Empagliflozin Inhibits IL-1β-Mediated Inflammatory Response in Human Proximal Tubular Cells
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Empa-Mediated Inhibition of IL-1β-Induced CXCL Isoform 1, 2, 5 and 8 (= IL8) Expression
3.2. Empa-Mediated Inhibition of IL-1β-Induced LOX Expression
3.3. Empa-Mediated Inhibition of IL-1β-Induced NOV Expression
3.4. Empa-Mediated Inhibition of IL-1β-Induced PTX3 Expression
3.5. Empa-Mediated Inhibition of IL-1β-Induced SGK1 Expression
4. Materials and Methods
4.1. Cell Culture
4.2. Microarray Hybridization Analysis
4.3. Pathway Enrichment Analysis
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wanner, C.; Inzucchi, S.E.; Zinman-Parving, H.-H.; Lambers-Heerspink, H.; de Zeeuw, D. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1801–1802. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, V.; de Zeeuw, D.; Mahaffey, K.W.; Fulcher, G.; Erondu, N.; Shaw, W.; Barrett, T.D.; Weidner-Wells, M.; Deng, H.; Matthews, D.R.; et al. Canagliflozin and renal outcomes in type 2 diabetes: Results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018, 6, 691–704. [Google Scholar] [CrossRef]
- Mosenzon, O.; Wiviott, S.D.; Cahn, A.; Rozenberg, A.; Yanuv, I.; Goodrich, E.L.; Murphy, S.A.; Heerspink, H.J.L.; Zelniker, T.A.; Dwyer, J.P.; et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: An analysis from the DECLARE–TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019, 7, 606–617. [Google Scholar] [CrossRef]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heerspink, H.J.L.; Kosiborod, M.; Inzucchi, S.E.; Cherney, D.Z.I. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int. 2018, 94, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.-F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef]
- Lv, W.; Booz, G.W.; Wang, Y.; Fan, F.; Roman, R.J. Inflammation and renal fibrosis: Recent developments on key signaling molecules as potential therapeutic targets. Eur. J. Pharmacol. 2018, 820, 65–76. [Google Scholar] [CrossRef]
- Kawanami, D.; Matoba, K.; Takeda, Y.; Nagai, Y.; Akamine, T.; Yokota, T.; Sango, K.; Utsunomiya, K. SGLT2 Inhibitors as a Therapeutic Option for Diabetic Nephropathy. Int. J. Mol. Sci. 2017, 18, 1083. [Google Scholar] [CrossRef]
- Wang, X.X.; Levi, J.; Luo, Y.; Myakala, K.; Herman-Edelstein, M.; Qiu, L.; Wang, D.; Peng, Y.; Grenz, A.; Lucia, S.; et al. SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy: SGLT2 Protein Inhibition Decreases Renal Lipid Accumulation, Inflammation, and the Development of Nephropathy in Diabetic Mice. J. Biol. Chem. 2017, 292, 5335–5348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishibashi, Y.; Matsui, T.; Yamagishi, S. Tofogliflozin, A Highly Selective Inhibitor of SGLT2 Blocks Proinflammatory and Proapoptotic Effects of Glucose Overload on Proximal Tubular Cells Partly by Suppressing Oxidative Stress Generation. Horm. Metab. Res. 2015, 48, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Perco, P.; Mulder, S.; Leierer, J.; Hansen, M.K.; Heinzel, A.; Mayer, G. Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia 2019, 62, 1154–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekkers, C.C.J.; Petrykiv, S.; Laverman, G.D.; Cherney, D.Z.; Gansevoort, R.T.; Heerspink, H.J.L. