Novel Perspectives Regarding the Pathology, Inflammation, and Biomarkers of Acute Respiratory Distress Syndrome
Abstract
:1. Introduction
2. Alveolar and Bronchiolar Injury Biomarkers
2.1. Surfactant Protein D
2.2. Krebs von den Lungen-6
2.3. Soluble Receptor for Advanced Glycation end Products
3. Endothelial Injury and Coagulation Biomarkers
3.1. Gelsolin
3.2. Thrombomodulin
3.3. Protein C
3.4. Endocan
3.5. Plasminogen Activator Inhibitor-1
3.6. Angiopoietin-2
3.7. Von Willebrand Factor
4. Treatment Response Biomarkers
4.1. Lung Inflammation Biomarkers
4.1.1. Interleukin-1β
4.1.2. Interleukin-6
4.1.3. Interleukin-8
4.1.4. Interleukin-10
4.2. Tumour Necrosis Factor-α
4.3. Lung Infection Biomarkers
4.4. Decreasing the Use of Antibiotics in Patients with Acute Respiratory Infections by Monitoring PCT Levels
4.5. C-Reactive Protein
4.6. White Blood Cells
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, E.; Brodie, D.; Slutsky, A.S. Acute Respiratory Distress Syndrome: Advances in Diagnosis and Treatment. JAMA 2018, 319, 698–710. [Google Scholar] [CrossRef]
- Han, S.; Mallampalli, R.K. The acute respiratory distress syndrome: From mechanism to translation. J. Immunol. 2015, 194, 855–860. [Google Scholar] [CrossRef] [Green Version]
- Force, A.D.T.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar]
- Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; Van Haren, F.; Larsson, A.; McAuley, D.F.; et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016, 315, 788–800. [Google Scholar] [CrossRef] [PubMed]
- Crouch, E. Structure, biologic properties, and expression of surfactant protein D (SP-D). Biochim. Biophys. Acta 1998, 1408, 278–289. [Google Scholar] [CrossRef] [Green Version]
- Eisner, M.D.; Parsons, P.; Matthay, M.A.; Ware, L.; Greene, K. Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax 2003, 58, 983–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Determann, R.M.; Royakkers, A.A.N.M.; Haitsma, J.J.; Zhang, H.; Slutsky, M.A.S.; Ranieri, V.M.; Schultz, M.J. Plasma levels of surfactant protein D and KL-6 for evaluation of lung injury in critically ill mechanically ventilated patients. BMC Pulm. Med. 2010, 10, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ware, L.B.; Koyama, T.; Billheimer, D.D.; Wu, W.; Bernard, G.R.; Thompson, B.T.; Brower, R.G.; Standiford, T.J.; Martin, T.R.; Matthay, M.A. Prognostic and Pathogenetic Value of Combining Clinical and Biochemical Indices in Patients With Acute Lung Injury. Chest 2010, 137, 288–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calfee, C.S.; Ware, L.B.; Glidden, D.V.; Eisner, M.D.; Parsons, P.E.; Thompson, B.T.; Matthay, M.A. Use of risk reclassification with multiple biomarkers improves mortality prediction in acute lung injury. Crit. Care Med. 2011, 39, 711–717. [Google Scholar] [CrossRef]
- Zhao, Z.; Wickersham, N.; Kangelaris, K.N.; May, A.K.; Bernard, G.R.; Matthay, M.A.; Calfee, C.S.; Koyama, T.; Ware, L.B. External validation of a biomarker and clinical prediction model for hospital mortality in acute respiratory distress syndrome. Intensive Care Med. 2017, 43, 1123–1131. [Google Scholar] [CrossRef]
- Park, J.; Pabón, M.A.; Choi, A.M.K.; Siembos, I.; Fredenburgh, L.E.; Baron, R.M.; Jeon, K.; Chung, C.R.; Yang, J.H.; Park, C.-M.; et al. Plasma surfactant protein-D as a diagnostic biomarker for acute respiratory distress syndrome: Validation in US and Korean cohorts. BMC Pulm. Med. 2017, 17, 204. [Google Scholar] [CrossRef] [PubMed]
- Ware, L.B.; Koyama, T.; Zhao, Z.; Janz, D.R.; Wickersham, N.; Bernard, G.R.; May, A.K.; Calfee, C.S.; Matthay, M.A. Biomarkers of lung epithelial injury and inflammation distinguish severe sepsis patients with acute respiratory distress syndrome. Crit. Care 2013, 17, R253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujiwara, Y.; Kiura, K.; Toyooka, S.; Hotta, K.; Tabata, M.; Takigawa, N.; Soh, J.; Tanimoto, Y.; Kanehiro, A.; Kato, K.; et al. Elevated serum level of sialylated glycoprotein KL-6 predicts a poor prognosis in patients with non-small cell lung cancer treated with gefitinib. Lung Cancer 2008, 59, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, N.; Hattori, N.; Yokoyama, A.; Tanaka, S.; Nishino, R.; Yoshioka, K.; Ohshimo, S.; Fujitaka, K.; Ohnishi, H.; Hamada, H.; et al. Usefulness of monitoring the circulating Krebs von den Lungen-6 levels to predict the clinical outcome of patients with advanced nonsmall cell lung cancer treated with epidermal growth factor receptor tyrosine kinase inhibitors. Int. J. Cancer 2008, 122, 2612–2620. [Google Scholar] [CrossRef]
- Tomita, M.; Ayabe, T.; Chosa, E.; Nose, N.; Nakamura, K. Prognostic significance of preoperative serum Krebs von den Lungen-6 level in non-small cell lung cancer. Gen. Thorac. Cardiovasc. Surg. 2016, 64, 657–661. [Google Scholar] [CrossRef]
