Infrared Comb Spectroscopy of Buffer-Gas-Cooled Molecules: Toward Absolute Frequency Metrology of Cold Acetylene
Abstract
:1. Introduction
2. Infrared Frequency Combs for Molecular Spectroscopy
2.1. Working Principle and Basic Properties
2.2. Spectral Coverage
2.3. OFC Stabilization and Absolute Frequency Metrology Schemes
2.4. Direct Frequency Comb Spectroscopy
2.5. Frequency Comb Assisted Spectroscopy
3. Buffer Gas Cooling
3.1. Typical Experimental Setup and Collision Mechanism
3.2. Molecular Beam Generation and Properties
- Effusive regime, : there are typically no collisions near the aperture, such that the beam properties are essentially a sampling of the thermal distribution inside in the cell.
- Partially hydrodynamic regime, : collisions near the aperture increase significantly in number, essentially in the forward direction (due to geometric constraints). Since the atomic velocity is much larger than the molecular one, the net effect is a boosting of the molecules in the forward direction. While generating a molecular beam with substantially different characteristics with respect to the thermal distribution inside the cell, the number of collisions is not yet so high as to make the outgoing flow fluid-like. Buffer gas beams typically operate in this regime, which is able to produce slower beams that contain more molecules.
- Supersonic or fully hydrodynamic regime, : the buffer or carrier gas begins to behave more like a fluid. The molecules of interest are entrained in the carrier gas which cools by adiabatic expansion from a high-pressure region into a vacuum. The initial thermal energy of the carrier gas is converted to forward kinetic energy, resulting in a fast-moving molecular beam.
4. Cavity-Enhanced Frequency Comb Spectroscopy of Buffer-Gas-Cooled Molecules
4.1. DFCS of Complex Molecules
4.2. FCAS of Acetylene
5. Conclusions and Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albert, S.; Albert, K.K.; Hollenstein, H.; Tanner, C.M.; Quack, M. Fundamentals of Rotation-Vibration Spectra. In Handbook of High-Resolution Spectroscopy; Quack, M., Merkt, F., Eds.; Wiley: Hoboken, NJ, USA, 2011; Volume 1, Chapter 3; pp. 117–173. [Google Scholar] [CrossRef]
- Vainio, M.; Halonen, L. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 4266–4294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maddaloni, P.; Bartalini, S.; Cancio, P.; De Rosa, M.; Mazzotti, D.; De Natale, P. Frontiers of molecular gas sensing. Riv. Nuovo Cim. 2017, 40, 135–197. [Google Scholar] [CrossRef]
- Jones, D.J.; Diddams, S.A.; Ranka, J.K.; Stentz, A.; Windeler, R.S.; Hall, J.H.; Cundiff, S.T. Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis. Science 2000, 288, 635–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udem, T.; Holzwarth, R.; Hänsch, T.W. Optical frequency metrology. Nature 2002, 416, 233–237. [Google Scholar] [CrossRef]
- Picqué, N.; Hänsch, T.W. Frequency comb spectroscopy. Nat. Photonics 2019, 13, 146–157. [Google Scholar] [CrossRef]
- Fortier, T.; Baumann, E. 20 Years of Developments in Optical Frequency Comb Technology and Applications. Commun. Phys. 2019, 2, 1–16. [Google Scholar] [CrossRef]
- Messer, J.K.; De Lucia, F.K. Measurement of pressure-broadening for the CO-He system at 4 K. Phys. Rev. Lett. 1984, 53, 2555–2558. [Google Scholar] [CrossRef]
- Maxwell, S.; Brahms, N.; DeCarvalho, R.; Glenn, D.; Helton, J.; Nguyen, S.; Patterson, D.; Petricka, J.; DeMille, D.; Doyle, J.M. High-Flux Beam Source for Cold, Slow Atoms or Molecules. Phys. Rev. Lett. 2005, 95, 173201. [Google Scholar] [CrossRef] [Green Version]
- Hutzler, N.; Lu, H.I.; Doyle, J. The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules. Chem. Rev. 2012, 112, 4803–4827. [Google Scholar] [CrossRef] [Green Version]
- Tarbutt, M.R. Laser cooling of molecules. Contemp. Phys. 2018, 59, 356–376. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Cundiff, S. Femtosecond Optical Frequency Comb: Principle, Operation, and Applications; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef] [Green Version]
- Maddaloni, P.; Cancio, P.; De Natale, P. Optical comb generators for laser frequency measurement. Meas. Sci. Technol. 2009, 20, 52001. [Google Scholar] [CrossRef]
