Effects of Electromagnetic Waves with LTE and 5G Bandwidth on the Skin Pigmentation In Vitro
Abstract
1. Introduction
2. Results
2.1. Effect of EMF on Cell Viability
2.2. Effects of EMF on Cell Morphology of Human Melanoma Cell, MNT-1 Cell
2.3. Effect of EMF on Cell Morphology in Keratinocyte-Melanocyte Co-Culture
2.4. Effect of EMF on mRNA Level of Melanogenic Enzymes
2.5. Effect of LTE and 5G on a Pigmented Human Skin Model, MelanoDerm™
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Radio Frequency Exposure System
4.3. 5G Exposure System
4.4. Cell Viability Assay
4.5. RNA Isolation
4.6. Real-Time Polymerase Chain Reaction (Real-Time PCR)
4.7. MelanoDerm™, 3D Pigmented Human Epidermal Skin Model
4.8. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EMFs | Electromagnetic fields |
ELF | Extremely low frequency |
RF | Radio frequency radiation |
NIR | Non-ionizing radiation |
LTE | Long-term evolution |
mmW | Millimeter waves |
TYR | Tyrosinase |
TRP-1 | Tyrosinase-related protein 1 |
TRP-2 | Tyrosinase-related protein 2 |
MITF | Microphthalmia-associated transcription factor |
PEMFs | Pulsed electromagnetic fields |
MTT | (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) |
WST-1 | (4-[3-(indophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate) |
H&E | Hematoxylin and eosin |
FM | Fontana–Masson |
References
- Baan, R.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Islami, F.; Galichet, L.; Straif, K. Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol. 2011, 12, 624–626. [Google Scholar] [CrossRef]
- Barr, R.; Jones, D.L.; Rodger, C.J. ELF and VLF radio waves. J. Atmos. Sol. Terr. Phys. 2000, 62, 1689–1718. [Google Scholar] [CrossRef]
- Adair, R.K. Biophysical limits on athermal effects of RF and microwave radiation. J. Bioelectromagn. Soc. 2003, 24, 39–48. [Google Scholar] [CrossRef]
- Adair, R.K. Vibrational resonances in biological systems at microwave frequencies. Biophys. J. 2002, 82, 1147–1152. [Google Scholar] [CrossRef][Green Version]
- West, D.M. How 5G technology enables the health internet of things. Brook. Cent. Technol. Innov. 2016, 3, 1–20. [Google Scholar]
- Betzalel, N.; Ishai, P.B.; Feldman, Y.J.E. The human skin as a sub-THz receiver–Does 5G pose a danger to it or not? Environ. Res. 2018, 163, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Di Ciaula, A. Towards 5G communication systems: Are there health implications? Int. J. Hyg. Environ. Health 2018, 221, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.; Quan, X.; Kim, S.; Lengner, C.; Park, J.-K.; Kim, J.J.A. Electromagnetic fields mediate efficient cell reprogramming into a pluripotent state. ACS Nano 2014, 8, 10125–10138. [Google Scholar] [CrossRef]
- Phillips, J.L.; Singh, N.P.; Lai, H.J.P. Electromagnetic fields and DNA damage. Pathophysiology 2009, 16, 79–88. [Google Scholar] [CrossRef]
- Ruediger, H.W.J.P. Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology 2009, 16, 89–102. [Google Scholar] [CrossRef]
- Zhao, T.-Y.; Zou, S.-P.; Knapp, P.E. Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes. Neurosci. Lett. 2007, 412, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Johnson, D.; Dunbar, K.; Dong, H.; Ge, X.; Kim, Y.C.; Wing, C.; Jayathilaka, N.; Emmanuel, N.; Zhou, C.Q. 2.45 GHz radiofrequency fields alter gene expression in cultured human cells. Febs Lett. 2005, 579, 4829–4836. [Google Scholar] [CrossRef] [PubMed]
- Demsia, G.; Vlastos, D.; Matthopoulos, D.P. Effect of 910-MHz electromagnetic field on rat bone marrow. Sci. World J. 2004, 4, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Singh, N.P. Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ. Health Perspect. 2004, 112, 687–694. [Google Scholar] [CrossRef]
- Proksch, E.; Brandner, J.M.; Jensen, J.M. The skin: An indispensable barrier. Exp. Dermatol. 2008, 17, 1063–1072. [Google Scholar] [CrossRef]
- Marks, J.G.; Miller, J.J. Lookingbill and Marks’ Principles of Dermatology E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Costin, G.-E.; Hearing, V.J. Human skin pigmentation: Melanocytes modulate skin color in response to stress. FASEB J. 2007, 21, 976–994. [Google Scholar] [CrossRef]