- Tomita, M.; Ayabe, T.; Chosa, E.; Nose, N.; Nakamura, K. Prognostic Significance of a Tumor Marker Index Based on Preoperative Serum Carcinoembryonic Antigen and Krebs von den Lungen-6 Levels in Non-Small Cell Lung Cancer. Asian Pac. J. Cancer Prev. 2017, 18, 287–291. [Google Scholar]
- Collard, H.R.; Calfee, C.S.; Wolters, P.J.; Song, J.W.; Hong, S.-B.; Brady, S.; Ishizaka, A.; Jones, K.D.; King, T.E.; Matthay, M.A.; et al. Plasma biomarker profiles in acute exacerbation of idiopathic pulmonary fibrosis. Am. J. Physiol. Cell. Mol. Physiol. 2010, 299, L3–L7. [Google Scholar] [CrossRef] [Green Version]
- Aihara, K.; Oga, T.; Harada, Y.; Chihara, Y.; Handa, T.; Tanizawa, K.; Watanabe, K.; Tsuboi, T.; Hitomi, T.; Mishima, M.; et al. Comparison of biomarkers of subclinical lung injury in obstructive sleep apnea. Respir. Med. 2011, 105, 939–945. [Google Scholar] [CrossRef] [Green Version]
- Lederer, D.J.; Jelic, S.; Basner, R.C.; Ishizaka, A.; Bhattacharya, J. Circulating KL-6, a biomarker of lung injury, in obstructive sleep apnoea. Eur. Respir. J. 2009, 33, 793–796. [Google Scholar] [CrossRef] [Green Version]
- Ishizaka, A.; Matsuda, T.; Albertine, K.H.; Koh, H.; Tasaka, S.; Hasegawa, N.; Kohno, N.; Kotani, T.; Morisaki, H.; Takeda, J.; et al. Elevation of KL-6, a lung epithelial cell marker, in plasma and epithelial lining fluid in acute respiratory distress syndrome. Am. J. Physiol. Cell. Mol. Physiol. 2004, 286, L1088–L1094. [Google Scholar] [CrossRef]
- Nathani, N.; Perkins, G.; Tunnicliffe, W.; Murphy, N.; Manji, M.; Thickett, D.R. Kerbs von Lungren 6 antigen is a marker of alveolar inflammation but not of infection in patients with acute respiratory distress syndrome. Crit. Care 2008, 12, R12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koyama, K.; Katayama, S.; Tonai, K.; Shima, J.; Koinuma, T.; Nunomiya, S. Biomarker profiles of coagulopathy and alveolar epithelial injury in acute respiratory distress syndrome with idiopathic/immune-related disease or common direct risk factors. Crit. Care 2019, 23, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, L.-C.; Huang, P.-W.; Hsieh, K.-H.; Wang, C.-H.; Kao, Y.-K.; Lin, T.-H.; Lee, X.-L. Elevated Plasma Levels of Gas6 Are Associated with Acute Lung Injury in Patients with Severe Sepsis. Tohoku J. Exp. Med. 2017, 243, 187–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, A.; Matthay, M.A.; Kangelaris, K.N.; Stein, J.; Chu, J.C.; Imp, B.M.; Cortez, A.; Abbott, J.; Liu, K.D.; Calfee, C.S. Plasma Angiopoietin-2 Predicts the Onset of Acute Lung Injury in Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2013, 187, 736–742. [Google Scholar] [CrossRef] [Green Version]
- Jabaudon, M.; Berthelin, P.; Pranal, T.; Roszyk, L.; Godet, T.; Faure, J.-S.; Chabanne, R.; Eisenmann, N.; Lautrette, A.; Belville, C.; et al. Receptor for advanced glycation end-products and ARDS prediction: A multicentre observational study. Sci. Rep. 2018, 8, 2603. [Google Scholar] [CrossRef] [Green Version]
- Jabaudon, M.; Blondonnet, R.; Pereira, B.; Cartin-Ceba, R.; Lichtenstern, C.; Mauri, T.; Determann, R.M.; Drabek, T.; Hubmayr, R.D.; Gajic, O.; et al. Plasma sRAGE is independently associated with increased mortality in ARDS: A meta-analysis of individual patient data. Intensive Care Med. 2018, 44, 1388–1399. [Google Scholar] [CrossRef] [Green Version]
- Calfee, C.S.; Ware, L.B.; Eisner, M.D.; Parsons, P.E.; Thompson, B.T.; Wickersham, N.; Matthay, M.A.; Network, T.N.A. Plasma receptor for advanced glycation end products and clinical outcomes in acute lung injury. Thorax 2008, 63, 1083–1089. [Google Scholar] [CrossRef] [Green Version]
- Brodska, H.; Malickova, K.; Valenta, J.; Fabio, A.; Drabek, T. Soluble receptor for advanced glycation end products predicts 28-day mortality in critically ill patients with sepsis. Scand. J. Clin. Lab. Investig. 2013, 73, 650–660. [Google Scholar] [CrossRef]
- Mauri, T.; Masson, S.; Pradella, A.; Bellani, G.; Coppadoro, A.; Bombino, M.; Valentino, S.; Patroniti, N.; Mantovani, A.; Pesenti, A.; et al. Elevated Plasma and Alveolar Levels of Soluble Receptor for Advanced Glycation Endproducts Are Associated with Severity of Lung Dysfunction in ARDS Patients. Tohoku J. Exp. Med. 2010, 222, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Cartin-Ceba, R.; Hubmayr, R.D.; Qin, R.; Peters, S.; Determann, R.M.; Schultz, M.J.; Gajic, O.O. Predictive value of plasma biomarkers for mortality and organ failure development in patients with acute respiratory distress syndrome. J. Crit. Care 2015, 30, 219.e1–219.e7. [Google Scholar] [CrossRef]