- Peng, J.L.; Ahn, H.; Shu, R.H.; Chui, H.C.; Nicholson, J.W. Highly stable, frequency-controlled mode-locked erbium fiber laser comb. Appl. Phys. B Lasers Opt. 2007, 86, 49–53. [Google Scholar] [CrossRef]
- Gaeta, A.L.; Lipson, M.; Kippenberg, T.J. Photonic-chip-based frequency combs. Nat. Photonics 2019, 13, 158–169. [Google Scholar] [CrossRef]
- Ricciardi, I.; Mosca, S.; Parisi, M.; Leo, F.; Hansson, T.; Erkintalo, M.; Maddaloni, P.; De Natale, P.; Wabnitz, S.; De Rosa, M. Optical frequency combs in quadratically nonlinear resonators. Micromachines 2020, 11, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Xu, B.; Ishii, H.; Meng, F.; Nakajima, Y.; Matsushima, I.; Schibli, T.R.; Zhang, Z.; Minoshima, K. Low-noise 750 MHz spaced ytterbium fiber frequency combs. Opt. Lett. 2018, 43, 4136. [Google Scholar] [CrossRef]
- Droste, S.; Ycas, G.; Washburn, B.R.; Coddington, I.; Newbury, N.R. Optical Frequency Comb Generation based on Erbium Fiber Lasers. Nanophotonics 2016, 5, 196–213. [Google Scholar] [CrossRef] [Green Version]
- Xia, W.; Chen, X. Recent developments in fiber-based optical frequency comb and its applications. Meas. Sci. Technol. 2016, 27, 041001. [Google Scholar] [CrossRef] [Green Version]
- Kippenberg, T.J.; Gaeta, A.L.; Lipson, M.; Gorodetsky, M.L. Dissipative Kerr solitons in optical microresonators. Science 2018, 361, eaan8083. [Google Scholar] [CrossRef] [Green Version]
- Millot, G.; Pitois, S.; Yan, M.; Hovhannisyan, T.; Bendahmane, A.; Hänsch, T.W.; Picqué, N. Frequency-agile dual-comb spectroscopy. Nat. Photonics 2016, 10, 27–30. [Google Scholar] [CrossRef]
- Tolstik, N.; Sorokin, E.; Sorokina, I.T. Kerr-lens mode-locked Cr:ZnS laser. Opt. Lett. 2012, 38, 299–301. [Google Scholar] [CrossRef]
- Duval, S.; Bernier, M.; Fortin, V.; Genest, J.; Piché, M.; Vallée, R. Femtosecond fiber lasers reach the mid-infrared. Optica 2015, 2, 623. [Google Scholar] [CrossRef]
- Faist, J.; Villares, G.; Scalari, G.; Rösch, M.; Bonzon, C.; Hugi, A.; Beck, M. Quantum Cascade Laser Frequency Combs. Nanophotonics 2016, 5, 272–291. [Google Scholar] [CrossRef]
- Scalari, G.; Faist, J.; Picqué, N. On-chip mid-infrared and THz frequency combs for spectroscopy. Appl. Phys. Lett. 2019, 114, 150401. [Google Scholar] [CrossRef] [Green Version]
- Meng, B.; Singleton, M.; Shahmohammadi, M.; Kapsalidis, F.; Wang, R.; Beck, M.; Faist, J. Mid-Infrared Frequency Comb from a Ring Quantum Cascade Laser. Optica 2020, 7, 162. [Google Scholar] [CrossRef]
- Bagheri, M.; Frez, C.; Sterczewski, L.A.; Gruidin, I.; Fradet, M.; Vurgaftman, I.; Canedy, C.L.; Bewley, W.W.; Merritt, C.D.; Kim, C.S.; et al. Passively mode-locked interband cascade optical frequency combs. Sci. Rep. 2018, 8, 3322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, B.; Hillbrand, J.; Beiser, M.; Andrews, A.M.; Strasser, G.; Detz, H.; Schade, A.; Weih, R.; Höfling, S. Monolithic frequency comb platform based on interband cascade lasers and detectors. Optica 2019, 6, 890. [Google Scholar] [CrossRef]
- Maddaloni, P.; Malara, P.; Gagliardi, G.; De Natale, P. Mid-infrared fibre-based optical comb. New J. Phys. 2006, 8, 262. [Google Scholar] [CrossRef]
- Schliesser, A.; Picqué, N.; Hänsch, T.W. Mid-infrared frequency combs. Nat. Photonics 2012, 6, 440–449. [Google Scholar] [CrossRef] [Green Version]
- Foreman, S.M.; Marian, A.; Ye, J.; Petrukhin, E.A.; Gubin, M.A.; Mücke, O.D.; Wong, F.N.C.; Ippen, E.P.; Kärtner, F.X. Demonstration of a HeNe/CH4-based optical molecular clock. Opt. Lett. 2005, 30, 570. [Google Scholar] [CrossRef]
- Gambetta, A.; Ramponi, R.; Marangoni, M. Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator. Opt. Lett. 2008, 33, 2671–2673. [Google Scholar] [CrossRef]
- Maser, D.L.; Ycas, G.; Depetri, W.I.; Cruz, F.C.; Diddams, S.A. Coherent frequency combs for spectroscopy across the 3–5 μm region. Appl. Phys. B Lasers Opt. 2017, 123, 142. [Google Scholar] [CrossRef]
- Sobon, G.; Martynkien, T.; Mergo, P.; Rutkowski, L.; Foltynowicz, A. High-power frequency comb source tunable from 2.7 to 4.2 μm based on difference frequencygeneration pumped by an Yb-doped fiber laser. Opt. Lett. 2017, 42, 1748–1751. [Google Scholar] [CrossRef] [PubMed]
