Iron Transport across Symbiotic Membranes of Nitrogen-Fixing Legumes
Abstract
:1. Introduction
2. Studies with Isolated Symbiosomes
3. Iron Transporters Targeted to the Symbiosome Membrane
3.1. ZIP and NRAMP Homologues in Nodules
3.2. Vacuolar Iron Transport Homologues in Nodules
3.3. Ferroportins
3.4. Ferrous Versus Ferric Iron Transport across the Symbiosome Membrane
3.5. Iron Import into Bacteroids
4. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- O’hara, G.W.; Boonkerd, N.; Dilworth, M.J. Mineral constraints to nitrogen-fixation. Plant Soil 1988, 108, 93–110. [Google Scholar] [CrossRef]
- Tang, C.X.; Robson, A.D.; Dilworth, M.J. The role of iron in the (Brady)rhizobium legume symbiosis. J. Plant Nutr. 1992, 15, 2235–2252. [Google Scholar] [CrossRef]
- Udvardi, M.; Poole, P.S. Transport and metabolism in legume-rhizobia symbioses. Annu. Rev. Plant Biol. 2013, 64, 781–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, V.C.; Loughlin, P.C.; Day, D.A.; Smith, P.M.C. Transport processes of the legume symbiosome membrane. Front. Plant Sci. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Mohd-Noor, S.N.; Day, D.A.; Smith, P.M.C. The Symbiosome Membrane. In Biological Nitrogen Fixation; de Bruijn, F.J., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 683–694. [Google Scholar]
- Burton, J.W.; Harlow, C.; Theil, E.C. Evidence for reutilization of nodule iron in soybean seed development. J. Plant Nutr. 1998, 21, 913–927. [Google Scholar] [CrossRef]
- Gonzalez-Guerrero, M.; Matthiadis, A.; Saez, A.; Long, T.A. Fixating on metals: New insights into the role of metals in nodulation and symbiotic nitrogen fixation. Front. Plant Sci. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Guerrero, M.; Escudero, V.; Saez, A.; Tejada-Jimenez, M. Transition metal transport in plants and associated endosymbionts: Arbuscular mycorrhizal fungi and rhizobia. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Guerinot, M.L. Iron uptake and metabolism in the Rhizobia legume symbioses. Plant Soil 1991, 130, 199–209. [Google Scholar] [CrossRef]
- Bergersen, F.J. Iron in developing soybean nodule. Aust. J. Biol. Sci. 1963, 16, 916–919. [Google Scholar] [CrossRef] [Green Version]
- Appleby, C.A. Leghemoglobin and Rhizobium respiration. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1984, 35, 443–478. [Google Scholar] [CrossRef]
- Millar, A.H.; Day, D.A.; Bergersen, F.J. Microaerobic respiration and oxidative-phosphorylation by soybean nodule mitochondria-implications for nitrogen-fixation. Plant Cell Environ. 1995, 18, 715–726. [Google Scholar] [CrossRef]
- Bergersen, F.J.; Goodchild, D.J. Aeration pathways in soybean root nodules. Aust. J. Biol. Sci. 1973, 26, 729–740. [Google Scholar] [CrossRef] [Green Version]
- Bergersen, F.J. Root Nodules of Legumes: Structure and Functions; John Wiley & Sons: Chichester, UK, 1982. [Google Scholar]
- Rodriguez-Haas, B.; Finney, L.; Vogt, S.; Gonzalez-Melendi, P.; Imperial, J.; Gonzalez-Guerrero, M. Iron distribution through the developmental stages of Medicago truncatula nodules. Metallomics 2013, 5, 1247–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brear, E.M.; Day, D.A.; Smith, P.M.C. Iron: An essential micronutrient for the legume-rhizobium symbiosis. Front. Plant Sci. 2013, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinel, F.C. Getting around the legume nodule: I. The structure of the peripheral zone in four nodule types. Bot. Bot. 2009, 87, 1117–1138. [Google Scholar] [CrossRef]