- Gibbs, S.; Murli, S.; De Boer, G.; Mulder, A.; Mommaas, A.M.; Ponec, M. Melanosome capping of keratinocytes in pigmented reconstructed epidermis–effect of ultraviolet radiation and 3-isobutyl-1-methyl-xanthine on melanogenesis. Pigment. Cell Res. 2000, 13, 458–466. [Google Scholar] [CrossRef]
- Cichorek, M.; Wachulska, M.; Stasiewicz, A.; Tymińska, A.; Alergologii, A. Skin melanocytes: Biology and development. Allergol. Postȩpy Dermatol. I Alergol. 2013, 30, 30. [Google Scholar] [CrossRef]
- D’Mello, S.A.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Lim, H.-M.; Ro, H.-S.; Ki, G.-E.; Seo, Y.-K. Pulsed electromagnetic fields increase pigmentation through the p-ERK/p-p38 pathway in zebrafish (Danio rerio). Int. J. Mol. Sci. 2018, 19, 3211. [Google Scholar] [CrossRef]
- Nakashima, Y.; Ohta, S.; Wolf, A.M. Blue light-induced oxidative stress in live skin. Free. Radic. Biol. Med. 2017, 108, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.; Choi, S.; Choi, H.-D.; Kim, N.; Jeon, S.B.; Lim, K.-M.; Lee, H.-J.; Lee, Y.-S. Science, Effects of Radiofrequency Electromagnetic Fields and Ionizing Radiation on Amyloid Precursor Protein Processing and Cell Death. J. Electromagn. Eng. Sci. 2020, 20, 307–319. [Google Scholar] [CrossRef]
- Lee, Y.S.; Chung, J.Y.; Jeon, S.B.; Lee, A.K.; Choi, H.-D. Proposal of 28 GHz In Vitro Exposure System Based on Field Uniformity for Three-Dimensional Cell Culture Experiments. Bioelectromagnetics 2019, 40, 445–457. [Google Scholar] [CrossRef]
- Lee, Y.S.; Dzagbletey, P.A.; Chung, J.-Y.; Jeon, S.B.; Lee, A.-K.; Kim, N.; Song, S.J.; Choi, H.-D. Implementation of an in vitro exposure system for 28 GHz. ETRI J. 2020, 42, 837–845. [Google Scholar] [CrossRef]
- Jung, S.I.; Lee, N.K.; Kang, K.W.; Kim, K.; Do, Y.L. The effect of smartphone usage time on posture and respiratory function. J. Phys. Ther. Sci. 2016, 28, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Seiberg, M. Keratinocyte–melanocyte interactions during melanosome transfer. Pigment. Cell Res. 2001, 14, 236–242. [Google Scholar] [CrossRef]
- Boissy, R.E. Melanosome transfer to and translocation in the keratinocyte. Exp. Dermatol. 2003, 12, 5–12. [Google Scholar] [CrossRef]
- Li, D. 5G and intelligence medicine—how the next generation of wireless technology will reconstruct healthcare? Precis. Clin. Med. 2019, 2, 205–208. [Google Scholar] [CrossRef]
- Hardell, L.; Nyberg, R. [Comment] Appeals that matter or not on a moratorium on the deployment of the fifth generation, 5G, for microwave radiation. Mol. Clin. Oncol. 2020, 12, 247–257. [Google Scholar] [CrossRef]
- Le Quément, C.; Nicolaz, C.N.; Habauzit, D.; Zhadobov, M.; Sauleau, R.; Le Dréan, Y. Impact of 60-GHz millimeter waves and corresponding heat effect on endoplasmic reticulum stress sensor gene expression. Bioelectromagnetics 2014, 35, 444–451. [Google Scholar] [CrossRef]
- Mahamoud, Y.S.; Aite, M.; Martin, C.; Zhadobov, M.; Sauleau, R.; Le Dréan, Y.; Habauzit, D. Additive effects of millimeter waves and 2-deoxyglucose co-exposure on the human keratinocyte transcriptome. PLoS ONE 2016, 11, e0160810. [Google Scholar]
- Wu, T.; Rappaport, T.S.; Collins, C.M. The human body and millimeter-wave wireless communication systems: Interactions and implications. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 2423–2429. [Google Scholar]
- Jargin, S.V. Radiofrequency radiation: Carcinogenic and other potential risks. J. Radiat. Oncol. 2020, 9, 81–91. [Google Scholar] [CrossRef]
- Goldsmith, J.R. Epidemiologic evidence of radiofrequency radiation (microwave) effects on health in military, broadcasting, and occupational studies. Int. J. Occup. Environ. Health 1995, 1, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Szudziński, A.; Pietraszek, A.; Janiak, M.; Wrembel, J.; Kałczak, M.; Szmigielski, S. Acceleration of the development of benzopyrene-induced skin cancer in mice by microwave radiation. Arch. Dermatol. Res. 1982, 274, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Crabtree, D.P.; Herrera, B.J.; Kang, S. The response of human bacteria to static magnetic field and radiofrequency electromagnetic field. J. Microbiol. 2017, 55, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Le Pogam, P.; Le Page, Y.; Habauzit, D.; Doué, M.; Zhadobov, M.; Sauleau, R.; Le Dréan, Y.; Rondeau, D. Untargeted metabolomics unveil alterations of biomembranes permeability in human HaCaT keratinocytes upon 60 GHz millimeter-wave exposure. Sci. Rep. 2019, 9, 9343. [Google Scholar] [CrossRef] [PubMed]