- Catanese, A.; Rutledge, J.; Silfies, M.; Li, X.; Timmers, H.; Kowligy, A.; Lind, A.; Diddams, S.; Allison, T. Mid-infrared frequency comb with 6.7 W average power based on difference frequency generation. Opt. Lett. 2020, 45, 1248–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foreman, S.M.; Jones, D.J.; Ye, J. Flexible and rapidly configurable femtosecond pulse generation in the mid-IR. Opt. Lett. 2003, 28, 370. [Google Scholar] [CrossRef]
- Gambetta, A.; Coluccelli, N.; Cassinerio, M.; Gatti, D.; Laporta, P.; Galzerano, G.; Marangoni, M. Milliwatt-level frequency combs in the 8-14 micron range via difference frequency generation from an Er:fiber oscillator. Opt. Lett. 2013, 38, 1155. [Google Scholar] [CrossRef]
- Churin, D.; Kieu, K.; Norwood, R.A.; Peyghambarian, N. Efficient frequency comb generation in the 9-μm region using compact fiber sources. IEEE Photonics Technol. Lett. 2014, 26, 2271–2274. [Google Scholar] [CrossRef]
- Lee, K.F.; Hensley, C.J.; Schunemann, P.G.; Fermann, M.E. Midinfrared frequency comb by difference frequency of erbium and thulium fiber lasers in orientation-patterned gallium phosphide. Opt. Express 2017, 25, 17411. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Torizuka, K.; Marandi, A.; Byer, R.L.; McCracken, R.A.; Zhang, Z.; Reid, D.T. Femtosecond optical parametric oscillator frequency combs. J. Opt. 2015, 17, 94010. [Google Scholar] [CrossRef] [Green Version]
- Adler, F.; Cossel, K.C.; Thorpe, M.J.; Hartl, I.; Fermann, M.E.; Ye, J. Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm. Opt. Lett. 2009, 34, 1330–1332. [Google Scholar] [CrossRef]
- Chaitanya Kumar, S.; Esteban-Martin, A.; Ideguchi, T.; Yan, M.; Holzner, S.; Hänsch, T.W.; Picqué, N.; Ebrahim-Zadeh, M. Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:Sapphire laser. Laser Photonics Rev. 2014, 8, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Smolski, V.O.; Yang, H.; Gorelov, S.D.; Schunemann, P.G.; Vodopyanov, K.L. Coherence properties of a 26–75 μm frequency comb produced as a subharmonic of a Tm-fiber laser. Opt. Lett. 2016, 41, 1388. [Google Scholar] [CrossRef] [PubMed]
- Heckl, O.H.; Bjork, B.J.; Winkler, G.; Bryan Changala, P.; Spaun, B.; Porat, G.; Bui, T.Q.; Lee, K.F.; Jiang, J.; Fermann, M.E.; et al. Three-photon absorption in optical parametric oscillators based on OP-GaAs. Opt. Lett. 2016, 41, 5405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metzger, B.; Pollard, B.; Rimke, I.; Büttner, E.; Raschke, M.B. Single-step sub-200 fs mid-infrared generation from an optical parametric oscillator synchronously pumped by an erbium fiber laser. Opt. Lett. 2016, 41, 4383. [Google Scholar] [CrossRef]
- Ru, Q.; Loparo, Z.E.; Zhang, X.; Crystal, S.; Vasu, S.; Schunemann, P.G.; Vodopyanov, K.L. Octave-wide gallium phosphide OPO centered at 3 μm and pumped by an Er-fiber laser. Opt. Lett. 2017, 42, 4756–4759. [Google Scholar] [CrossRef] [PubMed]
- Iwakuni, K.; Porat, G.; Bui, T.Q.; Bjork, B.J.; Schoun, S.B.; Heckl, O.H.; Fermann, M.E.; Ye, J. Phase-stabilized 100 mW frequency comb near 10 μm. Appl. Phys. B Lasers Opt. 2018, 124, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ru, Q.; Kawamori, T.; Schunemann, P.G.; Vasilyev, S.; Mirov, S.B.; Vodopyanov, K.L. Two-octave-wide (3–12 μm) mid-infrared frequency comb produced as an optical subharmonic in a nondispersive cavity. arXiv 2020, arXiv:2007.02496. [Google Scholar]
- Steinle, T.; Mörz, F.; Steinmann, A.; Giessen, H. Ultra-stable high average power femtosecond laser system tunable from 1.33 to 20 μm. Opt. Lett. 2016, 41, 4863. [Google Scholar] [CrossRef]
- Seidel, M.; Xiao, X.; Hussain, S.A.; Arisholm, G.; Hartung, A.; Zawilski, K.T.; Schunemann, P.G.; Habel, F.; Trubetskov, M.; Pervak, V. Multi-watt, multi-octave, mid-infrared femtosecond source. Sci. Adv. 2018, 4, eaaq1526. [Google Scholar] [CrossRef] [Green Version]
- Yasui, T.; Kabetani, Y.; Saneyoshi, E.; Yokoyama, S.; Araki, T. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy. Appl. Phys. Lett. 2006, 88, 241104. [Google Scholar] [CrossRef]
