Effects of Electromagnetic Waves with LTE and 5G Bandwidth on the Skin Pigmentation In Vitro
Abstract
:1. Introduction
2. Results
2.1. Effect of EMF on Cell Viability
2.2. Effects of EMF on Cell Morphology of Human Melanoma Cell, MNT-1 Cell
2.3. Effect of EMF on Cell Morphology in Keratinocyte-Melanocyte Co-Culture
2.4. Effect of EMF on mRNA Level of Melanogenic Enzymes
2.5. Effect of LTE and 5G on a Pigmented Human Skin Model, MelanoDerm™
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Radio Frequency Exposure System
4.3. 5G Exposure System
4.4. Cell Viability Assay
4.5. RNA Isolation
4.6. Real-Time Polymerase Chain Reaction (Real-Time PCR)
4.7. MelanoDerm™, 3D Pigmented Human Epidermal Skin Model
4.8. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EMFs | Electromagnetic fields |
ELF | Extremely low frequency |
RF | Radio frequency radiation |
NIR | Non-ionizing radiation |
LTE | Long-term evolution |
mmW | Millimeter waves |
TYR | Tyrosinase |
TRP-1 | Tyrosinase-related protein 1 |
TRP-2 | Tyrosinase-related protein 2 |
MITF | Microphthalmia-associated transcription factor |
PEMFs | Pulsed electromagnetic fields |
MTT | (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) |
WST-1 | (4-[3-(indophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate) |
H&E | Hematoxylin and eosin |
FM | Fontana–Masson |
References
- Baan, R.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Islami, F.; Galichet, L.; Straif, K. Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol. 2011, 12, 624–626. [Google Scholar] [CrossRef]
- Barr, R.; Jones, D.L.; Rodger, C.J. ELF and VLF radio waves. J. Atmos. Sol. Terr. Phys. 2000, 62, 1689–1718. [Google Scholar] [CrossRef]
- Adair, R.K. Biophysical limits on athermal effects of RF and microwave radiation. J. Bioelectromagn. Soc. 2003, 24, 39–48. [Google Scholar] [CrossRef]
- Adair, R.K. Vibrational resonances in biological systems at microwave frequencies. Biophys. J. 2002, 82, 1147–1152. [Google Scholar] [CrossRef] [Green Version]
- West, D.M. How 5G technology enables the health internet of things. Brook. Cent. Technol. Innov. 2016, 3, 1–20. [Google Scholar]
- Betzalel, N.; Ishai, P.B.; Feldman, Y.J.E. The human skin as a sub-THz receiver–Does 5G pose a danger to it or not? Environ. Res. 2018, 163, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Di Ciaula, A. Towards 5G communication systems: Are there health implications? Int. J. Hyg. Environ. Health 2018, 221, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.; Quan, X.; Kim, S.; Lengner, C.; Park, J.-K.; Kim, J.J.A. Electromagnetic fields mediate efficient cell reprogramming into a pluripotent state. ACS Nano 2014, 8, 10125–10138. [Google Scholar] [CrossRef]
- Phillips, J.L.; Singh, N.P.; Lai, H.J.P. Electromagnetic fields and DNA damage. Pathophysiology 2009, 16, 79–88. [Google Scholar] [CrossRef]
- Ruediger, H.W.J.P. Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology 2009, 16, 89–102. [Google Scholar] [CrossRef]
- Zhao, T.-Y.; Zou, S.-P.; Knapp, P.E. Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes. Neurosci. Lett. 2007, 412, 34–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Johnson, D.; Dunbar, K.; Dong, H.; Ge, X.; Kim, Y.C.; Wing, C.; Jayathilaka, N.; Emmanuel, N.; Zhou, C.Q. 2.45 GHz radiofrequency fields alter gene expression in cultured human cells. Febs Lett. 2005, 579, 4829–4836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demsia, G.; Vlastos, D.; Matthopoulos, D.P. Effect of 910-MHz electromagnetic field on rat bone marrow. Sci. World J. 2004, 4, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Singh, N.P. Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ. Health Perspect. 2004, 112, 687–694. [Google Scholar] [CrossRef] [Green Version]
- Proksch, E.; Brandner, J.M.; Jensen, J.M. The skin: An indispensable barrier. Exp. Dermatol. 2008, 17, 1063–1072. [Google Scholar] [CrossRef]
- Marks, J.G.; Miller, J.J. Lookingbill and Marks’ Principles of Dermatology E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Costin, G.-E.; Hearing, V.J. Human skin pigmentation: Melanocytes modulate skin color in response to stress. FASEB J. 2007, 21, 976–994. [Google Scholar] [CrossRef]