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes. Metab. 2018, 20, 1988–1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panchapakesan, U.; Pegg, K.; Gross, S.; Komala, M.G.; Mudaliar, H.; Forbes, J.; Pollock, C.; Mather, A. Effects of SGLT2 Inhibition in Human Kidney Proximal Tubular Cells—Renoprotection in Diabetic Nephropathy? PLoS ONE 2013, 8, e54442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gembardt, F.; Bartaun, C.; Jarzebska, N.; Mayoux, E.; Todorov, V.T.; Hohenstein, B.; Hugo, C. The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. Am. J. Physiol. Renal. Physiol. 2014, 307, F317–F325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitagawa, K.; Wada, T.; Furuichi, K.; Hashimoto, H.; Ishiwata, Y.; Asano, M.; Takeya, M.; Kuziel, W.A.; Matsushima, K.; Mukaida, N.; et al. Blockade of CCR2 Ameliorates Progressive Fibrosis in Kidney. Am. J. Pathol. 2004, 165, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Sassy-Prigent, C.; Heudes, D.; Mandet, C.; Belair, M.F.; Michel, O.; Perdereau, B.; Bariety, J.; Bruneval, P. Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats. Diabetes 2000, 49, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Giunti, S.; Barutta, F.; Perin, P.C.; Gruden, G. Targeting the MCP-1/CCR2 System in diabetic kidney disease. Curr. Vasc. Pharmacol. 2010, 8, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Tam, F.W.; Riser, B.L.; Meeran, K.; Rambow, J.; Pusey, C.D.; Frankel, A.H. Urinary monocyte chemoattractant protein-1 (MCP-1) and connective tissue growth factor (CCN2) as prognostic markers for progression of diabetic nephropathy. Cytokine 2009, 47, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Satirapoj, B.; Dispan, R.; Radinahamed, P.; Kitiyakara, C. Urinary epidermal growth factor, monocyte chemoattractant protein-1 or their ratio as predictors for rapid loss of renal function in type 2 diabetic patients with diabetic kidney disease. BMC Nephrol. 2018, 19, 246. [Google Scholar] [CrossRef] [Green Version]
- Kohan, D.E.; Pollock, D.M. Endothelin antagonists for diabetic and non-diabetic chronic kidney disease. Br. J. Clin. Pharmacol. 2012, 76, 573–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boels, M.G.; Koudijs, A.; Avramut, M.C.; Sol, W.M.; Wang, G.; van Oeveren-Rietdijk, A.M.; van Zonneveld, A.J.; de Boer, H.C.; van der Vlag, J.; van Kooten, C.; et al. Systemic Monocyte Chemotactic Protein-1 Inhibition Modifies Renal Macrophages and Restores Glomerular Endothelial Glycocalyx and Barrier Function in Diabetic Nephropathy. Am. J. Pathol. 2017, 187, 2430–2440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, F.; Nikolic-Paterson, D.; Ozols, E.; Atkins, R.; Rollin, B.; Tesch, G. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int. 2006, 69, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarabra, E.; Giunti, S.; Barutta, F.; Salvidio, G.; Burt, D.; Deferrari, G.; Gambino, R.; Vergola, D.; Pinach, S.; Perin, P.C.; et al. Effect of the Monocyte Chemoattractant Protein-1/CC Chemokine Receptor 2 System on Nephrin Expression in Streptozotocin-Treated Mice and Human Cultured Podocytes. Diabetes 2009, 58, 2109–2118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhaun, N.; Webb, D.J. Endothelins in cardiovascular biology and therapeutics. Nat. Rev. Cardiol. 2019, 16, 1–502. [Google Scholar] [CrossRef] [PubMed]