- Consolino, L.; Taschin, A.; Bartolini, P.; Bartalini, S.; Cancio, P.; Tredicucci, A.; Beere, H.E.; Ritchie, D.A.; Torre, R.; Vitiello, M.S.; et al. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers. Nat. Commun. 2012, 3, 1040. [Google Scholar] [CrossRef]
- Burghoff, D.; Kao, T.Y.; Han, N.; Chan, C.W.I.; Cai, X.; Yang, Y.; Hayton, D.J.; Gao, J.R.; Reno, J.L.; Hu, Q. Terahertz laser frequency combs. Nat. Photonics 2014, 8, 462–467. [Google Scholar] [CrossRef]
- Consolino, L.; Nafa, M.; Cappelli, F.; Garrasi, K.; Mezzapesa, F.P.; Li, L.; Davies, A.G.; Linfield, E.H.; Vitiello, M.S.; De Natale, P.; et al. Fully phase-stabilized quantum cascade laser frequency comb. Nat. Commun. 2019, 10, 2938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosch, M.; Beck, M.; Süess, M.J.; Bachmann, D.; Unterrainer, K.; Faist, J.; Scalari, G. Heterogeneous terahertz quantum cascade lasers exceeding 1.9 THz spectral bandwidth and featuring dual comb operation. Nanophotonics 2018, 7, 237–242. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, F.; Wu, D.; Slivken, S.; Razeghi, M. Room temperature terahertz semiconductor frequency comb. Nat. Commun. 2019, 10, 2403. [Google Scholar] [CrossRef] [PubMed]
- Coluccelli, N.; Cassinerio, M.; Gambetta, A.; Laporta, P.; Galzerano, G. Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator. Sci. Rep. 2015, 5, 16338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endo, M.; Shoji, T.D.; Schibli, T.R. Ultralow Noise Optical Frequency Combs. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–13. [Google Scholar] [CrossRef]
- Kowzan, G.; Charczun, D.; Cygan, A.; Trawiński, R.S.; Lisak, D.; Masłowski, P. Broadband Optical Cavity Mode Measurements at Hz-Level Precision With a Comb-Based VIPA Spectrometer. Sci. Rep. 2019, 9, 8206. [Google Scholar] [CrossRef]
- Hudson, D.D.; Holman, K.W.; Jones, R.J.; Cundiff, S.T.; Ye, J.; Jones, D.J. Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator. Opt. Lett. 2005, 30, 2948. [Google Scholar] [CrossRef]
- Iwakuni, K.; Inaba, H.; Nakajima, Y.; Kobayashi, T.; Hosaka, K.; Onae, A.; Hong, F.L. Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control. Opt. Express 2012, 20, 13769. [Google Scholar] [CrossRef]
- Torcheboeuf, N.; Buchs, G.; Kundermann, S.; Portuondo-Campa, E.; Bennès, J.; Lecomte, S. Repetition rate stabilization of an optical frequency comb based on solid-state laser technology with an intra-cavity electro-optic modulator. Opt. Express 2017, 25, 2215. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.C.; Mohr, C.; Bethge, J.; Suzuki, S.; Fermann, M.E.; Hartl, I.; Schibli, T.R. Stabilization of carrier-envelope phase with MHz bandwidth by an intra-cavity graphene electro-optic modulator. Adv. Solid-State Photonics 2012, 37, 3084–3086. [Google Scholar] [CrossRef]
- Hoffmann, M.; Schilt, S.; Südmeyer, T. CEO stabilization of a femtosecond laser using a SESAM as fast opto-optical modulator. Opt. Express 2013, 21, 30054. [Google Scholar] [CrossRef] [Green Version]
- Stone, J.A.; Patrick, E. Laser Frequency/Wavelength Calibration. J. Res. Natl. Inst. Stand. Technol. 2010, 115, 413–431. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.S.; Bi, Z.; Bartels, A.; Robertsson, L.; Zucco, M.; Windeler, R.S.; Wilpers, G.; Oates, C.; Hollberg, L.; Diddams, S.A. International comparisons of femtosecond laser frequency combs. IEEE Trans. Instrum. Meas. 2005, 54, 746–749. [Google Scholar] [CrossRef]
- Schibli, T.R.; Hartl, I.; Yost, D.C.; Martin, M.J.; Marcinkevǐius, A.; Fermann, M.E.; Ye, J. Optical frequency comb with submillihertz linewidth and more than 10 W average power. Nat. Photonics 2008, 2, 355–359. [Google Scholar] [CrossRef]
- Brochard, P.; Schilt, S.; Südmeyer, T. Ultra-low noise microwave generation with a free-running optical frequency comb transfer oscillator. Opt. Lett. 2018, 43, 4651. [Google Scholar] [CrossRef] [PubMed]
- Adler, F.; Thorpe, M.; Cossel, K.; Ye, J. Cavity-Enhanced Direct Frequency Comb Spectroscopy: Technology and Applications. Annu. Rev. Anal. Chem. 2010, 3, 175. [Google Scholar] [CrossRef] [Green Version]
- Diddams, S.A.; Hollberg, L.; Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 2007, 445, 627–630. [Google Scholar] [CrossRef]