- Tejada-Jimenez, M.; Castro-Rodriguez, R.; Kryvoruchko, I.; Lucas, M.M.; Udvardi, M.; Imperial, J.; Gonzalez-Guerrero, M. Medicago truncatula natural resistance-associated macrophage protein1 is required for iron uptake by rhizobia-infected nodule cells. Plant Physiol. 2015, 168, U258–U473. [Google Scholar] [CrossRef] [Green Version]
- Kryvoruchko, I.S.; Routray, P.; Sinharoy, S.; Torres-Jerez, I.; Tejada-Jimenez, M.; Finney, L.A.; Nakashima, J.; Pislariu, C.I.; Benedito, V.A.; Gonzalez-Guerrero, M.; et al. An iron-activated citrate transporter, MtMATE67, is required for symbiotic nitrogen fixation. Plant Physiol. 2018, 176, 2315–2329. [Google Scholar] [CrossRef]
- LeVier, K.; Day, D.A.; Guerinot, M.L. Iron uptake by symbiosomes from soybean root nodules. Plant Physiol. 1996, 111, 893–900. [Google Scholar] [CrossRef] [Green Version]
- Moreau, S.; Meyer, J.M.; Puppo, A. Uptake of iron by symbiosomes and bacteroids from soybean nodules. FEBS Lett. 1995, 361, 225–228. [Google Scholar] [CrossRef] [Green Version]
- Wittenberg, J.B.; Wittenberg, B.A.; Day, D.A.; Udvardi, M.K.; Appleby, C.A. Siderophore-bound iron in the peribacteroid space of soybean root nodules. Plant Soil 1996, 178, 161–169. [Google Scholar] [CrossRef]
- Moreau, S.; Day, D.A.; Puppo, A. Ferrous iron is transported across the peribacteroid membrane of soybean nodules. Planta 1998, 207, 83–87. [Google Scholar] [CrossRef]
- Udvardi, M.K.; Day, D.A. Metabolite transport across symbiotic membranes of legume nodules. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 493–523. [Google Scholar] [CrossRef] [PubMed]
- Mellor, R.B. Bacteroids in the Rhizobium-legume symbiosis inhabit a plant internal lytic compartment—Implications for other microbial endosymbioses. J. Exp. Bot. 1989, 40, 831–839. [Google Scholar] [CrossRef]
- Gavrin, A.; Kaiser, B.N.; Geiger, D.; Tyerman, S.D.; Wen, Z.Y.; Bisseling, T.; Fedorova, E.E. Adjustment of host cells for accommodation of symbiotic bacteria: Vacuole defunctionalization, HOPS suppression, and TIP1g retargeting in Medicago. Plant Cell 2014, 26, 3809–3822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udvardi, M.K.; Day, D.A. Electroenergetic ATPase activity on the peribacteroid membrane of soybean (Glycine max) root nodules. Plant Physiol. 1989, 90, 982–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedorova, E.; Thomson, R.; Whitehead, L.F.; Maudoux, O.; Udvardi, M.K.; Day, D.A. Localization of H+-ATPases in soybean root nodules. Planta 1999, 209, 25–32. [Google Scholar] [CrossRef]
- Pierre, O.; Engler, G.; Hopkins, J.; Brau, F.; Boncompagni, E.; Herouart, D. Peribacteroid space acidification: A marker of mature bacteroid functioning in Medicago truncatula nodules. Plant Cell Environ. 2013, 36, 2059–2070. [Google Scholar]
- Moreau, S.; Thomson, R.M.; Kaiser, B.N.; Trevaskis, B.; Guerinot, M.L.; Udvardi, M.K.; Puppo, A.; Day, D.A. GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. J. Biol. Chem. 2002, 277, 4738–4746. [Google Scholar] [CrossRef] [Green Version]
- Guerinot, M.L. The ZIP family of metal transporters. Biochim. Biophys Acta Biomembr. 2000, 1465, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, B.N.; Moreau, S.; Castelli, J.; Thomson, R.; Lambert, A.; Bogliolo, S.; Puppo, A.; Day, D.A. The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. Plant J. 2003, 35, 295–304. [Google Scholar] [CrossRef]