- Spires, D.; Poudel, B.; Shields, C.A.; Pennington, A.; Fizer, B.; Taylor, L.; McPherson, K.C.; Cornelius, D.C.; Williams, J.M. Prevention of the progression of renal injury in diabetic rodent models with preexisting renal disease with chronic endothelin A receptor blockade. Am. J. Physiol. Renal. Physiol. 2018, 315, F977–F985. [Google Scholar] [CrossRef] [PubMed]
- Menne, J.; Eulberg, D.; Beyer, D.; Baumann, M.; Saudek, F.; Valkusz, Z.; Więcek, A.; Haller, H. C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrol. Dial. Transplant. 2016, 32, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Wenzel, R.R.; Littke, T.; Kuranoff, S.; Jürgens, C.; Bruck, H.; Ritz, E.; Philipp, T.; Mitchell, A. Avosentan Reduces Albumin Excretion in Diabetics with Macroalbuminuria. J. Am. Soc. Nephrol. 2009, 20, 655–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohan, D.E.; Pritchett, Y.; Molitch, M.; Wen, S.; Garimella, T.; Audhya, P.; Andress, D.L. Addition of Atrasentan to Renin-Angiotensin System Blockade Reduces Albuminuria in Diabetic Nephropathy. J. Am. Soc. Nephrol. 2011, 22, 763–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Zeeuw, D.; Coll, B.; Andress, D.; Brennan, J.J.; Tang, H.; Houser, M.; Correa-Rotter, R.; Kohan, D.; Lambers, H.H.J.L.; Makino, H.; et al. The Endothelin Antagonist Atrasentan Lowers Residual Albuminuria in Patients with Type 2 Diabetic Nephropathy. J. Am. Soc. Nephrol. 2014, 25, 1083–1093. [Google Scholar] [CrossRef] [Green Version]
- Heerspink, H.J.L.; Parving, H.-H.; Andress, D.L.; Bakris, G.; Correa-Rotter, R.; Hou, F.-F.; Kitzman, D.W.; Kohan, D.; Makino, H.; McMurray, J.J.V.; et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): A double-blind, randomised, placebo-controlled trial. Lancet 2019, 393, 1937–1947. [Google Scholar] [CrossRef]
- Maayah, Z.H.; Ferdaoussi, M.; Takahara, S.; Soni, S.; Dyck, J.R.B. Empagliflozin suppresses inflammation and protects against acute septic renal injury. Inflammopharmacology 2021, 29, 269–279. [Google Scholar] [CrossRef]
- Pirklbauer, M.; Bernd, M.; Fuchs, L.; Staudinger, P.; Corazza, U.; Leierer, J.; Mayer, G.; Schramek, H. Empagliflozin Inhibits Basal and IL-1β-Mediated MCP-1/CCL2 and Endothelin-1 Expression in Human Proximal Tubular Cells. Int. J. Mol. Sci. 2020, 21, 8189. [Google Scholar] [CrossRef] [PubMed]
- Tesch, G.H. Diabetic nephropathy—Is this an immune disorder? Clin. Sci. 2017, 131, 2183–2199. [Google Scholar] [CrossRef] [PubMed]
- Vallon, V.; Thomson, S.C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat. Rev. Nephrol. 2020, 16, 317–336. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, R.L. The proximal tubule is the primary target of injury and progression of kidney disease: Role of the glomerulotubular junction. Am. J. Physiol. Renal. Physiol. 2016, 311, F145–F161. [Google Scholar] [CrossRef]