- Nugent-Glandorf, L.; Neely, T.; Adler, F.; Fleisher, A.J.; Cossel, K.C.; Bjork, B.; Dinneen, T.; Ye, J.; Diddams, S.A. Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection. Opt. Lett. 2012, 37, 3285. [Google Scholar] [CrossRef] [Green Version]
- Mandon, J.; Guelachvili, G.; Picqué, N. Fourier transform spectroscopy with a laser frequency comb. Nat. Photonics 2009, 3, 99–102. [Google Scholar] [CrossRef]
- Maslowski, P.; Lee, K.F.; Johansson, A.C.; Khodabakhsh, A.; Kowzan, G.; Rutkowski, L.; Mills, A.A.; Mohr, C.; Jiang, J.; Fermann, M.E.; et al. Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs. Phys. Rev. A 2016, 93, 021802. [Google Scholar] [CrossRef] [Green Version]
- Keilmann, F.; Gohle, C.; Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 2004, 29, 1542–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasui, T.; Saneyoshi, E.; Araki, T. Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition. Appl. Phys. Lett. 2005, 87, 061101. [Google Scholar] [CrossRef] [Green Version]
- Coddington, I.; Newbury, N.; Swann, W. Dual-comb spectroscopy. Optica 2016, 3, 414. [Google Scholar] [CrossRef] [Green Version]
- Gohle, C.; Stein, B.; Schliesser, A.; Udem, T.; Hänsch, T.W. Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra. Phys. Rev. Lett. 2007, 99, 263902. [Google Scholar] [CrossRef] [Green Version]
- Grilli, R.; Méjean, G.; Abd Alrahman, C.; Ventrillard, I.; Kassi, S.; Romanini, D. Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise. Phys. Rev. A At. Mol. Opt. Phys. 2012, 85, 051804. [Google Scholar] [CrossRef]
- Bernhardt, B.; Ozawa, A.; Jacquet, P.; Jacquey, M.; Kobayashi, Y.; Udem, T.; Holzwarth, R.; Guelachvili, G.; Hänsch, T.W.; Picqué, N. Cavity-enhanced dual-comb spectroscopy. Nat. Photonics 2009, 4, 55–57. [Google Scholar] [CrossRef]
- Hoghooghi, N.; Wright, R.J.; Makowiecki, A.S.; Swann, W.C.; Waxman, E.M.; Coddington, I.; Rieker, G.B. Broadband coherent cavity-enhanced dual-comb spectroscopy. Optica 2019, 6, 28. [Google Scholar] [CrossRef]
- Sala, T.; Gatti, D.; Gambetta, A.; Coluccelli, N.; Galzerano, G.; Laporta, P.; Marangoni, M. Wide-bandwidth phase lock between a CW laser and a frequency comb based on a feed-forward configuration. Opt. Lett. 2012, 37, 2592. [Google Scholar] [CrossRef] [PubMed]
- Borri, S.; Insero, G.; Santambrogio, G.; Mazzotti, D.; Cappelli, F.; Galli, I.; Galzerano, G.; Marangoni, M.; Laporta, P.; Di Sarno, V.; et al. High-precision molecular spectroscopy in the mid-infrared using quantum cascade lasers. Appl. Phys. B Lasers Opt. 2019, 125, 18. [Google Scholar] [CrossRef]
- Marco, L.D.; Valtolina, G.; Matsuda, K.; Tobias, W.G.; Covey, J.P.; Ye, J. A degenerate Fermi gas of Polar Molecules. Science 2019, 856, 853–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van De Meerakker, S.Y.; Bethlem, H.L.; Vanhaecke, N.; Meijer, G. Manipulation and control of molecular beams. Chem. Rev. 2012, 112, 4828–4878. [Google Scholar] [CrossRef] [PubMed]
- Semeria, L.; Jansen, P.; Clausen, G.; Agner, J.A.; Schmutz, H.; Merkt, F. Molecular-beam resonance method with Zeeman-decelerated samples: Application to metastable helium molecules. Phys. Rev. A 2018, 98, 062518. [Google Scholar] [CrossRef] [Green Version]
- Zeppenfeld, M.; Englert, B.G.; Glöckner, R.; Prehn, A.; Mielenz, M.; Sommer, C.; Van Buuren, L.D.; Motsch, M.; Rempe, G. Sisyphus cooling of electrically trapped polyatomic molecules. Nature 2012, 491, 570–573. [Google Scholar] [CrossRef]
- Wu, X.; Gantner, T.; Koller, M.; Zeppenfeld, M.; Chervenkov, S.; Rempe, G. Slow Polar Molecules. arXiv 2017, arXiv:1710.05988v1. [Google Scholar]
- Reens, D.; Wu, H.; Langen, T.; Ye, J. Controlling spin flips of molecules in an electromagnetic trap. Phys. Rev. A 2017, 96, 063420. [Google Scholar] [CrossRef] [Green Version]
- DeCarvalho, R.; Doyle, J.M.; Friedrich, B.; Guillet, T.; Kim, J.; Patterson, D.; Weinstein, J.D. Buffer-gas loaded magnetic traps for atoms and molecules: A primer. Eur. Phys. J. D 1999, 7, 289–309. [Google Scholar] [CrossRef]
- Patterson, D.; Rasmussen, J.; Doyle, J. Intense atomic and molecular beams via neon buffer-gas cooling. New J. Phys. 2009, 11, 55018. [Google Scholar] [CrossRef]
