of molecular remodeling in differential regulation of tight junction permeability. Semin. Cell Dev. Biol. 2014, 36, 204–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood Heickman, L.K.; DeBoer, M.D.; Fasano, A. Zonulin as a potential putative biomarker of risk for shared Type 1 Diabetes and Celiac disease Autoimmunity. Diabetes Metab. Res. Rev. 2020, e3309. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M. Leaky gut: Mechanisms, measurement and clinical implications in humans. Gut 2019, 68, 1516–1526. [Google Scholar] [CrossRef]
- Wang, X.-C.; Zhang, Y.-F.; Cao, L.; Zhu, L.; Huang, Y.-Y.; Chen, X.-F.; Chu, X.-Y.; Zhu, D.-F.; Ur Rahman, S.; Feng, S.-B.; et al. Deoxynivalenol Induces Intestinal Damage and Inflammatory Response through the Nuclear Factor-κB Signaling Pathway in Piglets. Toxins 2019, 11, 663. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Peña, A.A.; Rivera-Baños, J.; Méndez-Carrillo, L.L.; Ramírez-Solano, M.I.; Galindo-Bustamante, A.; Páez-Franco, J.C.; Morimoto, S.; González-Mariscal, L.; Cruz, M.E.; Mendoza-Rodríguez, C.A. Perinatal administration of bisphenol A alters the expression of tight junction proteins in the uterus and reduces the implantation rate. Reprod. Toxicol. 2017, 69, 106–120. [Google Scholar] [CrossRef]
- Bag, A.; Chattopadhyay, R.R. Evaluation of Synergistic Antibacterial and Antioxidant Efficacy of Essential Oils of Spices and Herbs in Combination. PLoS ONE 2015, 10, e0131321. [Google Scholar] [CrossRef] [Green Version]
- Fantinati, P.; Zannoni, A.; Bernardini, C.; Forni, M.; Tattini, A.; Seren, E.; Bacci, M.L. Evaluation of swine fertilisation medium (SFM) efficiency in preserving spermatozoa quality during long-term storage in comparison to four commercial swine extenders. Animal 2009, 3, 269–274. [Google Scholar] [CrossRef]
- Park, D.S.; Cerrone, M.; Morley, G.; Vasquez, C.; Fowler, S.; Liu, N.; Bernstein, S.A.; Liu, F.-Y.; Zhang, J.; Rogers, C.S.; et al. Genetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias. J. Clin. Investig. 2015, 125, 403–412. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertocchi, M.; Rigillo, A.; Elmi, A.; Ventrella, D.; Aniballi, C.; G. Scorpio, D.; Scozzoli, M.; Bettini, G.; Forni, M.; Bacci, M.L. Preliminary Assessment of the Mucosal Toxicity of Tea Tree (Melaleuca alternifolia) and Rosemary (Rosmarinus officinalis) Essential Oils on Novel Porcine Uterus Models. Int. J. Mol. Sci. 2020, 21, 3350. https://doi.org/10.3390/ijms21093350
Bertocchi M, Rigillo A, Elmi A, Ventrella D, Aniballi C, G. Scorpio D, Scozzoli M, Bettini G, Forni M, Bacci ML. Preliminary Assessment of the Mucosal Toxicity of Tea Tree (Melaleuca alternifolia) and Rosemary (Rosmarinus officinalis) Essential Oils on Novel Porcine Uterus Models. International Journal of Molecular Sciences. 2020; 21(9):3350. https://doi.org/10.3390/ijms21093350
Chicago/Turabian StyleBertocchi, Martina, Antonella Rigillo, Alberto Elmi, Domenico Ventrella, Camilla Aniballi, Diana G. Scorpio, Maurizio Scozzoli, Giuliano Bettini, Monica Forni, and Maria Laura Bacci. 2020. "Preliminary Assessment of the Mucosal Toxicity of Tea Tree (Melaleuca alternifolia) and Rosemary (Rosmarinus officinalis) Essential Oils on Novel Porcine Uterus Models" International Journal of Molecular Sciences 21, no. 9: 3350. https://doi.org/10.3390/ijms21093350
APA StyleBertocchi, M., Rigillo, A., Elmi, A., Ventrella, D., Aniballi, C., G. Scorpio, D., Scozzoli, M., Bettini, G., Forni, M., & Bacci, M. L. (2020). Preliminary Assessment of the Mucosal Toxicity of Tea Tree (Melaleuca alternifolia) and Rosemary (Rosmarinus officinalis) Essential Oils on Novel Porcine Uterus Models. International Journal of Molecular Sciences, 21(9), 3350. https://doi.org/10.3390/ijms21093350