- Dasdag, S.; Akdag, M.Z. The link between radiofrequencies emitted from wireless technologies and oxidative stress. J. Chem. Neuroanat. 2016, 75, 85–93. [Google Scholar] [CrossRef]
- Duan, W.; Liu, C.; Zhang, L.; He, M.; Xu, S.; Chen, C.; Pi, H.; Gao, P.; Zhang, Y.; Zhong, M. Comparison of the genotoxic effects induced by 50 Hz extremely low-frequency electromagnetic fields and 1800 MHz radiofrequency electromagnetic fields in GC-2 cells. Radiat. Res. 2015, 183, 305–314. [Google Scholar] [CrossRef]
- Sato, T.; Yokoyama, H.; Ohya, H.; Kamada, H. Electrically detected magnetic resonance signal intensity at resonant frequencies from 300 to 900 MHz in a constant microwave field. J. Magn. Reson. 1999, 139, 422–429. [Google Scholar] [CrossRef]
- Irmak, M.K.; Fadıllıoğlu, E.; Güleç, M.; Erdoğan, H.; Yağmurca, M.; Akyol, Ö. Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell Biochem. Funct. 2002, 20, 279–283. [Google Scholar] [CrossRef]
- Moustafa, Y.M.; Moustafa, R.M.; Belacy, A.; Abou-El-Ela, S.H.; Ali, F.M. Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. J. Pharm. Biomed. Anal. 2001, 26, 605–608. [Google Scholar] [CrossRef]
- Vizcaino, V. Biological effects of low frequency electromagnetic fields. Med. War. 2003, 3, 44–46. [Google Scholar]
- Cho, S.-E.; Kim, Y.-M.; Kang, K.-H.; Kim, S.-C.; Park, J.-K.; Seo, Y.-K. Pigmentation effect of electromagnetic fields at various intensities to melanocytes. Tissue Eng. Regen. Med. 2016, 13, 560–567. [Google Scholar] [CrossRef]
- Harth, Y. Painless, safe, and efficacious noninvasive skin tightening, body contouring, and cellulite reduction using multisource 3DEEP radiofrequency. J. Cosmet. Dermatol. 2015, 14, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Kwan, K.R.; Kolansky, Z.; Abittan, B.J.; Farberg, A.S.; Goldenberg, G. Skin tightening. Cutis 2020, 106, 134–137, 139. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.W. Systems, Various biological effects of solar radiation on skin and their mechanisms: Implications for phototherapy. Anim. Cells Syst. 2020, 24, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.-J.; Ma, H.-J.; Zhao, G.; Yuan, X.-Y.; Zhang, P.; Liu, W.; Ma, L.-J.; Lei, X.-B. Additive effect of heat on the UVB-induced tyrosinase activation and melanogenesis via ERK/p38/MITF pathway in human epidermal melanocytes. Arch. Dermatol. Res. 2014, 306, 583–590. [Google Scholar] [CrossRef]
- Lee, G.H.; Jin, S.W.; Kim, S.J.; Pham, T.H.; Choi, J.H.; Jeong, H.G. Tetrabromobisphenol A Induces MMP-9 Expression via NADPH Oxidase and the activation of ROS, MAPK, and Akt Pathways in Human Breast Cancer MCF-7 Cells. Toxicol. Res. 2019, 35, 93–101. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Lee, Y.S.; Kim, N.; Choi, H.-D.; Kang, D.-J.; Kim, H.R.; Lim, K.-M. Effects of Electromagnetic Waves with LTE and 5G Bandwidth on the Skin Pigmentation In Vitro. Int. J. Mol. Sci. 2021, 22, 170. https://doi.org/10.3390/ijms22010170
Kim K, Lee YS, Kim N, Choi H-D, Kang D-J, Kim HR, Lim K-M. Effects of Electromagnetic Waves with LTE and 5G Bandwidth on the Skin Pigmentation In Vitro. International Journal of Molecular Sciences. 2021; 22(1):170. https://doi.org/10.3390/ijms22010170
Chicago/Turabian StyleKim, Kyuri, Young Seung Lee, Nam Kim, Hyung-Do Choi, Dong-Jun Kang, Hak Rim Kim, and Kyung-Min Lim. 2021. "Effects of Electromagnetic Waves with LTE and 5G Bandwidth on the Skin Pigmentation In Vitro" International Journal of Molecular Sciences 22, no. 1: 170. https://doi.org/10.3390/ijms22010170
APA StyleKim, K., Lee, Y. S., Kim, N., Choi, H.-D., Kang, D.-J., Kim, H. R., & Lim, K.-M. (2021). Effects of Electromagnetic Waves with LTE and 5G Bandwidth on the Skin Pigmentation In Vitro. International Journal of Molecular Sciences, 22(1), 170. https://doi.org/10.3390/ijms22010170