- Hutzler, N.R.; Parsons, M.F.; Gurevich, Y.V.; Hess, P.W.; Petrik, E.; Spaun, B.; Vutha, A.C.; Demille, D.; Gabrielse, G.; Doyle, J.M. A cryogenic beam of refractory, chemically reactive molecules with expansion cooling. Phys. Chem. Chem. Phys. 2011, 13, 18976–18985. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Almond, J.R.; Trigatzis, M.A.; Devlin, J.A.; Fitch, N.J.; Sauer, B.E.; Tarbutt, M.R.; Hinds, E.A. Laser Cooled YbF Molecules for Measuring the Electron’s Electric Dipole Moment. Phys. Rev. Lett. 2018, 120, 123201. [Google Scholar] [CrossRef] [Green Version]
- Kozyryev, I.; Hutzler, N.R. Precision Measurement of Time-Reversal Symmetry Violation with Laser-Cooled Polyatomic Molecules. Phys. Rev. Lett. 2017, 119, 133002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norrgard, E.B.; Edwards, E.R.; McCarron, D.J.; Steinecker, M.H.; DeMille, D.; Alam, S.S.; Peck, S.K.; Wadia, N.S.; Hunter, L.R. Hyperfine structure of the B 3Π1 state and predictions of optical cycling behavior in the X → B transition of TlF. Phys. Rev. A 2017, 95, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Iwata, G.; McNally, R.; Zelevinsky, T. High-resolution optical spectroscopy with a buffer-gas-cooled beam of BaH molecules. Phys. Rev. A 2017, 96, 22509. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, R.; Scharwaechter, M.; Sixt, T.; Hofer, L.; Langen, T. Buffer-gas cooling, high-resolution spectroscopy, and optical cycling of barium monofluoride molecules. Phys. Rev. A 2020, 101, 013413. [Google Scholar] [CrossRef] [Green Version]
- Zinn, S.; Betz, T.; Medcraft, C.; Schnell, M. Structure determination of trans-cinnamaldehyde by broadband microwave spectroscopy. Phys. Chem. Chem. Phys. 2015, 17, 16080–16085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porterfield, J.P.; Westerfield, J.H.; Satterthwaite, L.; Patterson, D.; Changala, P.B.; Baraban, J.H.; McCarthy, M.C. Rotational Characterization of the Elusive gauche-Isoprene. J. Phys. Chem. Lett. 2019, 10, 1981–1985. [Google Scholar] [CrossRef] [PubMed]
- Kozyryev, I.; Baum, L.; Matsuda, K.; Augenbraun, B.L.; Anderegg, L.; Sedlack, A.P.; Doyle, J.M. Sisyphus Laser Cooling of a Polyatomic Molecule. Phys. Rev. Lett. 2017, 118, 173201. [Google Scholar] [CrossRef] [Green Version]
- McCarron, D.J.; Steinecker, M.H.; Zhu, Y.; Demille, D. Magnetic Trapping of an Ultracold Gas of Polar Molecules. Phys. Rev. Lett. 2018, 121, 13202. [Google Scholar] [CrossRef] [Green Version]
- Anderegg, L.; Augenbraun, B.; Bao, Y.; Burchesky, S.; Cheuk, L.; Ketterle, W.; Doyle, J. Laser cooling of optically trapped molecules. Nat. Phys. 2018, 14, 890. [Google Scholar] [CrossRef] [Green Version]
- Collopy, A.L.; Ding, S.; Wu, Y.; Finneran, I.A.; Anderegg, L.; Augenbraun, B.L.; Doyle, J.M.; Ye, J. 3D Magneto-Optical Trap of Yttrium Monoxide. Phys. Rev. Lett. 2018, 121, 213201. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; Wu, Y.; Finneran, I.A.; Burau, J.J.; Ye, J. Sub-Doppler Cooling and Compressed Trapping of YO Molecules at K Temperatures. Phys. Rev. X 2020, 10, 21049. [Google Scholar] [CrossRef]
- Cournol, A.; Manceau, M.; Pierens, M.; Lecordier, L.; Tran, D.B.A.; Santagata, R.; Argence, B.; Goncharov, A.; Lopez, O.; Abgrall, M.; et al. A new experiment to test parity symmetry in cold chiral molecules using vibrational spectroscopy. Quantum Electron. 2019, 49, 288–292. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Ossenbrüggen, T.; Rubinsky, I.; Schust, M.; Horke, D.A.; Küpper, J. Development and Characterization of a Laser-Induced Acoustic Desorption Source. Anal. Chem. 2018, 90, 3920–3927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozyryev, I.; Baum, L.; Matsuda, K.; Olson, P.; Hemmerling, B.; Doyle, J.M. Collisional relaxation of vibrational states of SrOH with He at 2 K. New J. Phys. 2015, 17, 045003. [Google Scholar] [CrossRef]
- Au, Y.S.; Connolly, C.B.; Ketterle, W.; Doyle, J.M. Vibrational quenching of the electronic ground state in ThO in cold collisions with He 3. Phys. Rev. A 2014, 90, 032703. [Google Scholar] [CrossRef] [Green Version]