- Mrozek, S.; Jabaudon, M.; Jaber, S.; Paugam-Burtz, C.; Lefrant, J.Y.; Rouby, J.J.; Asehnoune, K.; Allaouchiche, B.; Baldesi, O.; Leone, M.; et al. Elevated Plasma Levels of sRAGE Are Associated With Nonfocal CT-Based Lung Imaging in Patients With ARDS: A Prospective Multicenter Study. Chest 2016, 150, 998–1007. [Google Scholar] [CrossRef] [PubMed]
- Jabaudon, M.; Futier, E.; Roszyk, L.; Chalus, E.; Guérin, R.; Petit, A.; Mrozek, S.; Perbet, S.; Cayot-Constantin, S.; Chartier, C.; et al. Soluble form of the receptor for advanced glycation end products is a marker of acute lung injury but not of severe sepsis in critically ill patients*. Crit. Care Med. 2011, 39, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Jabaudon, M.; Blondonnet, R.; Roszyk, L.; Pereira, B.; Guérin, R.; Perbet, S.; Cayot, S.; Bouvier, D.; Blanchon, L.; Sapin, V.; et al. Soluble Forms and Ligands of the Receptor for Advanced Glycation End-Products in Patients with Acute Respiratory Distress Syndrome: An Observational Prospective Study. PLoS ONE 2015, 10, e0135857. [Google Scholar] [CrossRef] [PubMed]
- Levy, B.; Acute Respiratory Distress Syndrome Network; Brower, R.G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A. Faculty Opinions recommendation of Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. Fac. Opin. Post Publ. Peer Rev. Biomed. Lit. 2016, 342, 1301–1308. [Google Scholar] [CrossRef]
- Spadaro, S.; Park, M.; Turrini, C.; Tunstall, T.; Thwaites, R.S.; Mauri, T.; Ragazzi, R.; Ruggeri, P.; Hansel, T.T.; Caramori, G.; et al. Biomarkers for Acute Respiratory Distress syndrome and prospects for personalised medicine. J. Inflamm. 2019, 16, 1–11. [Google Scholar] [CrossRef]
- Kwiatkowski, D.J.; Mehl, R.; Izumo, S.; Nadal-Ginard, B.; Yin, H.L. Muscle is the major source of plasma gelsolin. J. Biol. Chem. 1988, 263, 8239–8243. [Google Scholar]
- Holm, F.S.; Sivapalan, P.; Seersholm, N.; Itenov, T.S.; Christensen, P.H.; Jensen, J.S. Acute Lung Injury in Critically Ill Patients: Actin-Scavenger Gelsolin Signals Prolonged Respiratory Failure. Shock 2019, 52, 370–377. [Google Scholar] [CrossRef]
- Hou, P.C.; Filbin, M.R.; Wang, H.; Ngo, L.; Huang, D.T.; Aird, W.C.; Yealy, D.M.; Angus, D.C.; Kellum, J.A.; Shapiro, N.I.; et al. Endothelial Permeability and Hemostasis in Septic Shock: Results From the ProCESS Trial. Chest 2017, 152, 22–31. [Google Scholar] [CrossRef]
- Sapru, A.; Network, T.N.A.; Calfee, C.S.; Liu, K.D.; Kangelaris, K.; Hansen, H.; Pawlikowska, L.; Ware, L.B.; Alkhouli, M.F.; Abbott, J.; et al. Plasma soluble thrombomodulin levels are associated with mortality in the acute respiratory distress syndrome. Intensive Care Med. 2015, 41, 470–478. [Google Scholar] [CrossRef]
- Johansen, M.E.; Johansson, P.I.; Ostrowski, S.R.; Bestle, M.H.; Hein, L.; Jensen, A.L.; Søe-Jensen, P.; Andersen, M.H.; Steensen, M.; Mohr, T.; et al. Profound endothelial damage predicts impending organ failure and death in sepsis. Semin. Thromb. Hemost. 2015, 41, 16–25. [Google Scholar] [CrossRef]
- Agrawal, A.; Zhuo, H.; Brady, S.; Levitt, J.; Steingrub, J.; Siegel, M.D.; Soto, G.; Peterson, M.W.; Chesnutt, M.S.; Matthay, M.A.; et al. Pathogenetic and predictive value of biomarkers in patients with ALI and lower severity of illness: Results from two clinical trials. Am. J. Physiol. Cell. Mol. Physiol. 2012, 303, L634–L639. [Google Scholar] [CrossRef] [PubMed]
- McClintock, D.; Zhuo, H.; Wickersham, N.; Matthay, M.A.; Ware, L.B. Biomarkers of inflammation, coagulation and fibrinolysis predict mortality in acute lung injury. Crit. Care 2008, 12, R41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shorr, A.F.; Nelson, D.R.; Wyncoll, D.; Reinhart, K.; Brunkhorst, F.M.; Vail, G.M.; Janes, J.M. Protein C: A potential biomarker in severe sepsis and a possible tool for monitoring treatment with drotrecogin alfa (activated). Crit. Care 2008, 12, R45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Y.; Li, C.; Shao, R.; Yu, H.; Zhang, Q.; Zhao, L. Prognostic significance of the angiopoietin-2/angiopoietin-1 and angiopoietin-1/Tie-2 ratios for early sepsis in an emergency department. Crit Care 2015, 19, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsangaris, I.; Tsantes, A.; Vrigkou, E.; Kopterides, P.; Pelekanou, A.; Zerva, K.; Antonakos, G.; Konstantonis, D.; Mavrou, I.; Tsaknis, G.; et al. Angiopoietin-2 Levels as Predictors of Outcome in Mechanically Ventilated Patients with Acute Respiratory Distress Syndrome. Dis. Markers 2017, 2017, 6758721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, J.; Zhou, D.; Gu, T.; Huang, J. Endocan, a Risk Factor for Developing Acute Respiratory Distress Syndrome among Severe Pneumonia Patients. Can. Respir. J. 2019, 2019, 2476845. [Google Scholar] [CrossRef]
- Gaudet, A.; Parmentier, E.; Dubucquoi, S.; Poissy, J.; Duburcq, T.; Lassalle, P.; Caires, N.D.F.; Mathieu, D. Low endocan levels are predictive of Acute Respiratory Distress Syndrome in severe sepsis and septic shock. J. Crit. Care 2018, 47, 121–126. [Google Scholar] [CrossRef]