- Anders, H.-J. Of Inflammasomes and Alarmins: IL-1β and IL-1α in Kidney Disease. J. Am. Soc. Nephrol. 2016, 27, 2564–2575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahzad, K.; Bock, F.; Dong, W.; Wang, H.; Kopf, S.; Kohli, S.; Al-Dabet, M.M.; Ranjan, S.; Wolter, J.; Wacker, C.; et al. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int. 2015, 87, 74–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, Y.; Devarapu, S.K.; Motrapu, M.; Cohen, C.D.; Lindenmeyer, M.T.; Moll, S.; Kumar, S.V.; Anders, H.-J. Interleukin-1β Inhibition for Chronic Kidney Disease in Obese Mice with Type 2 Diabetes. Front. Immunol. 2019, 10, 1223. [Google Scholar] [CrossRef]
- Wu, F.; Sun, C.; Lu, J. The Role of Chemokine Receptors in Renal Fibrosis. Rev. Physiol. Biochem. Pharmacol. 2020, 177, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Segerer, S.; Nelson, P.J.; Schlöndorff, D. Chemokines, Chemokine Receptors, and Renal Disease: From Basic Science to Pathophysiologic and Therapeutic Studies. J. Am. Soc. Nephrol. 2000, 11, 152–176. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.; Ho, A.W.Y.; Tong, P.C.Y.; Yeung, C.Y.; Kong, A.P.S.; Lun, S.W.M.; Chan, J.C.N.; Lam, C.W.K. Aberrant activation profile of cytokines and mitogen-activated protein kinases in type 2 diabetic patients with nephropathy. Clin. Exp. Immunol. 2007, 149, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhu, L.; Zhou, T.; Zhang, Q.; Shi, S.; Liu, L.; Lv, J.; Zhang, H. Urinary CXCL1: A Novel Predictor of IgA Nephropathy Progression. PLoS ONE 2015, 10, e0119033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holdsworth, S.R.; Kitching, A.R.; Tipping, P.G. Chemokines as therapeutic targets in renal disease. Curr. Opin. Nephrol. Hypertens. 2000, 9, 505–511. [Google Scholar] [CrossRef]
- Svensson, M.; Yadav, M.; Holmqvist, B.; Lutay, N.; Svanborg, C.; Godaly, G. Acute pyelonephritis and renal scarring are caused by dysfunctional innate immunity in mCxcr2 heterozygous mice. Kidney Int. 2011, 80, 1064–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, S.; Zhu, Y.; Du, J.; Khan, M.N.; Wang, B.; Wei, J.; Cheng, J.-W.; Gordon, J.R.; Mu, Y.; Li, F. CXCL8 Antagonist Improves Diabetic Nephropathy in Male Mice with Diabetes and Attenuates High Glucose–Induced Mesangial Injury. Endocrinology 2017, 158, 1671–1684. [Google Scholar] [CrossRef] [PubMed]
- Kagan, H.M.; Li, W. Lysyl oxidase: Properties, specificity, and biological roles inside and outside of the cell. J. Cell. Biochem. 2003, 88, 660–672. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Panda, T.K.; Pradhan, T. Lysyl Oxidase: Its Diversity in Health and Diseases. Indian J. Clin. Biochem. 2016, 32, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Q.; Li, X.; Zhou, W.-Q.; Liu, X.; Huang, J.-L.; Zhang, Y.-Y.; Lindholm, B.; Yu, C. Serum Lysyl Oxidase Is a Potential Diagnostic Biomarker for Kidney Fibrosis. Am. J. Nephrol. 2020, 51, 907–918. [Google Scholar] [CrossRef]
- Pirklbauer, M.; Schupart, R.; Fuchs, L.C.; Staudinger, P.; Corazza, U.; Sallaberger, S.; Leierer, J.; Mayer, G.; Schramek, H. Unraveling reno-protective effects of SGLT2 inhibition in human proximal tubular cells. Am. J. Physiol. Renal. Physiol. 2019, 316, F449–F462. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-C.; Lau, L.F. Functions and mechanisms of action of CCN matricellular proteins. Int. J. Biochem. Cell Biol. 2009, 41, 771–783. [Google Scholar] [CrossRef] [Green Version]