- Gibbs, S.; Murli, S.; De Boer, G.; Mulder, A.; Mommaas, A.M.; Ponec, M. Melanosome capping of keratinocytes in pigmented reconstructed epidermis–effect of ultraviolet radiation and 3-isobutyl-1-methyl-xanthine on melanogenesis. Pigment. Cell Res. 2000, 13, 458–466. [Google Scholar] [CrossRef]
- Cichorek, M.; Wachulska, M.; Stasiewicz, A.; Tymińska, A.; Alergologii, A. Skin melanocytes: Biology and development. Allergol. Postȩpy Dermatol. I Alergol. 2013, 30, 30. [Google Scholar] [CrossRef]
- D’Mello, S.A.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-M.; Lim, H.-M.; Ro, H.-S.; Ki, G.-E.; Seo, Y.-K. Pulsed electromagnetic fields increase pigmentation through the p-ERK/p-p38 pathway in zebrafish (Danio rerio). Int. J. Mol. Sci. 2018, 19, 3211. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, Y.; Ohta, S.; Wolf, A.M. Blue light-induced oxidative stress in live skin. Free. Radic. Biol. Med. 2017, 108, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.; Choi, S.; Choi, H.-D.; Kim, N.; Jeon, S.B.; Lim, K.-M.; Lee, H.-J.; Lee, Y.-S. Science, Effects of Radiofrequency Electromagnetic Fields and Ionizing Radiation on Amyloid Precursor Protein Processing and Cell Death. J. Electromagn. Eng. Sci. 2020, 20, 307–319. [Google Scholar] [CrossRef]
- Lee, Y.S.; Chung, J.Y.; Jeon, S.B.; Lee, A.K.; Choi, H.-D. Proposal of 28 GHz In Vitro Exposure System Based on Field Uniformity for Three-Dimensional Cell Culture Experiments. Bioelectromagnetics 2019, 40, 445–457. [Google Scholar] [CrossRef]
- Lee, Y.S.; Dzagbletey, P.A.; Chung, J.-Y.; Jeon, S.B.; Lee, A.-K.; Kim, N.; Song, S.J.; Choi, H.-D. Implementation of an in vitro exposure system for 28 GHz. ETRI J. 2020, 42, 837–845. [Google Scholar] [CrossRef]
- Jung, S.I.; Lee, N.K.; Kang, K.W.; Kim, K.; Do, Y.L. The effect of smartphone usage time on posture and respiratory function. J. Phys. Ther. Sci. 2016, 28, 186–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seiberg, M. Keratinocyte–melanocyte interactions during melanosome transfer. Pigment. Cell Res. 2001, 14, 236–242. [Google Scholar] [CrossRef]
- Boissy, R.E. Melanosome transfer to and translocation in the keratinocyte. Exp. Dermatol. 2003, 12, 5–12. [Google Scholar] [CrossRef]
- Li, D. 5G and intelligence medicine—how the next generation of wireless technology will reconstruct healthcare? Precis. Clin. Med. 2019, 2, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Hardell, L.; Nyberg, R. [Comment] Appeals that matter or not on a moratorium on the deployment of the fifth generation, 5G, for microwave radiation. Mol. Clin. Oncol. 2020, 12, 247–257. [Google Scholar] [CrossRef]
- Le Quément, C.; Nicolaz, C.N.; Habauzit, D.; Zhadobov, M.; Sauleau, R.; Le Dréan, Y. Impact of 60-GHz millimeter waves and corresponding heat effect on endoplasmic reticulum stress sensor gene expression. Bioelectromagnetics 2014, 35, 444–451. [Google Scholar] [CrossRef]
- Mahamoud, Y.S.; Aite, M.; Martin, C.; Zhadobov, M.; Sauleau, R.; Le Dréan, Y.; Habauzit, D. Additive effects of millimeter waves and 2-deoxyglucose co-exposure on the human keratinocyte transcriptome. PLoS ONE 2016, 11, e0160810. [Google Scholar]
- Wu, T.; Rappaport, T.S.; Collins, C.M. The human body and millimeter-wave wireless communication systems: Interactions and implications. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 2423–2429. [Google Scholar]
- Jargin, S.V. Radiofrequency radiation: Carcinogenic and other potential risks. J. Radiat. Oncol. 2020, 9, 81–91. [Google Scholar] [CrossRef]
- Goldsmith, J.R. Epidemiologic evidence of radiofrequency radiation (microwave) effects on health in military, broadcasting, and occupational studies. Int. J. Occup. Environ. Health 1995, 1, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Szudziński, A.; Pietraszek, A.; Janiak, M.; Wrembel, J.; Kałczak, M.; Szmigielski, S. Acceleration of the development of benzopyrene-induced skin cancer in mice by microwave radiation. Arch. Dermatol. Res. 1982, 274, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Crabtree, D.P.; Herrera, B.J.; Kang, S. The response of human bacteria to static magnetic field and radiofrequency electromagnetic field. J. Microbiol. 2017, 55, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Le Pogam, P.; Le Page, Y.; Habauzit, D.; Doué, M.; Zhadobov, M.; Sauleau, R.; Le Dréan, Y.; Rondeau, D. Untargeted metabolomics unveil alterations of biomembranes permeability in human HaCaT keratinocytes upon 60 GHz millimeter-wave exposure. Sci. Rep. 2019, 9, 9343. [Google Scholar] [CrossRef] [PubMed]