- Mikkelsen, M.E.; Shah, C.V.; Scherpereel, A.; Lanken, P.N.; Lassalle, P.; Bellamy, S.L.; Localio, A.R.; Albelda, S.M.; Meyer, N.J.; Christie, J.D. Lower serum endocan levels are associated with the development of acute lung injury after major trauma. J. Crit Care 2012, 27, 522.e11–522.e17. [Google Scholar] [CrossRef] [Green Version]
- Orbegozo, D.; Rahmania, L.L.; Irazabal, M.M.; Mendoza, M.M.; Annoni, F.; De Backer, D.; Creteur, J.; Vincent, J.-L. Endocan as an early biomarker of severity in patients with acute respiratory distress syndrome. Ann. Intensive Care 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Tang, L.; Zhao, Y.; Wang, D.; Deng, W.; Li, C.; Li, Q.; Huang, S.; Shu, C. Endocan Levels in Peripheral Blood Predict Outcomes of Acute Respiratory Distress Syndrome. Mediat. Inflamm. 2014, 2014, 625180. [Google Scholar] [CrossRef]
- Mangat, M.; Amalakuhan, B.; Habib, S.; Reyes, L.F.; Hinojosa, C.A.; Rodriguez, A.H.; Soni, N.J.; Anzueto, A.; Levine, S.M.; Peters, J.I.; et al. High endocan levels are associated with the need for mechanical ventilation among patients with severe sepsis. Eur. Respir. J. 2017, 50, 1700013. [Google Scholar] [CrossRef] [PubMed]
- Ioakeimidou, A.; Pagalou, E.; Kontogiorgi, M.; Antoniadou, E.; Kaziani, K.; Psaroulis, K.; Giamarellos-Bourboulis, E.J.; Prekates, A.; Antonakos, N.; Lassale, P.; et al. Increase of circulating endocan over sepsis follow-up is associated with progression into organ dysfunction. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1749–1756. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, C.; Kofler, J.; Locker, G.J.; Laczika, K.; Quehenberger, P.; Frass, M.; Knöbl, P. Endothelial cell activation and blood coagulation in critically ill patients with lung injury. Wien. Klin. Wochenschr. 2002, 114, 853–858. [Google Scholar] [PubMed]
- Yadav, H.; Bartley, A.; Keating, S.M.; Meade, L.A.; Norris, P.J.; Carter, R.; Gajic, O.O.; Kor, D.J. Evolution of Validated Biomarkers and Intraoperative Parameters in the Development of Postoperative ARDS. Respir. Care 2018, 63, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Moalli, R.; Doyle, J.M.; Tahhan, H.R.; Hasan, F.M.; Braman, S.S.; Saldeen, T. Fibrinolysis in critically ill patients. Am. Rev. Respir Dis. 1989, 140, 287–293. [Google Scholar] [CrossRef]
- El Solh, A.A.; Bhora, M.; Pineda, L.; Aquilina, A.; Abbetessa, L.; Berbary, E. Alveolar plasminogen activator inhibitor-1 predicts ARDS in aspiration pneumonitis. Intensive Care Med. 2006, 32, 110–115. [Google Scholar] [CrossRef]
- Thurston, G.; Daly, C. The Complex Role of Angiopoietin-2 in the Angiopoietin-Tie Signaling Pathway. Cold Spring Harb. Perspect. Med. 2012, 2, a006650. [Google Scholar] [CrossRef] [Green Version]
- Ware, L.B.; Zhao, Z.; Koyama, T.; Brown, R.M.; Semler, M.W.; Janz, D.R.; May, A.K.; Fremont, R.D.; Matthay, M.A.; Cohen, M.J.; et al. Derivation and validation of a two-biomarker panel for diagnosis of ARDS in patients with severe traumatic injuries. Trauma Surg. Acute Care Open 2017, 2, e000121. [Google Scholar] [CrossRef] [Green Version]
- Asahara, H.; Ito, H.; Yamamoto, H.; Ohno, N.; Asahara, M.; Yamada, Y.; Yamaguchi, O.; Tomita, M.; Makita, K. Elevated Levels of Angiopoietin-2 as a Biomarker for Respiratory Failure After Cardiac Surgery. J. Cardiothorac. Vasc. Anesthesia 2014, 28, 1293–1301. [Google Scholar] [CrossRef]
- Van der Heijden, M.; Pickkers, P.; van Nieuw Amerongen, G.P.; van Hinsbergh, V.W.; Bouw, M.P.; van der Hoeven, J.G.; Groeneveld, A.J. Circulating angiopoietin-2 levels in the course of septic shock: Relation with fluid balance, pulmonary dysfunction and mortality. Intensive Care Med. 2009, 35, 1567–1574. [Google Scholar] [CrossRef] [Green Version]
- Hoeboer, S.H.; Groeneveld, A.J.; Van Der Heijden, M.; Straaten, H.M.O.-V. Serial inflammatory biomarkers of the severity, course and outcome of late onset acute respiratory distress syndrome in critically ill patients with or at risk for the syndrome after new-onset fever. Biomark. Med. 2015, 9, 605–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bime, C.; Casanova, N.; Oita, R.C.; Ndukum, J.; Lynn, H.; Camp, S.M.; Lussier, Y.; Abraham, I.; Carter, D.; Miller, E.J.; et al. Development of a biomarker mortality risk model in acute respiratory distress syndrome. Crit. Care 2019, 23, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, D.C.; Parikh, S.M.; Balonov, K.; Miller, A.; Gautam, S.; Talmor, D.; Sukhatme, V.P. Circulating angiopoietin 2 correlates with mortality in a surgical population with acute lung injury/adult respiratory distress syndrome. Shock 2007, 29, 656–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Zhao, M.-L.; Wang, K.; Yue, Y.-F.; Sun, R.-Q.; Zhang, R.-M.; Wang, S.-F.; Sun, G.; Xie, H.-Q.; Yu, Y.; et al. Association of Ang-2, vWF, and EVLWI with risk of mortality in sepsis patients with concomitant ARDS: A retrospective study. J. Formos. Med. Assoc. 2020, 119, 950–956. [Google Scholar] [CrossRef]