- Marchal, P.-O.; Kavvadas, P.; Abed, A.; Kazazian, C.; Authier, F.; Koseki, H.; Hiraoka, S.; Boffa, J.-J.; Martinerie, C.; Chadjichristos, C.E. Reduced NOV/CCN3 Expression Limits Inflammation and Interstitial Renal Fibrosis after Obstructive Nephropathy in Mice. PLoS ONE 2015, 10, e0137876. [Google Scholar] [CrossRef]
- Lin, Z.; Natesan, V.; Shi, H.; Hamik, A.; Kawanami, D.; Hao, C.; Mahabaleshwar, G.H.; Wang, W.; Jin, Z.-G.; Atkins, G.B.; et al. A novel role of CCN3 in regulating endothelial inflammation. J. Cell Commun. Signal. 2010, 4, 141–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kular, L.; Pakradouni, J.; Kitabgi, P.; Laurent, M.; Martinerie, C. The CCN family: A new class of inflammation modulators? Biochimie 2011, 93, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Van Roeyen, C.R.; Boor, P.; Borkham-Kamphorst, E.; Rong, S.; Kunter, U.; Martin, I.V.; Kaitovic, A.; Fleckenstein, S.; Perbal, B.; Trautwein, C.; et al. A Novel, Dual Role of CCN3 in Experimental Glomerulonephritis: Pro-angiogenic and antimesangioproliferative effects. Am. J. Pathol. 2012, 180, 1979–1990. [Google Scholar] [CrossRef] [PubMed]
- Bottazzi, B.; Doni, A.; Garlanda, C.; Mantovani, A. An Integrated View of Humoral Innate Immunity: Pentraxins as a Paradigm. Annu. Rev. Immunol. 2010, 28, 157–183. [Google Scholar] [CrossRef] [PubMed]
- Kunes, P.; Holubcova, Z.; Kolackova, M.; Krejsek, J. Pentraxin 3(PTX 3): An Endogenous Modulator of the Inflammatory Response. Mediat. Inflamm. 2012, 2012, 920517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Han, B.; Bai, X.; Zhang, Y.; Cypel, M.; Mura, M.; Keshavjee, S.; Liu, M. PTX3 as a potential biomarker of acute lung injury: Supporting evidence from animal experimentation. Intensiv. Care Med. 2010, 36, 356–364. [Google Scholar] [CrossRef]
- Van Rossum, A.P.; Pas, H.H.; Fazzini, F.; Huitema, M.G.; Limburg, P.C.; Jonkman, M.F.; Kallenberg, C.G.M. Abundance of the long pentraxin PTX3 at sites of leukocytoclastic lesions in patients with small-vessel vasculitis. Arthritis Rheum. 2006, 54, 986–991. [Google Scholar] [CrossRef]
- Fazzini, F.; Peri, G.; Doni, A.; Dell’Antonio, G.; Cin, E.D.; Bozzolo, E.; D’Auria, F.; Praderio, L.; Ciboddo, G.; Sabbadini, M.G.; et al. PTX3 in small-vessel vasculitides: An independent indicator of disease activity produced at sites of inflammation. Arthritis Rheum. 2001, 44, 2841–2850. [Google Scholar] [CrossRef]
- Guo, T.; Huang, L.; Liu, C.; Shan, S.; Li, Q.; Ke, L.; Cheng, B. The clinical value of inflammatory biomarkers in coronary artery disease: PTX3 as a new inflammatory marker. Exp. Gerontol. 2017, 97, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Nauta, A.J.; de Haij, S.; Bottazzi, B.; Mantovani, A.; Borrias, M.C.; Aten, J.; Rastaldi, M.P.; Daha, M.R.; Van Kooten, C.; Roos, A. Human renal epithelial cells produce the long pentraxin PTX3. Kidney Int. 2005, 67, 543–553. [Google Scholar] [CrossRef] [Green Version]