- Dasdag, S.; Akdag, M.Z. The link between radiofrequencies emitted from wireless technologies and oxidative stress. J. Chem. Neuroanat. 2016, 75, 85–93. [Google Scholar] [CrossRef]
- Duan, W.; Liu, C.; Zhang, L.; He, M.; Xu, S.; Chen, C.; Pi, H.; Gao, P.; Zhang, Y.; Zhong, M. Comparison of the genotoxic effects induced by 50 Hz extremely low-frequency electromagnetic fields and 1800 MHz radiofrequency electromagnetic fields in GC-2 cells. Radiat. Res. 2015, 183, 305–314. [Google Scholar] [CrossRef]
- Sato, T.; Yokoyama, H.; Ohya, H.; Kamada, H. Electrically detected magnetic resonance signal intensity at resonant frequencies from 300 to 900 MHz in a constant microwave field. J. Magn. Reson. 1999, 139, 422–429. [Google Scholar] [CrossRef]
- Irmak, M.K.; Fadıllıoğlu, E.; Güleç, M.; Erdoğan, H.; Yağmurca, M.; Akyol, Ö. Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell Biochem. Funct. 2002, 20, 279–283. [Google Scholar] [CrossRef]
- Moustafa, Y.M.; Moustafa, R.M.; Belacy, A.; Abou-El-Ela, S.H.; Ali, F.M. Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. J. Pharm. Biomed. Anal. 2001, 26, 605–608. [Google Scholar] [CrossRef]
- Vizcaino, V. Biological effects of low frequency electromagnetic fields. Med. War. 2003, 3, 44–46. [Google Scholar]
- Cho, S.-E.; Kim, Y.-M.; Kang, K.-H.; Kim, S.-C.; Park, J.-K.; Seo, Y.-K. Pigmentation effect of electromagnetic fields at various intensities to melanocytes. Tissue Eng. Regen. Med. 2016, 13, 560–567. [Google Scholar] [CrossRef]
- Harth, Y. Painless, safe, and efficacious noninvasive skin tightening, body contouring, and cellulite reduction using multisource 3DEEP radiofrequency. J. Cosmet. Dermatol. 2015, 14, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Kwan, K.R.; Kolansky, Z.; Abittan, B.J.; Farberg, A.S.; Goldenberg, G. Skin tightening. Cutis 2020, 106, 134–137, 139. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.W. Systems, Various biological effects of solar radiation on skin and their mechanisms: Implications for phototherapy. Anim. Cells Syst. 2020, 24, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.-J.; Ma, H.-J.; Zhao, G.; Yuan, X.-Y.; Zhang, P.; Liu, W.; Ma, L.-J.; Lei, X.-B. Additive effect of heat on the UVB-induced tyrosinase activation and melanogenesis via ERK/p38/MITF pathway in human epidermal melanocytes. Arch. Dermatol. Res. 2014, 306, 583–590. [Google Scholar] [CrossRef]
- Lee, G.H.; Jin, S.W.; Kim, S.J.; Pham, T.H.; Choi, J.H.; Jeong, H.G. Tetrabromobisphenol A Induces MMP-9 Expression via NADPH Oxidase and the activation of ROS, MAPK, and Akt Pathways in Human Breast Cancer MCF-7 Cells. Toxicol. Res. 2019, 35, 93–101. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Lee, Y.S.; Kim, N.; Choi, H.-D.; Kang, D.-J.; Kim, H.R.; Lim, K.-M. Effects of Electromagnetic Waves with LTE and 5G Bandwidth on the Skin Pigmentation In Vitro. Int. J. Mol. Sci. 2021, 22, 170. https://doi.org/10.3390/ijms22010170
Kim K, Lee YS, Kim N, Choi H-D, Kang D-J, Kim HR, Lim K-M. Effects of Electromagnetic Waves with LTE and 5G Bandwidth on the Skin Pigmentation In Vitro. International Journal of Molecular Sciences. 2021; 22(1):170. https://doi.org/10.3390/ijms22010170
Chicago/Turabian StyleKim, Kyuri, Young Seung Lee, Nam Kim, Hyung-Do Choi, Dong-Jun Kang, Hak Rim Kim, and Kyung-Min Lim. 2021. "Effects of Electromagnetic Waves with LTE and 5G Bandwidth on the Skin Pigmentation In Vitro" International Journal of Molecular Sciences 22, no. 1: 170. https://doi.org/10.3390/ijms22010170
APA StyleKim, K., Lee, Y. S., Kim, N., Choi, H.-D., Kang, D.-J., Kim, H. R., & Lim, K.-M. (2021). Effects of Electromagnetic Waves with LTE and 5G Bandwidth on the Skin Pigmentation In Vitro. International Journal of Molecular Sciences, 22(1), 170. https://doi.org/10.3390/ijms22010170