- Nevo, Y.; Nelson, N. The NRAMP family of metal-ion transporters. Biochim. Biophys. Acta Mol. Cell Res. 2006, 1763, 609–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanquar, V.; Lelievre, F.; Barbier-Brygoo, H.; Thomine, S. Regulation and function of AtNRAMP4 metal transporter protein. Soil Sci. Plant Nutr. 2004, 50, 1141–1150. [Google Scholar] [CrossRef]
- Lanquar, V.; Lelievre, F.; Bolte, S.; Hames, C.; Alcon, C.; Neumann, D.; Vansuyt, G.; Curie, C.; Schroder, A.; Kramer, U.; et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J. 2005, 24, 4041–4051. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.A.; Punshon, T.; Lanzirotti, A.; Li, L.T.; Alonso, J.M.; Ecker, J.R.; Kaplan, J.; Guerinot, M.L. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 2006, 314, 1295–1298. [Google Scholar] [CrossRef]
- Li, L.T.; Chen, O.S.; Ward, D.M.; Kaplan, J. CCC1 is a transporter that mediates vacuolar iron storage in yeast. J. Biol. Chem. 2001, 276, 29515–29519. [Google Scholar] [CrossRef] [Green Version]
- Gollhofer, J.; Timofeev, R.; Lan, P.; Schmidt, W.; Buckhout, T.J. Vacuolar-Iron-transporter1-like proteins mediate iron homeostasis in Arabidopsis. PLoS ONE 2014, 9, e110468. [Google Scholar] [CrossRef]
- Connorton, J.M.; Jones, E.R.; Rodriguez-Ramiro, I.; Fairweather-Tait, S.; Uauy, C.; Balk, J. Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiol. 2017, 174, 2434–2444. [Google Scholar] [CrossRef] [Green Version]
- Delauney, A.J.; Cheon, C.I.; Snyder, P.J.; Verma, D.P.S. A nodule-specific sequence encoding a methionine-rich polypeptide, nodulin-21. Plant Mol. Biol. 1990, 14, 449–451. [Google Scholar] [CrossRef]
- Suganuma, N.; Nakamura, Y.; Yamamoto, M.; Ohta, T.; Koiwa, H.; Akao, S.; Kawaguchi, M. The Lotus japonicus Sen1 gene controls rhizobial differentiation into nitrogen-fixing bacteroids in nodules. Mol. Genet. Genom. 2003, 269, 312–320. [Google Scholar] [CrossRef]
- Hakoyama, T.; Niimi, K.; Yamamoto, T.; Isobe, S.; Sato, S.; Nakamura, Y.; Tabata, S.; Kumagai, H.; Umehara, Y.; Brossuleit, K.; et al. The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in Lotus japonicus nodules. Plant Cell Physiol. 2012, 53, 225–236. [Google Scholar] [CrossRef]
- Libault, M.; Farmer, A.; Joshi, T.; Takahashi, K.; Langley, R.J.; Franklin, L.D.; He, J.; Xu, D.; May, G.; Stacey, G. An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J. 2010, 63, 86–99. [Google Scholar] [CrossRef]
- Severin, A.J.; Woody, J.L.; Bolon, Y.T.; Joseph, B.; Diers, B.W.; Farmer, A.D.; Muehlbauer, G.J.; Nelson, R.T.; Grant, D.; Specht, J.E.; et al. RNA-seq atlas of Glycine max: A guide to the soybean transcriptome. BMC Plant Biol. 2010, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Liao, L.L.; Nie, M.M.; Peng, W.T.; Zhang, M.S.; Lei, J.N.; Zhong, Y.J.; Liao, H.; Chen, Z.C. A VIT-like transporter facilitates iron transport into nodule symbiosomes for nitrogen fixation in soybean. New Phytol. 2020, 226, 1413–1428. [Google Scholar] [CrossRef]
- Brear, E.M.; Bedon, F.; Gavrin, A.; Kryvoruchko, I.S.; Torres-Jerez, I.; Udvardi, M.K.; Day, D.A.; Smith, P.M.C. GmVTL1a is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation. New Phytol. 2020, 228, 667–681. [Google Scholar] [CrossRef]
- Walton, J.H.; Kontra-Kovats, G.; Green, R.T.; Domonkos, A.; Horvath, B.; Brear, E.M.; Franceschetti, M.; Kalo, P.; Balk, J. The Medicago truncatula vacuolar iron transporter-like proteins VTL4 and VTL8 deliver iron to symbiotic bacteria at different stages of the infection process. New Phytol. 2020, 228, 651–666. [Google Scholar] [CrossRef]