- Bussolati, B.; Peri, G.; Salvidio, G.; Verzola, D.; Mantovani, A.; Camussi, G. The Long Pentraxin Ptx3 Is Synthesized in IgA Glomerulonephritis and Activates Mesangial Cells. J. Immunol. 2003, 170, 1466–1472. [Google Scholar] [CrossRef] [Green Version]
- Tong, M.; Carrero, J.J.; Qureshi, A.R.; Anderstam, B.; Heimbürger, O.; Bárány, P.; Axelsson, J.; Alvestrand, A.; Stenvinkel, P.; Lindholm, B.; et al. Plasma Pentraxin 3 in Patients with Chronic Kidney Disease: Associations with Renal Function, Protein-Energy Wasting, Cardiovascular Disease, and Mortality. Clin. J. Am. Soc. Nephrol. 2007, 2, 889–897. [Google Scholar] [CrossRef] [Green Version]
- Lang, F.; Böhmer, C.; Palmada, M.; Seebohm, G.; Strutz-Seebohm, N.; Vallon, V. (Patho)physiological Significance of the Serum- and Glucocorticoid-Inducible Kinase Isoforms. Physiol. Rev. 2006, 86, 1151–1178. [Google Scholar] [CrossRef]
- Sierra-Ramos, C.; Velazquez-Garcia, S.; Keskus, A.G.; Vastola-Mascolo, A.; Rodríguez-Rodríguez, A.E.; Luis-Lima, S.; Hernández, G.; Navarro-González, J.F.; Porrini, E.; Konu, O.; et al. Increased SGK1 activity potentiates mineralocorticoid/NaCl-induced kidney injury. Am. J. Physiol. Renal. Physiol. 2021, 320, F628–F643. [Google Scholar] [CrossRef] [PubMed]
- Artunc, F.; Lang, F. Mineralocorticoid and SGK1-Sensitive Inflammation and Tissue Fibrosis. Nephron Physiol. 2014, 128, 35–39. [Google Scholar] [CrossRef]
- Artunc, F.; Amann, K.; Nasir, O.; Friedrich, B.; Sandulache, D.; Jahovic, N.; Risler, T.; Vallon, V.; Wulff, P.; Kuhl, D.; et al. Blunted DOCA/high salt induced albuminuria and renal tubulointerstitial damage in gene-targeted mice lacking SGK1. J. Mol. Med. 2006, 84, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Vallon, V.; Huang, D.Y.; Grahammer, F.; Wyatt, A.W.; Osswald, H.; Wulff, P.; Kuhl, D.; Lang, F. SGK1 as a determinant of kidney function and salt intake in response to mineralocorticoid excess. Am. J. Physiol. Integr. Comp. Physiol. 2005, 289, R395–R401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibata, S.; Nagase, M.; Yoshida, S.; Kawachi, H.; Fujita, T. Podocyte as the Target for Aldosterone: Roles of oxidative stress and Sgk1. Hypertension 2007, 49, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norlander, A.E.; Saleh, M.A.; Pandey, A.K.; Itani, H.A.; Wu, J.; Xiao, L.; Kang, J.; Dale, B.L.; Goleva, S.B.; Laroumanie, F.; et al. A salt-sensing kinase in T lymphocytes, SGK1, drives hypertension and hypertensive end-organ damage. JCI Insight 2017, 2. [Google Scholar] [CrossRef]
- Pirklbauer, M. Anti-inflammatory potential of Empagliflozin. Inflammopharmacology 2021, 29, 573–576. [Google Scholar] [CrossRef]
- Pollack, V.; Sarközi, R.; Banki, Z.; Feifel, E.; Wehn, S.; Gstraunthaler, G.; Stoiber, H.; Mayer, G.; Montesano, R.; Strutz, F.; et al. Oncostatin M-induced effects on EMT in human proximal tubular cells: Differential role of ERK signaling. Am. J. Physiol. Renal. Physiol. 2007, 293, F1714–F1726. [Google Scholar] [CrossRef]