- Liu, X.-W.; Ma, T.; Cai, Q.; Wang, L.; Song, H.-W.; Liu, Z. Elevation of Serum PARK7 and IL-8 Levels Is Associated With Acute Lung Injury in Patients With Severe Sepsis/Septic Shock. J. Intensive Care Med. 2017, 34, 662–668. [Google Scholar] [CrossRef]
- Ware, L.B.; Eisner, M.D.; Thompson, B.T.; Parsons, P.E.; Matthay, M.A. Significance of Von Willebrand Factor in Septic and Nonseptic Patients with Acute Lung Injury. Am. J. Respir. Crit. Care Med. 2004, 170, 766–772. [Google Scholar] [CrossRef]
- Singh, D.; Kolsum, U.; Brightling, C.E.; Locantore, N.; Agusti, A.; Tal-Singer, R. Eosinophilic inflammation in COPD: Prevalence and clinical characteristics. Eur. Respir. J. 2014, 44, 1697–1700. [Google Scholar] [CrossRef] [Green Version]
- Tashkin, D.P.; E Wechsler, M. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 335–349. [Google Scholar] [CrossRef] [Green Version]
- Barnes, P.J. Inflammatory endotypes in COPD. Allergy 2019, 74, 1249–1256. [Google Scholar] [CrossRef] [Green Version]
- Pascoe, S.; Locantore, N.; Dransfield, M.T.; Barnes, N.C.; Pavord, I.D. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: A secondary analysis of data from two parallel randomised controlled trials. Lancet Respir. Med. 2015, 3, 435–442. [Google Scholar] [CrossRef]
- Vedel-Krogh, S.; Nielsen, S.F.; Lange, P.; Vestbo, J.; Nordestgaard, B.G. Blood Eosinophils and Exacerbations in Chronic Obstructive Pulmonary Disease. The Copenhagen General Population Study. Am. J. Respir. Crit. Care Med. 2016, 193, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Couillard, S.; Larivée, P.; Courteau, J.; Vanasse, A. Eosinophils in COPD Exacerbations Are Associated With Increased Readmissions. Chest 2017, 151, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Zeiger, R.; Tran, T.N.; Butler, R.K.; Schatz, M.; Li, Q.; Khatry, D.B.; Martin, U.; Kawatkar, A.A.; Chen, W. Relationship of Blood Eosinophil Count to Exacerbations in Chronic Obstructive Pulmonary Disease. J. Allergy Clin. Immunol. Pract. 2018, 6, 944–954.e5. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.H.; Lamb, A.; Chase, R.; Singh, D.; Parker, M.M.; Saferali, A.; Vestbo, J.; Tal-Singer, R.; Castaldi, P.J.; Silverman, E.K.; et al. Blood eosinophil count thresholds and exacerbations in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2018, 141, 2037–2047. [Google Scholar] [CrossRef] [Green Version]
- Russell, R.E.K.; Bafadhel, M. Investigating blood eosinophil count thresholds in patients with COPD. Lancet Respir. Med. 2018, 6, 823–824. [Google Scholar] [CrossRef]
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2017, 195, 557–582. [Google Scholar] [CrossRef]
- Walters, J.A.E.; Tan, D.J.; White, C.J.; Gibson, P.G.; Wood-Baker, R.; Walters, E.H. Systemic corticosteroids for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2014, 2014, CD001288. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Agusti, A.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.; Criner, G.J.; Frith, P.; Halpin, D.M.G.; Han, M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: The GOLD science committee report 2019. Eur. Respir. J. 2019, 53, 1900164. [Google Scholar] [CrossRef]
- Sivapalan, P.; Ingebrigtsen, T.S.; Rasmussen, D.B.; Sørensen, R.; Rasmussen, C.M.; Jensen, C.B.; Allin, K.H.; Eklöf, J.; Seersholm, N.; Vestbo, J.; et al. COPD exacerbations: The impact of long versus short courses of oral corticosteroids on mortality and pneumonia: Nationwide data on 67 000 patients with COPD followed for 12 months. BMJ Open Respir. Res. 2019, 6, e000407. [Google Scholar] [CrossRef]
- Waljee, A.K.; Rogers, M.A.M.; Lin, P.; Singal, A.G.; Stein, J.D.; Marks, R.M.; Ayanian, J.Z.; Nallamothu, B.K. Short term use of oral corticosteroids and related harms among adults in the United States: Population based cohort study. BMJ 2017, 357, j1415. [Google Scholar] [CrossRef] [Green Version]