- Patterson, D.; Doyle, J. Bright, guided molecular beam with hydrodynamic enhancement. J. Chem. Phys. 2007, 126, 154307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, V.; Samanta, A.K.; Roth, N.; Gusa, D.; Ossenbrüggen, T.; Rubinsky, I.; Horke, D.A.; Küpper, J. Optimized cell geometry for buffer-gas-cooled molecular-beam sources. Phys. Rev. A 2018, 97, 32704. [Google Scholar] [CrossRef] [Green Version]
- Gantner, T.; Koller, M.; Wu, X.; Rempe, G.; Zeppenfeld, M. Buffer-gas cooling of molecules in the low-density regime: Comparison between simulation and experiment. J. Phys. B At. Mol. Opt. Phys. 2020, 53. [Google Scholar] [CrossRef] [Green Version]
- Spaun, B.; Changala, P.B.; Patterson, D.; Bjork, B.J.; Heckl, O.H.; Doyle, J.M.; Ye, J. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature 2016, 533, 517–520. [Google Scholar] [CrossRef] [Green Version]
- Changala, P.B.; Spaun, B.; Patterson, D.; Doyle, J.M.; Ye, J. Sensitivity and resolution in frequency comb spectroscopy of buffer gas cooled polyatomic molecules. Appl. Phys. B Lasers Opt. 2016, 122, 1–11. [Google Scholar] [CrossRef]
- Changala, P.; Weichman, M.; Lee, K.; Fermann, M.; Ye, J. Rovibrational quantum state resolution of the C60 fullerene. Science 2019, 363, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santamaria, L.; Di Sarno, V.; De Natale, P.; De Rosa, M.; Inguscio, M.; Mosca, S.; Ricciardi, I.; Calonico, D.; Levi, F.; Maddaloni, P. Comb-assisted cavity ring-down spectroscopy of a buffer-gas-cooled molecular beam. Phys. Chem. Chem. Phys. 2016, 18, 16715. [Google Scholar] [CrossRef] [PubMed]
- Di Sarno, V.; Aiello, R.; De Rosa, M.; Ricciardi, I.; Mosca, S.; Notariale, G.; De Natale, P.; Santamaria, L.; Maddaloni, P. Lamb-dip spectroscopy of buffer-gas-cooled molecules. Optica 2019, 6, 436. [Google Scholar] [CrossRef]
- Giusfredi, G.; Galli, I.; Mazzotti, D.; Cancio, P.; De Natale, P. Theory of saturated-absorption cavity ring-down: Radiocarbon dioxide detection, a case study. J. Opt. Soc. Am. B 2015, 32, 2223. [Google Scholar] [CrossRef]
- Tokunaga, S.; Hendricks, R.; Tarbut, M.; Darquié, B. High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules. New J. Phys. 2017, 19, 53006. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Ma, L.S.; Hall, J.L. Ultrasensitive detections in atomic and molecular physics: Demonstration in molecular overtone spectroscopy. J. Opt. Soc. Am. B 1998, 15, 6. [Google Scholar] [CrossRef] [Green Version]
- Foltynowicz, A.; Schmidt, F.M.; Ma, W.; Axner, O. Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential. Appl. Phys. B Lasers Opt. 2008, 92, 313–326. [Google Scholar] [CrossRef]
- Hua, T.P.; Sun, Y.R.; Wang, J.; Liu, A.W.; Hu, S.M. Frequency metrology of molecules in the near-infrared by NICE-OHMS. Opt. Express 2019, 27, 6106. [Google Scholar] [CrossRef] [Green Version]
- Burkart, J.; Kassi, S. Absorption line metrology by optical feedback frequency-stabilized cavity ring-down spectroscopy. Appl. Phys. B Lasers Opt. 2015, 119, 97–109. [Google Scholar] [CrossRef]
- Shelkovnikov, A.; Butcher, R.; Chardonnet, C.; Amy-Klein, A. Stability of the Proton-to-Electron Mass Ratio. Phys. Rev. Lett. 2008, 100, 150801. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.S.; Jungner, P.; Ye, J.; Hall, J.L. Delivering the same optical frequency at two places: Accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett. 1994, 19, 1777. [Google Scholar] [CrossRef] [PubMed]
- Coddington, I.; Swann, W.C.; Lorini, L.; Bergquist, J.C.; Le Coq, Y.; Oates, C.W.; Quraishi, Q.; Feder, K.S.; Nicholson, J.W.; Westbrook, P.S.; et al. Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter. Nat. Photonics 2007, 1, 283–287. [Google Scholar] [CrossRef]
- Predehl, K.; Grosche, G.; Raupach, S.M.; Droste, S.; Terra, O.; Alnis, J.; Legero, T.; Hänsch, T.W.; Udem, T.; Holzwarth, R.; et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science 2012, 336, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Clivati, C.; Aiello, R.; Bianco, G.; Bortolotti, C.; De Natale, P.; Di Sarno, V.; Maddaloni, P.; Maccaferri, G.; Mura, A.; Negusini, M.; et al. Common-clock very long baseline interferometry using a coherent optical fiber link. Optica 2020, 7, 1031. [Google Scholar] [CrossRef]
