The Role of Haptoglobin Polymorphism in Cardiovascular Disease in the Setting of Diabetes
Abstract
1. Introduction
2. Studies Assessing CVD in Relation to the Haptoglobin Genotype
3. Mechanism by Which the Hp Genotype May Impact the Risk of CVD
4. Vitamin E Treatment Provides Protection against CVD in DM Patients with the Hp2-2 Genotype
5. Strict Glycemic Control in Patients with the Hp2-2 Genotype Provides CV Benefit
6. Limitations and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Hp | Haptoglobin |
Hb | Hemoglobin |
DM | Diabetes Mellitus |
CVD | Cardiovascular Disease |
ACCORD | Trial Action to Control Cardiovascular Risk in Diabetes Trial |
VADT | Trial Veterans Affairs Diabetes Trial |
ADVANCE | Trial Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation Trial |
References
- Leon, B.M.; Maddox, T.M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes 2015, 6, 1246–1258. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, N.; Gao, P.; Seshasai, S.R.; Gobin, R.; Kaptoge, S.; Di Angelantonio, E.; Stampfer, M.; Stehouwer, C.D.; Lewington, S.; Pennells, L.; et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375, 2215–2222. [Google Scholar] [PubMed]
- Hochberg, I.; Berinstein, E.M.; Milman, U.; Shapira, C.; Levy, A.P. Interaction between the haptoglobin genotype and vitamin E on cardiovascular disease in diabetes. Curr. Diab. Rep. 2017, 17, 42. [Google Scholar] [CrossRef] [PubMed]
- Virtamo, J.; Rapola, J.M.; Ripatti, S.; Heinonen, O.P.; Taylor, P.R.; Albanes, D.; Huttunen, J.K. Effect of vitamin E and beta carotene on the incidence of primary nonfatal myocardial infarction and fatal coronary heart disease. Arch. Intern. Med. 1998, 158, 668–675. [Google Scholar] [CrossRef]
- Patel, A.; MacMahon, S.; Chalmers, J.; Neal, B.; Billot, L.; Woodward, M.; Marre, M.; Cooper, M.; Glasziou, P.; Grobbee, D.; et al. ADVANCE collaborative group. intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2008, 358, 2560–2572. [Google Scholar]
- Carew, A.S.; Levy, A.P.; Ginsberg, H.N.; Coca, S.; Lache, O.; Ransom, T.; Byington, R.; Rimm, E.; Sapp, J.; Gardner, M.; et al. Haptoglobin phenotype modifies the influence of intensive glycemic control on cardiovascular outcomes. J. Am. Coll. Cardiol. 2020, 75, 512–521. [Google Scholar] [CrossRef]
- Livny, A.; Schnaider Beeri, M.; Heymann, A.; Moshier, E.; Berman, Y.; Mamistalov, M.; Shahar, D.R.; Tsarfaty, G.; Leroith, D.; Preiss, R.; et al. Vitamin E intake is associated with lower brain volume in haptoglobin 1-1 elderly with type 2 diabetes. J. Alzheimer’s Dis. 2020, 74, 649–658. [Google Scholar] [CrossRef]
- Bale, B.F.; Doneen, A.L.; Vigerust, D.J. Precision healthcare of type 2 diabetic patients through implementation of haptoglobin genotyping. Front. Cardiovasc. Med. 2018, 5, 141. [Google Scholar] [CrossRef]
- Gurung, R.L.; Yiamunaa, M.; Liu, S.; Liu, J.J.; Chan, C.; Choo, R.W.M.; Ang, K.; Sum, C.F.; Tavintharan, S.; Lim, S.C. Association of haptoglobin phenotype with incident acute myocardial infarction in Chinese patients with type 2 diabetes. Cardiovasc. Diabetol. 2019, 18, 65. [Google Scholar] [CrossRef]
- Kazmi, N.; Koda, Y.; Ndiaye, N.C.; Visvikis-Siest, S.; Morton, M.J.; Gaunt, T.R.; Galea, I. Genetic determinants of circulating haptoglobin concentration. Clin. Chim. Acta 2019, 494, 138–142. [Google Scholar] [CrossRef]