- Walsh, L.J.; A Wong, C.; Oborne, J.; Cooper, S.; A Lewis, S.; Pringle, M.; Hubbard, R.; E Tattersfield, A. Adverse effects of oral corticosteroids in relation to dose in patients with lung disease. Thorax 2001, 56, 279–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bafadhel, M.; McKenna, S.; Terry, S.; Mistry, V.; Pancholi, M.; Venge, P.; Lomas, D.A.; Barer, M.R.; Johnston, S.L.; Pavord, I.D.; et al. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease: A randomized placebo-controlled trial. Am. J. Respir Crit Care Med. 2012, 186, 48–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serafino-Agrusa, L.; Scichilone, N.; Spatafora, M.; Battaglia, S. Blood eosinophils and treatment response in hospitalized exacerbations of chronic obstructive pulmonary disease: A case-control study. Pulm. Pharmacol. Ther. 2016, 37, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Duman, D.; Aksoy, E.; Karakurt, Z.; Agca, M.C.; Kocak, N.D.; Ozmen, I.; Akturk, U.A.; Gungor, S.; Tepetam, F.M.; Eroglu, S.; et al. The utility of inflammatory markers to predict readmissions and mortality in COPD cases with or without eosinophilia [Corrigendum]. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 417–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bafadhel, M.; Greening, N.J.; Harvey-Dunstan, T.C.; E A Williams, J.; Morgan, M.D.; Brightling, C.E.; Hussain, S.F.; Pavord, I.D.; Singh, S.; Steiner, M.C. Blood Eosinophils and Outcomes in Severe Hospitalized Exacerbations of COPD. Chest 2016, 150, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Sivapalan, P.; Lapperre, T.S.; Janner, J.; Laub, R.R.; Moberg, M.; Bech, C.S.; Eklöf, J.; Holm, F.S.; Armbruster, K.; Sivapalan, P.; et al. Eosinophil-guided corticosteroid therapy in patients admitted to hospital with COPD exacerbation (CORTICO-COP): A multicentre, randomised, controlled, open-label, non-inferiority trial. Lancet Respir. Med. 2019, 7, 699–709. [Google Scholar] [CrossRef]
- Bauer, T.T.; Montón, C.; Torres, A.; Cabello, H.; Fillela, X.; Maldonado, A.; Nicolás, J.-M.; Zavala, E. Comparison of systemic cytokine levels in patients with acute respiratory distress syndrome, severe pneumonia, and controls. Thorax 2000, 55, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Headley, A.S.; Meduri, G.U.; Tolley, E. Infections and the Inflammatory Response in Acute Respiratory Distress Syndrome. Chest 1997, 111, 1306–1321. [Google Scholar] [CrossRef]
- Pinto-Plata, V.M.; Casanova, C.; Müllerová, H.; De-Torres, J.P.; Corado, H.; Varo, N.; Córdoba-Lanús, E.; Zeineldine, S.; Paz, H.; Baz, R.; et al. Inflammatory and repair serum biomarker pattern. Association to clinical outcomes in COPD. Respir. Res. 2012, 13, 71. [Google Scholar] [CrossRef] [Green Version]
- Takala, A.; Jousela, I.; Takkunen, O.; Kautiainen, H.; Jansson, S.-E.; Orpana, A.; Karonen, S.-L.; Repo, H. A Prospective Study of Inflammation Markers in Patients at Risk of Indirect Acute Lung Injury. Shock 2002, 17, 252–257. [Google Scholar] [CrossRef]
- Chen, C.; Shi, L.; Li, Y.; Wang, X.; Yang, S. Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia. Cell Biol. Toxicol. 2016, 32, 169–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fremont, R.D.; Koyama, T.; Calfee, C.S.; Wu, W.; Dossett, L.A.; Bossert, F.R.; Mitchell, D.; Wickersham, N.; Bernard, G.R.; Matthay, M.A.; et al. Acute Lung Injury in Patients With Traumatic Injuries: Utility of a Panel of Biomarkers for Diagnosis and Pathogenesis. J. Trauma 2010, 68, 1121–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaroopa, D.; Bhaskar, K.; Mahathi, T.; Katkam, S.; Raju, Y.S.; Chandra, N.; Kutala, V.K. Association of serum interleukin-6, interleukin-8, and Acute Physiology and Chronic Health Evaluation II score with clinical outcome in patients with acute respiratory distress syndrome. Indian J. Crit. Care Med. 2016, 20, 518–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amat, M.; Barcons, M.; Mancebo, J.; Mateo, J.; Oliver, A.; Mayoral, J.-F.; Boj, J.F.; Vila, L. Evolution of leukotriene B4, peptide leukotrienes, and interleukin-8 plasma concentrations in patients at risk of acute respiratory distress syndrome and with acute respiratory distress syndrome: Mortality prognostic study. Crit. Care Med. 2000, 28, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, S.C.; Strieter, R.M.; Reid, P.T.; Kunkel, S.L.; Burdick, M.D.; Armstrong, I.; MacKenzie, A.; Haslett, C. The Association between Mortality Rates and Decreased Concentrations of Interleukin-10 and Interleukin-1 Receptor Antagonist in the Lung Fluids of Patients with the Adult Respiratory Distress Syndrome. Ann. Intern. Med. 1996, 125, 191. [Google Scholar] [CrossRef]
- Parsons, P.E.; Eisner, M.D.; Thompson, B.T.; Matthay, M.A.; Ancukiewicz, M.; Bernard, G.R.; Wheeler, A.P. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury*. Crit. Care Med. 2005, 33, 1–6. [Google Scholar] [CrossRef]
- Samanta, J.; Singh, S.; Arora, S.; Muktesh, G.; Aggarwal, A.; Dhaka, N.; Sinha, S.K.; Gupta, V.; Sharma, V.; Kochhar, R. Cytokine profile in prediction of acute lung injury in patients with acute pancreatitis. Pancreatology 2018, 18, 878–884. [Google Scholar] [CrossRef]