- Drakesmith, H.; Nemeth, E.; Ganz, T. Ironing out ferroportin. Cell Metab. 2015, 22, 777–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrissey, J.; Baxter, I.R.; Lee, J.; Li, L.T.; Lahner, B.; Grotz, N.; Kaplan, J.; Salt, D.E.; Guerinot, M.L. The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 2009, 21, 3326–3338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escudero, V.; Abreu, I.; Tejada-Jimenez, M.; Rosa-Nunez, E.; Quintana, J.; Prieto, R.I.; Larue, C.; Wen, J.Q.; Villanova, J.; Mysore, K.S.; et al. Medicago truncatula ferroportinitrogen mediates iron import into nodule symbiosomes. New Phytol. 2020, 228, 194–209. [Google Scholar] [CrossRef] [PubMed]
- Clarke, V.C.; Loughlin, P.C.; Gavrin, A.; Chen, C.; Brear, E.M.; Day, D.A.; Smith, P.M.C. Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins. Mol. Cell. Proteom. 2015, 14, 1301–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curie, C.; Panaviene, Z.; Loulergue, C.; Dellaporta, S.L.; Briat, J.F.; Walker, E.L. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 2001, 409, 346–349. [Google Scholar] [CrossRef]
- Curie, C.; Cassin, G.; Couch, D.; Divol, F.; Higuchi, K.; Jean, M.; Misson, J.; Schikora, A.; Czernic, P.; Mari, S. Metal movement within the plant: Contribution of nicotianamine and yellow stripe 1-like transporters. Ann. Bot. 2009, 103, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavrin, A.; Loughlin, P.C.; Brear, E.M.; Griffith, O.W.; Bedon, F.; Grotemeyer, M.S.; Escudero, V.; Reguera, M.; Qu, Y.; Mohd-Noor, S.N.; et al. Soybean Yellow Stripe-Like 7 is a symbiosome membrane peptide transporter essential for nitrogen fixation. bioRxiv 2020. [Google Scholar] [CrossRef]
- Castro-Rodriguez, R.; Reguera, M.; Escudero, V.; Gil-Diez, P.; Quintana, J.; Prieto, R.I.; Kumar, R.K.; Brear, E.M.; Grillet, L.; Wen, J.Q.; et al. Medicago truncatula yellow stripe-like 7 encodes a peptide transporter required for symbiotic nitrogen fixation. bioRxiv 2020. [Google Scholar] [CrossRef]
- Sankari, S.; O’Brian, M.R. The Bradyrhizobium japonicum ferrous iron transporter FeoAB is required for ferric iron utilization in free living aerobic cells and for symbiosis. J. Biol. Chem. 2016, 291, 15653–15662. [Google Scholar] [CrossRef] [Green Version]
- Lau, C.K.Y.; Krewulak, K.D.; Vogel, H.J. Bacterial ferrous iron transport: The Feo system. FEMS Microbiol. Rev. 2016, 40, 273–298. [Google Scholar] [CrossRef]
- Abreu, I.; Mihelj, P.; Raimunda, D. Transition metal transporters in rhizobia: Tuning the inorganic micronutrient requirements to different living styles. Metallomics 2019, 11, 735–755. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Day, D.A.; Smith, P.M.C. Iron Transport across Symbiotic Membranes of Nitrogen-Fixing Legumes. Int. J. Mol. Sci. 2021, 22, 432. https://doi.org/10.3390/ijms22010432
Day DA, Smith PMC. Iron Transport across Symbiotic Membranes of Nitrogen-Fixing Legumes. International Journal of Molecular Sciences. 2021; 22(1):432. https://doi.org/10.3390/ijms22010432
Chicago/Turabian StyleDay, David A., and Penelope M. C. Smith. 2021. "Iron Transport across Symbiotic Membranes of Nitrogen-Fixing Legumes" International Journal of Molecular Sciences 22, no. 1: 432. https://doi.org/10.3390/ijms22010432
APA StyleDay, D. A., & Smith, P. M. C. (2021). Iron Transport across Symbiotic Membranes of Nitrogen-Fixing Legumes. International Journal of Molecular Sciences, 22(1), 432. https://doi.org/10.3390/ijms22010432