- MacKellar, M.; Vigerust, D.J. Role of haptoglobin in health and disease: A focus on diabetes. Clin. Diabetes 2016, 34, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Langlois, M.R.; Delanghe, J.R. Biological and clinical significance of haptoglobin polymorphism in humans. Clin. Chem. 1996, 42, 1589–1600. [Google Scholar] [CrossRef] [PubMed]
- Asleh, R.; Briasoulis, A.; Berinstein, E.M.; Wiener, J.B.; Palla, M.; Kushwaha, S.S.; Levy, A.P. Meta-analysis of the association of the haptoglobin genotype with cardiovascular outcomes and the pharmacogenomic interactions with vitamin E supplementation. Pharmgenomics Pers. Med. 2018, 11, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Sleight, P. The HOPE Study (Heart Outcomes Prevention Evaluation). J. Renin. Angiotensin Aldosterone Syst. 2000, 1, 18–20. [Google Scholar] [CrossRef]
- Yusuf, S.; Dagenais, G.; Pogue, J.; Bosch, J.; Sleight, P. Vitamin E supplementation and cardiovascular events in high-risk patients. N. Engl. J. Med. 2000, 20, 154–160. [Google Scholar]
- Lee, E.T.; Welty, T.K.; Fabsitz, R.; Cowan, L.D.; Le, N.A.; Oopik, A.J.; Cucchiara, A.J.; Savage, P.J.; Howard, B.V. The Strong Heart Study. A study of cardiovascular disease in American Indians: Design and methods. Am. J. Epidemiol. 1990, 132, 1141–1155. [Google Scholar] [CrossRef]
- Roguin, A.; Koch, W.; Kastrati, A.; Arason, D.; Schomig, A.; Levy, A.P. Haptoglobin genotype is predictive of major adverse cardiac events in the 1-year period after percutaneous transluminal coronary angioplasty in individuals with diabetes. Diabetes Care 2003, 26, 2628–2631. [Google Scholar] [CrossRef]
- Kiechl, S.; Willeit, J. In a nutshell: Findings from the Bruneck study. Gerontology 2019, 65, 9–19. [Google Scholar] [CrossRef]
- Prince, C.T.; Becker, D.J.; Costacou, T.; Miller, R.G.; Orchard, T.J. Changes in glycaemic control and risk of coronary artery disease in type 1 diabetes mellitus: Findings from the Pittsburgh Epidemiology of diabetes complications study (EDC). Diabetologia 2007, 50, 2280–2288. [Google Scholar] [CrossRef]
- Lee, I.; Cook, N.R.; Gaziano, J.M.; Gordon, D.; Ridker, P.M.; Manson, J.E.; Hennekens, C.H.; Buring, J.E. Vitamin E in the primary prevention of cardiovascular disease and cancer. The Women’s Health Study: A Randomized Controlled Trial. JAMA 2005, 294, 56–65. [Google Scholar] [CrossRef]
- McKimmie, R.L.; Daniel, K.R.; Carr, J.J.; Bowden, D.W.; Freedman, B.I.; Register, T.C.; Hsu, F.C.; Lohman, K.K.; Weinberg, R.B.; Wagenknecht, L.E. Hepatic steatosis and subclinical cardiovascular disease in a cohort enriched for type 2 diabetes: The Diabetes Heart Study. Am. J. Gastroenterol. 2008, 103, 3029–3035. [Google Scholar] [CrossRef] [PubMed]
- Nathan, D.M. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: Overview. Diabetes Care 2014, 37, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Eckel, N.; Li, Y.; Kuxhaus, O.; Stefan, N.; Hu, F.B.; Schulze, M.B. Transition from metabolic healthy to unhealthy phenotypes and association with cardiovascular disease risk across BMI categories in 90,257 women (the Nurses’ Health Study): 30-year follow-up from a prospective cohort study. Lancet Diabetes Endocrinol. 2018, 6, 714–724. [Google Scholar] [CrossRef]