- Jensen, J.U.; Lundgren, B.; Hein, L.; Mohr, T.; Petersen, P.L.; Andersen, L.H.; Lauritsen, A.Ø.; Hougaard, S.; Mantoni, T.; Bømler, B.; et al. The Procalcitonin And Survival Study (PASS)—A randomised multi-center investigator-initiated trial to investigate whether daily measurements biomarker Procalcitonin and pro-active diagnostic and therapeutic responses to abnormal Procalcitonin levels, can improve survival in intensive care unit patients. Calculated sample size (target population): 1000 patients. BMC Infect. Dis. 2008, 8, 91. [Google Scholar]
- Jensen, J.U.S.; Hein, L.; Lundgren, B.; Bestle, M.H.; Mohr, T.; Andersen, M.H.; Thornberg, K.; Løken, J.; Steensen, M.; Fox, Z.; et al. Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: A randomized trial*. Crit. Care Med. 2011, 39, 2048–2058. [Google Scholar] [CrossRef]
- Jensen, J.-U.S.; Hein, L.; Lundgren, B.; Bestle, M.H.; Mohr, T.; Andersen, M.H.; Thornberg, K.J.; Løken, J.; Steensen, M.; Fox, Z.; et al. Kidney failure related to broad-spectrum antibiotics in critically ill patients: Secondary end point results from a 1200 patient randomised trial. BMJ Open 2012, 2, e000635. [Google Scholar] [CrossRef]
- Jensen, J.U.; Hein, L.; Lundgren, B.; Bestle, M.H.; Mohr, T.; Andersen, M.H.; Løken, J.; Tousi, H.; Søe-Jensen, P.; Lauritsen, A.Ø.; et al. Invasive Candida infections and the harm from antibacterial drugs in critically ill patients: Data from a randomized, controlled trial to determine the role of ciprofloxacin, piperacillin-tazobactam, meropenem, and cefuroxime. Crit Care Med. 2015, 43, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Johansen, M.E.; Jensen, J.-U.; Bestle, M.H.; Hein, L.; Lauritsen, A.Ø.; Tousi, H.; Larsen, K.M.; Løken, J.; Mohr, T.; Thormar, K.; et al. The Potential of Antimicrobials to Induce Thrombocytopenia in Critically Ill Patients: Data from a Randomized Controlled Trial. PLoS ONE 2013, 8, e81477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corti, C.; Fally, M.; Fabricius-Bjerre, A.; Mortensen, K.; Jensen, B.N.; Andreassen, H.F.; Porsbjerg, C.; Knudsen, J.D.; Jensen, J.-U. Point-of-care procalcitonin test to reduce antibiotic exposure in patients hospitalized with acute exacerbation of COPD. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 1381–1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Meier, M.; Branche, A.; Neeser, O.L.; Wirz, Y.; Haubitz, S.; Bouadma, L.; Wolff, M.; E Luyt, C.; Chastre, J.; Tubach, F.; et al. Procalcitonin-guided Antibiotic Treatment in Patients With Positive Blood Cultures: A Patient-level Meta-analysis of Randomized Trials. Clin. Infect. Dis. 2018, 69, 388–396. [Google Scholar] [CrossRef]
- De Jong, E.; van Oers, J.A.; Beishuizen, A.; Vos, P.; Vermeijden, W.J.; Haas, L.E.; Loef, B.G.; Dormans, T.; van Melsen, G.C.; Kluiters, Y.C.; et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: A randomised, controlled, open-label trial. Lancet Infect. Dis. 2016, 16, 819–827. [Google Scholar] [CrossRef]
- Schuetz, P.; Wirz, Y.; Sager, R.; Christ-Crain, M.; Stolz, D.; Tamm, M.; Bouadma, L.; E Luyt, C.; Wolff, M.; Chastre, J.; et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: A patient level meta-analysis. Lancet Infect. Dis. 2018, 18, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Hoeboer, S.H.; Straaten, H.M.O.-V.; Groeneveld, A.B.J. Albumin rather than C-reactive protein may be valuable in predicting and monitoring the severity and course of acute respiratory distress syndrome in critically ill patients with or at risk for the syndrome after new onset fever. BMC Pulm. Med. 2015, 15, 1–13. [Google Scholar] [CrossRef]
- Bajwa, E.K.; Khan, U.A.; Januzzi, J.L.; Gong, M.N.; Thompson, B.T.; Christiani, D.C. Plasma C-Reactive Protein Levels Are Associated With Improved Outcome in ARDS. Chest 2009, 136, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Abdulnour, R.-E.E.; Gunderson, T.; Barkas, I.; Timmons, J.Y.; Barnig, C.; Gong, M.; Kor, D.J.; Gajic, O.O.; Talmor, D.; Carter, R.; et al. Early Intravascular Events Are Associated with Development of Acute Respiratory Distress Syndrome. A Substudy of the LIPS-A Clinical Trial. Am. J. Respir. Crit. Care Med. 2018, 197, 1575–1585. [Google Scholar] [CrossRef]
- Song, H.; Zhou, Y.; Li, G.; Bai, J. Regulatory T Cells Contribute to the Recovery of Acute Lung Injury by Upregulating Tim-3. Inflammation 2014, 38, 1267–1272. [Google Scholar] [CrossRef]