- Ryan, M.J.; Johnson, G.; Kirk, J.; Fuerstenberg, S.M.; Zager, R.A.; Torok-Storb, B. HK-2: An immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int. 1994, 45, 48–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarközi, R.; Flucher, K.; Haller, V.M.; Pirklbauer, M.; Mayer, G.; Schramek, H. Oncostatin M inhibits TGF-β1-induced CTGF expression via STAT3 in human proximal tubular cells. Biochem. Biophys. Res. Commun. 2012, 424, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Sarközi, R.; Hauser, C.; Noppert, S.-J.; Kronbichler, A.; Pirklbauer, M.; Haller, V.M.; Grillari, J.; Grillari-Voglauer, R.; Mayer, G.; Schramek, H.; et al. Oncostatin M is a novel inhibitor of TGF-β1-induced matricellular protein expression. Am. J. Physiol. Renal. Physiol. 2011, 301, F1014–F1025. [Google Scholar] [CrossRef]
- Wieser, M.; Stadler, G.; Jennings, P.; Streubel, B.; Pfaller, W.; Ambros, P.; Riedl, C.; Katinger, H.; Grillari, J.; Grillari-Voglauer, R. hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics. Am. J. Physiol. Renal. Physiol. 2008, 295, F1365–F1375. [Google Scholar] [CrossRef] [Green Version]
- Brazma, A.; Hingamp, P.; Quackenbush, J.; Sherlock, G.; Spellman, P.; Stoeckert, C.; Aach, J.; Ansorge, W.; Ball, C.A.; Causton, H.C.; et al. Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat. Genet. 2001, 29, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Huang da, W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
A | HK-2 (Experiment 1) | HK-2 (Experiment 2) | ||||
---|---|---|---|---|---|---|
Gene Name | Fold Change to Control | Fold Change to IL-1β | Fold Change to Control | Fold Change to IL-1β | ||
IL-1β | IL-1β + EMPA | IL-1β + EMPA | IL-1β | IL-1β + EMPA | IL-1β + EMPA | |
ATP binding cassette subfamily A member 12 (ABCA12) | 2.23 | 1.83 | −0.40 | 2.39 | 1.28 | −1.11 |
Rho GTPase activating protein 22 (ARHGAP22) | 2.17 | 1.57 | −0.60 | 1.81 | 0.89 | −0.93 |
CD82 molecule (CD82) | 2.43 | 1.14 | −1.29 | 3.35 | 2.86 | −0.50 |
colony stimulating factor 2 (CSF2) | 4.52 | 3.43 | −1.09 | 4.13 | 3.53 | −0.60 |
C-X-C motif chemokine ligand 1 (CXCL1) | 6.89 | 6.81 | −0.08 | 3.95 | 3.34 | −0.61 |
C-X-C motif chemokine ligand 2 (CXCL2) | 7.17 | 6.92 | −0.25 | 4.65 | 4.13 | −0.52 |
C-X-C motif chemokine ligand 5 (CXCL5) | 5.30 | 5.29 | −0.02 | 2.98 | 2.63 | −0.35 |
C-X-C motif chemokine ligand 8 (CXCL8) | 6.29 | 6.21 | −0.08 | 4.09 | 3.71 | −0.38 |
insulin induced gene 1 (INSIG1) | 3.97 | 3.87 | −0.09 | 4.52 | 3.88 | −0.65 |
lysyl oxidase (LOX) | 1.74 | 1.29 | −0.45 | 1.80 | 0.65 | −1.15 |
nephroblastoma overexpressed (NOV) | 1.90 | 0.62 | −1.27 | 2.37 | 0.75 | −1.63 |
prolyl 4-hydroxylase subunit alpha 2 (P4HA2) | 2.56 | 2.12 | −0.44 | 2.27 | 1.41 | −0.86 |
Pim-2 proto-oncogene, serine/threonine kinase (PIM2) | 2.97 | 2.92 | −0.05 | 3.09 | 2.89 | −0.19 |
pentraxin 3 (PTX3) | 3.54 | 2.43 | −1.11 | 2.87 | 2.17 | −0.70 |
serum/glucocorticoid regulated kinase 1 (SGK1) | 2.14 | 1.46 | −0.67 | 1.91 | 0.76 | −1.15 |
solute carrier organic anion transporter family member 2A1 (SLCO2A1) | 2.04 | 1.78 | −0.26 | 1.62 | −0.04 | −1.66 |
solute carrier organic anion transporter family member 4A1 (SLCO4A1) | 5.59 | 4.86 | −0.73 | 1.74 | 1.07 | −0.67 |
superoxide dismutase 2 (SOD2) | 5.92 | 5.83 | −0.09 | 2.41 | 2.21 | −0.20 |
tissue factor pathway inhibitor 2 (TFPI2) | 3.70 | 3.22 | −0.47 | 2.25 | 1.69 | −0.57 |
B | RPTEC/TERT1 (Experiment 1) | RPTEC/TERT1 (Experiment 2) | ||||
Gene Name | Fold Change to Control | Fold Change to IL-1β | Fold Change to Control | Fold Change to IL-1β | ||