- Jean-Philippe, D.C.; Chen, S.; Li, Y.; Schwab, A.L.; Meir, J.S.; Sacks, F.M.; Rosner, B.; Willett, W.C.; Hu, F.B.; Bhupathiraju, S.N. Egg consumption and risk of cardiovascular disease: Three large prospective US cohort studies, systematic review, and updated meta-analysis. BMJ 2020, 368, m513. [Google Scholar]
- Seferović, J.P.; Ašanin, M.; Seferović, P.M. Haptoglobin and haptoglobin genotypes in diabetes: A silver bullet to identify the responders to antioxidant therapy? Eur. J. Prev. Cardiol. 2018, 25, 1498–1501. [Google Scholar] [CrossRef]
- Garton, T.; Keep, R.F.; Hua, Y.; Xi, G. CD163, a hemoglobin/haptoglobin scavenger receptor, after intracerebral hemorrhage: Functions in microglia/macrophages versus neurons. Transl. Stroke Res. 2017, 8, 612–616. [Google Scholar] [CrossRef]
- Asleh, R.; Blum, S.; Kalet-Litman, S.; Alshiek, J.; Miller-Lotan, R.; Asaf, R.; Rock, W.; Aviram, M.; Milman, U.; Shapira, C.; et al. Corrections of HDL dysfunction in individuals with diabetes and the haptoglobin 2-2 genotype. Diabetes 2008, 57, 2794–2800. [Google Scholar] [CrossRef]
- Levy, A.P.; Purushothamam, K.R.; Levy, N.S.; Purushothamam, M.; Strauss, M.; Asleh, R.; Marsh, S.; Cohen, O.; Moestrup, S.K.; Moller, H.J.; et al. Downregulation of the hemoglobin scavenger receptor in individuals with diabetes and the Hp 2-2 genotype: Implications for the response to intraplaque hemorrhage and plaque vulnerability. Circ. Res. 2007, 101, 106–110. [Google Scholar] [CrossRef]
- Asleh, R.; Levy, N.S.; Doros, G.; Costacou, T.; Robinson, J.G.; Blum, S.; Goldenstein, H.; Boden, W.E.; Simmons, D.L.; Lacy, M.A.; et al. Haptoglobin genotype as a determinant of benefit or harm from niacin for participants with diabetes. J. Am. Coll. Cardiol. 2016, 67, 2553–2554. [Google Scholar] [CrossRef]
- Goldenstein, H.; Levy, N.S.; Ward, J.; Costacou, T.; Levy, A.P. Haptoglobin genotype is a determinant of hemoglobin adducts and vitamin E content in HDL. J. Diabetes Res. 2018. [Google Scholar] [CrossRef]
- Asleh, R.; Levy, A.P.; Levy, N.S.; Asleh, A.; Goldenstein, H.; Segol, I.; Gulati, R.; Lerman, L.O.; Lerman, A. Haptoglobin phenotype is associated with high-density lipoprotein-bound hemoglobin content and coronary endothelial dysfunction in patients with mild nonobstructive coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 774–786. [Google Scholar] [CrossRef] [PubMed]
- Dalan, R.; Goh, L.L. The protean role of haptoglobin and haptoglobin genotypes on vascular complications in diabetes mellitus. Eur. J. Prev. Cardiol. 2018, 25, 1502–1519. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.W.; Cheng, S.C.; Webb, A.; Ingold, K.U. Vitamin E in young and old human red blood cells. Biochim. Biophys. Acta 1986, 860, 84–90. [Google Scholar] [CrossRef]
- Dalan, R.; Goh, L.L.; Lim, C.J.; Seneviratna, A.; Liew, H.; Seow, C.J.; Xia, L.; Chew, D.E.; Leow, M.K.; Boehm, B.O. Impact of vitamin E supplementation on vascular function in haptoglobin genotype stratified diabetes patients (EVAS Trial): A randomised controlled trial. Nutr. Diabetes 2020, 10, 13. [Google Scholar] [CrossRef]
- Niki, E. Evidence for beneficial effects of vitamin E. Korean J. Intern. Med. 2015, 30, 571–579. [Google Scholar] [CrossRef]
- Patel, N.; Amin, P.; Shenoy, A. Is vitamin E supplementation effective in reducing mortality related to cardiovascular events in people with type 2 diabetes mellitus? A systematic review. IJC Metab. Endocr. 2016, 12, 42–45. [Google Scholar] [CrossRef][Green Version]