- Burnham, E.L.; Mealer, M.; Gaydos, J.; Majka, S.; Moss, M. Acute Lung Injury but Not Sepsis Is Associated with Increased Colony Formation by Peripheral Blood Mononuclear Cells. Am. J. Respir. Cell Mol. Biol. 2010, 43, 326–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Ai, X.; Ni, Y.; Ye, Z.; Liang, Z. The Association Between the Neutrophil-to-Lymphocyte Ratio and Mortality in Patients With Acute Respiratory Distress Syndrome: A Retrospective Cohort Study. Shock 2019, 51, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Li, J.-B.; Liang, H.; Wang, Z.-Y.; Jiao, T.-T.; Liu, Z.; Yi, L.; Bian, W.-S.; Wang, S.; Zhu, X.; et al. Predictive model for acute respiratory distress syndrome events in ICU patients in China using machine learning algorithms: A secondary analysis of a cohort study. J. Transl. Med. 2019, 17, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, P.; Delucchi, K.L.; McAuley, D.F.; O’Kane, C.M.; Matthay, M.A.; Calfee, C.S. Development and validation of parsimonious algorithms to classify acute respiratory distress syndrome phenotypes: A secondary analysis of randomised controlled trials. Lancet Respir. Med. 2020, 8, 247–257. [Google Scholar] [CrossRef]
BERLIN CRITERIA | |
---|---|
TIMING | Within 1 week of a known clinical insult or new or worsening respiratory symptoms |
OXYGENATION | Mild: PaO2/FiO2 > 200 mmHg but ≤ 300 mmHg Moderate: PaO2/FiO2 > 100 mmHg but ≤ 200 mmHg Severe: PaO2/FiO2 ≤ 100 mmHg |
PEEP REQUIREMENT | Minimum 5 cm H2O PEEP required by invasive mechanical ventilation (noninvasive acceptable for mild ARDS) |
CHEST IMAGING | Bilateral opacities not fully explained by effusions, lobar/lung collapse or nodules by chest radiograph or CT |
ORIGIN OF OEDEMA | Respiratory failure not fully explained by cardiac failure or fluid overload (need objective assessment, such as echocardiography, to exclude hydrostatic oedema if no risk factor present) |
Pathophysiological Entity for Biomarker | Biomarker | Clinical Use Potential |
---|---|---|
Alveolar and bronchiolar damage | Surfactant Protein D (SP-D) | Diagnosis and risk stratification of lung diseasespecifically ARDS [11,12] |
Krebs von den Lungen-6 (KL-6) | Indication of alveolar injury in ARDS patients and prognostic biomarker [13,14,15,16,20] | |
Endothelial Damage | Gelsolin, actin scavenging protein | Prediction of respiratory outcome in mechanically ventilated patients [37] |
Syndecan-A | Prognosis for pre-existing respiratory failure [40] | |
Angiopoetin-2 (Ang-2) | Prediction severity and mortality in ARDS [61,62] | |
Soluble FMS-like tyrosin kinase 1 | Prediction of mortality [38] | |
Soluble VEGF-receptor | Prediction of mortality [38] | |
Von Willebrand factor (vWF) | Prediction of mortality in some ARDS patients [66] | |
Thrombomodulin (TM) | Possible indicator of mortality [39,40] Prediction of severity and complications in ARDS patients [41] | |
Protein C | Prediction of ARDS mortality [43,44] | |
Endocan | Unclear [45,46,47,48,49,50,51,52] | |
Plasminogen activator inhibitor- 1 (PAI) | Possible usefulness as biomarker in ARDS [30,41,42,53,54,55,56] | |
sRAGE | Prediction of ARDS mortality [7,26] Diagnosis of ARDS [12,25,35] | |
Treatment response | ||
Lung inflammation | Blood eosinophil count | Guidance and reduction of corticosteroid treatment and prediction of response [83,84,85,86] |
IL-1β | Possible prediction of sepsis and mortality in ARDS [88] | |
IL-6 | Prediction of ARDS development, severity and mortality [12,23,41,87,88,90,91] | |
IL-8 | Prediction of ARDS development [23,24,65,90] Prediction of severity and mortality in patients with lung injury [62,88,93] | |
IL-10 | Unclear role in ARDS prediction [95,96,97] | |
TNF-α | Associated with ARDS [87,92] Potential prediction of sepsis and mortality in ARDS [88] | |
Antibiotic reduction | Procalcitonin (PCT) | Reduction in use of antibiotics [106] |
Lung infection | C-reactive protein (CRP) | Possible role in predicting ARDS severity [107,108] |
White blood cells (WBC)MonocytesRegulatory T-cellsNeutrophil-to-lymphocyte ratio | No prediction of severity or mortality in ARDS [50] Prediction of ARDS [109] Associated with ARDS [110] Prediction of ARDS mortality [112] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivapalan, P.; Bonnesen, B.; Jensen, J.-U. Novel Perspectives Regarding the Pathology, Inflammation, and Biomarkers of Acute Respiratory Distress Syndrome. Int. J. Mol. Sci. 2021, 22, 205. https://doi.org/10.3390/ijms22010205
Sivapalan P, Bonnesen B, Jensen J-U. Novel Perspectives Regarding the Pathology, Inflammation, and Biomarkers of Acute Respiratory Distress Syndrome. International Journal of Molecular Sciences. 2021; 22(1):205. https://doi.org/10.3390/ijms22010205
Chicago/Turabian StyleSivapalan, Pradeesh, Barbara Bonnesen, and Jens-Ulrik Jensen. 2021. "Novel Perspectives Regarding the Pathology, Inflammation, and Biomarkers of Acute Respiratory Distress Syndrome" International Journal of Molecular Sciences 22, no. 1: 205. https://doi.org/10.3390/ijms22010205
APA StyleSivapalan, P., Bonnesen, B., & Jensen, J.-U. (2021). Novel Perspectives Regarding the Pathology, Inflammation, and Biomarkers of Acute Respiratory Distress Syndrome. International Journal of Molecular Sciences, 22(1), 205. https://doi.org/10.3390/ijms22010205