- Safronova, M.; Budker, D.; DeMille, D.; Jackson Kimball, D.; Derevianko, A.; Clark, C. Search for new physics with atoms and molecules. Rev. Mod. Phys. 2018, 90, 25008. [Google Scholar] [CrossRef] [Green Version]
- Salumbides, E.J.; Koelemeij, J.C.; Komasa, J.; Pachucki, K.; Eikema, K.S.; Ubachs, W. Bounds on fifth forces from precision measurements on molecules. Phys. Rev. D Part. Fields Gravit. Cosmol. 2013, 87, 112008. [Google Scholar] [CrossRef] [Green Version]
- Panda, C.D.; Meisenhelder, C.; Verma, M.; Ang, D.G.; Chow, J.; Lasner, Z.; Wu, X.; Demille, D.; Doyle, J.M.; Gabrielse, G. Attaining the shot-noise-limit in the ACME measurement of the electron electric dipole moment. J. Phys. B At. Mol. Opt. Phys. 2019, 52, 235003. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Pašteka, L.F.; Visscher, L.; Aggarwal, P.; Bethlem, H.L.; Boeschoten, A.; Borschevsky, A.; Denis, M.; Esajas, K.; Hoekstra, S.; et al. High accuracy theoretical investigations of CaF, SrF, and BaF and implications for laser-cooling. J. Chem. Phys. 2019, 151, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, P.; Bethlem, H.L.; Borschevsky, A.; Denis, M.; Esajas, K.; Haase, P.A.; Hao, Y.; Hoekstra, S.; Jungmann, K.; Meijknecht, T.B.; et al. Measuring the electric dipole moment of the electron in BaF. Eur. Phys. J. D 2018, 72, 1–10. [Google Scholar] [CrossRef]
- Wu, X.; Han, Z.; Chow, J.; Ang, D.G.; Meisenhelder, C.; Panda, C.D.; West, E.P.; Gabrielse, G.; Doyle, J.M.; Demille, D. The metastable Q 3Δ2 state of ThO: A new resource for the ACME electron EDM search. New J. Phys. 2020, 22, 023013. [Google Scholar] [CrossRef]
- Santamaria, L.; Di Sarno, V.; Ricciardi, I.; Mosca, S.; De Rosa, M.; Santambrogio, G.; Maddaloni, P.; De Natale, P. Assessing the time constancy of the proton-to-electron mass ratio by precision ro-vibrational spectroscopy of a cold molecular beam. J. Mol. Spectrosc. 2014, 300, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Patra, S.; Germann, M.; Karr, J.P.; Haidar, M.; Hilico, L.; Korobov, V.I.; Cozijn, F.M.; Eikema, K.S.; Ubachs, W.; Koelemeij, J.C. Proton-electron mass ratio from laser spectroscopy of HD+ at the part-per-trillion level. Science 2020, 369, 1238–1241. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.; Hermann, V.; Trivikram, T.M.; Diouf, M.; Schlösser, M.; Ubachs, W.; Salumbides, E.J. Precision measurement of the fundamental vibrational frequencies of tritium-bearing hydrogen molecules: T2, DT, HT. Phys. Chem. Chem. Phys. 2020, 22, 8973–8987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaborowski, M.; Słowiński, M.; Stankiewicz, K.; Thibault, F.; Cygan, A.; Jóźwiak, H.; Kowzan, G.; Masłowski, P.; Nishiyama, A.; Stolarczyk, N.; et al. Ultrahigh finesse cavity-enhanced spectroscopy for accurate tests of quantum electrodynamics for molecules. Opt. Lett. 2020, 45, 1603. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santamaria, L.; Di Sarno, V.; Aiello, R.; De Rosa, M.; Ricciardi, I.; De Natale, P.; Maddaloni, P. Infrared Comb Spectroscopy of Buffer-Gas-Cooled Molecules: Toward Absolute Frequency Metrology of Cold Acetylene. Int. J. Mol. Sci. 2021, 22, 250. https://doi.org/10.3390/ijms22010250
Santamaria L, Di Sarno V, Aiello R, De Rosa M, Ricciardi I, De Natale P, Maddaloni P. Infrared Comb Spectroscopy of Buffer-Gas-Cooled Molecules: Toward Absolute Frequency Metrology of Cold Acetylene. International Journal of Molecular Sciences. 2021; 22(1):250. https://doi.org/10.3390/ijms22010250
Chicago/Turabian StyleSantamaria, Luigi, Valentina Di Sarno, Roberto Aiello, Maurizio De Rosa, Iolanda Ricciardi, Paolo De Natale, and Pasquale Maddaloni. 2021. "Infrared Comb Spectroscopy of Buffer-Gas-Cooled Molecules: Toward Absolute Frequency Metrology of Cold Acetylene" International Journal of Molecular Sciences 22, no. 1: 250. https://doi.org/10.3390/ijms22010250
APA StyleSantamaria, L., Di Sarno, V., Aiello, R., De Rosa, M., Ricciardi, I., De Natale, P., & Maddaloni, P. (2021). Infrared Comb Spectroscopy of Buffer-Gas-Cooled Molecules: Toward Absolute Frequency Metrology of Cold Acetylene. International Journal of Molecular Sciences, 22(1), 250. https://doi.org/10.3390/ijms22010250