- Alshiek, J.A.; Dayan, L.; Asleh, R.; Blum, S.; Levy, A.P.; Jacob, G. Anti-oxidative treatment with vitamin E improves peripheral vascular function in patients with diabetes mellitus and Haptoglobin 2-2 genotype: A double-blinded cross-over study. Diabetes Res. Clin. Pract. 2017, 131, 200–207. [Google Scholar] [CrossRef]
- Miller, E.R.; Pastor-Barriuso, R.; Dalal, D.; Riemersma, R.A.; Appel, L.J.; Guallar, E. Meta-analysis: High dosage vitamin E supplementation may increase all-cause mortality. Ann. Intern. Med. 2005, 142, 37–46. [Google Scholar] [CrossRef]
- Vigerust, D. Clinical importance of haptoglobin testing in diabetes. Diabetes Manag. 2016, 6, 95–98. [Google Scholar]
- Levy, A.P.; Gerstein, H.C.; Miller-Lotan, R.; Ratner, R.; McQueen, M.; Lonn, E.; Pogue, J. The effect of vitamin E supplementation on cardiovascular risk in diabetic individuals with different haptoglobin phenotypes. Diabetes Care 2004, 27, 2767. [Google Scholar] [CrossRef]
- Milman, U.; Blum, S.; Shapira, C.; Aronson, D.; Miller-Lotan, R.; Anbinder, Y.; Alshiek, J.; Bennett, L.; Kostenko, M.; Laundau, M.; et al. Vitamin E supplementation reduces cardiovascular events in a subgroup of middle-aged individuals with both type 2 diabetes mellitus and the haptoglobin 2-2 genotype: A prospective double-blinded clinical trial. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Genuth, S.; Eastman, R.; Kahn, R.; Klein, R.; Lachin, J.; Lebovitz, H.; Nathan, D.; Vinicor, F. American Diabetes Association. Implications of the United Kingdom prospective diabetes study. Diabetes Care 2003, 26, s28–s32. [Google Scholar]
- Costacou, T.; Howard, B.V. Should the haptoglobin be considered in setting glycemic goals for diabetes patients? J. Am. Coll. Cardiol. 2020, 75, 522–524. [Google Scholar] [CrossRef] [PubMed]
- Skyler, S.; Bergenstal, R.; Bonow, R.O.; Buse, J.; Deedwania, P.; Gale, E.A.M.; Howard, B.V.; Kirkman, S.K.; Kosiborod, M.; Reaven, P.; et al. Intensive glycemic control and the prevention of cardiovascular events: Implications of the accord, advance, and va diabetes trials. Diabetes Care 2009, 32, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, H.C.; Miller, M.E.; Byington, R.P.; Goff, D.C., Jr.; Bigger, J.T.; Buse, J.B.; Cushman, W.C.; Genuth, S.; Ismail-Beigi, F.; Grimm, R.H., Jr.; et al. Action to control cardiovascular risk in diabetes study group. N. Engl. J. Med. 2008, 12, 2545–2559. [Google Scholar]
- Cahill, L.E.; Levy, A.P.; Chiuve, S.E.; Jensen, M.K.; Wang, H.; Shara, N.M.; Blum, S.; Howard, B.V.; Pai, J.K.; Mukamal, K.J.; et al. Haptoglobin genotype is a consistent marker of coronary heart disease risk among individuals with elevated glycosylated hemoglobin. J. Am. Coll. Cardiol. 2013, 61, 728–737. [Google Scholar] [CrossRef]
- Maeda, N. DNA polymorphisms in the controlling region of the human haptoglobin genes: A molecular explanation for the haptoglobin 2-1 modified phenotype. Am. J. Hum. Genet. 1991, 49, 158–166. [Google Scholar]
- Lorber, D. Importance of cardiovascular disease risk management in patients with type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes. 2014, 7, 169–183. [Google Scholar] [CrossRef]
Study | Sample Size | Outcomes | OR (95% CI) | |
---|---|---|---|---|
Hp2-2 | Hp1 Carrier | |||
HOPE Study | 91 | 187 | Myocardial infarction (MI), stroke, cardiovascular (CV) death, and all-cause death | 2.183 (1.223–3.896) |
SHS | 66 | 173 | MI and CV events | 2.507 (1.325–4.743) |
MUNICH post-PCA | 382 | 553 | Death, target vessel revascularization (TVR), MI, repeat percutaneous transcatheter coronary angioplasty (PTCA), and restenosis | 1.364 (1.022–1.821) |
ICARE study | 1434 | 1533 | CV death, all-cause death, TVR, MI, stoke, and heart failure | 1.714 (1.087–2.704) |
EDC Study | 214 | 239 | MI, revascularization, stenosis >50%, or death from coronary artery disease (CAD) | 1.542 (1.029–2.312) |
WHS | 277 | 444 | Nonfatal MI, nonfatal stroke, cardiovascular death, PTCA, or coronary artery bypass grafting (CABG) | 1.209 (0.776–1.884) |
DHS | 535 | 673 | CV mortality and all-cause mortality | 1.599 (1.060–2.413) |
DCCT/EDIC | 516 | 787 | CAD and MI | 1.244 (0.882–1.755) |
NHS | 26 | 44 | Nonfatal MI and fatal CHD | 4.000 (0.811–19.728) |
Bruneck Study | 387 | 419 | Incident fatal and nonfatal MI and stoke | 0.960 (0.654–1.410) |
HPFS | 38 | 50 | Nonfatal MI or fatal CHD | 1.253 (0.475–3.305) |
Overall | 3966 | 5102 | 1.44 (1.23–1.69) |
Strict Glycemic Control | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CHD | CVD | Fatal CVD | Total Mortality | |||||||||||||
Genotype | Hp1 Carrier | Hp2-2 | Hp1 Carrier | Hp2-2 | Hp1 Carrier | Hp2-2 | Hp1 Carrier | Hp2-2 | ||||||||
Treatment | Intensive Therapy | Standard Therapy | Intensive Therapy | Standard Therapy | Intensive Therapy | Standard Therapy | Intensive Therapy | Standard Therapy | Intensive Therapy | Standard Therapy | Intensive Therapy | Standard Therapy | Intensive Therapy | Standard Therapy | Intensive Therapy | Standard Therapy |
Percent of Participants with Events | 12.2% (n = 224) | 13.3% (n = 244) | 10.3% (n = 110) | 13.8% (n = 147) | 9.6% (n = 175) | 10.7% (n = 197) | 8.7% (n = 92) | 11.5% (n = 123) | 3.2% (n = 58) | 2.2% (n = 40) | 2.5% (n = 27) | 2.3% (n = 25) | 7.4% (n = 135) | 5.5% (n = 101) | 5.6% (n = 59) | 5.4% (n = 58) |
adjusted Hazards Ratio (aHR) (95% CI) | 0.95 (0.79–1.13) | 0.91 (0.75–1.13) | 0.91 (0.75–1.13) | 0.71 (0.54–0.93) | 1.50 (1.00–2.25) | 1.02 (0.59–1.77) | 1.40 (1.08–1.81) | 0.98 (0.68–1.41) | ||||||||
p Value | p = 0.550 | p = 0.392 | p = 0.392 | p = 0.013 | p = 0.049 | p = 0.931 | p = 0.011 | p = 0.908 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Somer, S.; Levy, A.P. The Role of Haptoglobin Polymorphism in Cardiovascular Disease in the Setting of Diabetes. Int. J. Mol. Sci. 2021, 22, 287. https://doi.org/10.3390/ijms22010287
Somer S, Levy AP. The Role of Haptoglobin Polymorphism in Cardiovascular Disease in the Setting of Diabetes. International Journal of Molecular Sciences. 2021; 22(1):287. https://doi.org/10.3390/ijms22010287
Chicago/Turabian StyleSomer, Shmuel, and Andrew P. Levy. 2021. "The Role of Haptoglobin Polymorphism in Cardiovascular Disease in the Setting of Diabetes" International Journal of Molecular Sciences 22, no. 1: 287. https://doi.org/10.3390/ijms22010287
APA StyleSomer, S., & Levy, A. P. (2021). The Role of Haptoglobin Polymorphism in Cardiovascular Disease in the Setting of Diabetes. International Journal of Molecular Sciences, 22(1), 287. https://doi.org/10.3390/ijms22010287