IL-1β | IL-1β + EMPA | IL-1β + EMPA | IL-1β | IL-1β + EMPA | IL-1β + EMPA | |
ATP binding cassette subfamily A member 12 (ABCA12) | 2.11 | 1.29 | −0.82 | 3.90 | 3.23 | −0.67 |
Rho GTPase activating protein 22 (ARHGAP22) | 1.93 | 0.79 | −1.14 | 2.94 | 2.27 | −0.68 |
CD82 molecule (CD82) | 3.70 | 2.99 | −0.71 | 2.65 | 1.42 | −1.24 |
colony stimulating factor 2 (CSF2) | 3.98 | 3.50 | −0.49 | 6.95 | 5.85 | −1.11 |
C-X-C motif chemokine ligand 1 (CXCL1) | 3.71 | 2.96 | −0.76 | 7.62 | 7.53 | −0.09 |
C-X-C motif chemokine ligand 2 (CXCL2) | 4.68 | 4.08 | −0.60 | 7.37 | 7.30 | −0.07 |
C-X-C motif chemokine ligand 5 (CXCL5) | 3.08 | 2.72 | −0.36 | 5.75 | 5.63 | −0.11 |
C-X-C motif chemokine ligand 8 (CXCL8) | 3.53 | 3.03 | −0.49 | 7.87 | 7.73 | −0.13 |
insulin induced gene 1 (INSIG1) | 2.37 | 1.67 | −0.70 | 4.58 | 4.47 | −0.11 |
lysyl oxidase (LOX) | 1.53 | 0.27 | −1.26 | 3.58 | 2.97 | −0.61 |
nephroblastoma overexpressed (NOV) | 2.23 | 0.25 | −1.98 | 2.03 | 0.83 | −1.20 |
prolyl 4-hydroxylase subunit alpha 2 (P4HA2) | 2.29 | 1.88 | −0.40 | 2.40 | 1.85 | −0.55 |
Pim-2 proto-oncogene, serine/threonine kinase (PIM2) | 3.18 | 3.00 | −0.18 | 3.78 | 3.70 | −0.07 |
pentraxin 3 (PTX3) | 2.19 | 1.57 | −0.61 | 5.24 | 4.50 | −0.74 |
serum/glucocorticoid regulated kinase 1 (SGK1) | 1.64 | 0.38 | −1.26 | 2.18 | 1.91 | −0.27 |
solute carrier organic anion transporter family member 2A1 (SLCO2A1) | 1.94 | 0.13 | −1.81 | 2.95 | 2.38 | −0.57 |
solute carrier organic anion transporter family member 4A1 (SLCO4A1) | 2.08 | 1.51 | −0.57 | 5.89 | 5.23 | −0.67 |
superoxide dismutase 2 (SOD2) | 2.62 | 2.46 | −0.15 | 5.80 | 5.73 | −0.07 |
tissue factor pathway inhibitor 2 (TFPI2) | 2.32 | 1.12 | −1.20 | 3.80 | 3.23 | −0.58 |
A | HK-2 (Experiment 1) | HK-2 (Experiment 2) | ||||
---|---|---|---|---|---|---|
Gene Name | Fold Change to Control | Fold Change to IL-1β | Fold Change to Control | Fold Change to IL-1β | ||
IL-1β | IL-1β + EMPA | IL-1β + EMPA | IL-1β | IL-1β + EMPA | IL-1β + EMPA | |
Sodium glucose cotransporter, member 2 (SGLT2) (SLC5A2) | −0.05 | −0.1 | −0.05 | −0.56 | −0.59 | −0.03 |
B | RPTEC/TERT1 (Experiment 1) | RPTEC/TERT1 (Experiment 2) | ||||
Gene Name | Fold Change to Control | Fold Change to IL-1β | Fold Change to Control | Fold Change to IL-1β | ||
IL-1β | IL-1β + EMPA | IL-1β + EMPA | IL-1β | IL-1β + EMPA | IL-1β + EMPA | |
Sodium glucose cotransporter, member 2 (SGLT2) (SLC5A2) | −0.31 | −0.46 | −0.15 | −0.26 | −0.39 | −0.13 |
Knowledgebase | Annotated Pathway/Term | EASE Score (p Value) |
---|---|---|
INTERPRO | CXC chemokine | 2.2 × 10−7 |
INTERPRO | CXC chemokine, conserved site | 2.2 × 10−7 |
INTERPRO | chemokine interleukin-8-like domain | 1.1 × 10−5 |
SMART | SCY | 1.6 × 10−5 |
GOTERM_MF_DIRECT | chemokine activity | 1.8 × 10−5 |
UP_KEYWORDS | cytokine | 1.9 × 10−5 |
UP_KEYWORDS | disulfide bond | 2.8 × 10−5 |
GOTERM_MF_DIRECT | CXCR chemokine receptor binding | 3.8 × 10−5 |
GOTERM_BP_DIRECT | cell chemotaxis | 4.3 × 10−5 |
GOTERM_BP_DIRECT | chemokine-mediated signaling pathway | 5.6 × 10−5 |
UP_KEYWORDS | secreted | 1.2 × 10−4 |
KEGG_PATHWAY | salmonella infection | 1.9 × 10−4 |
UP_SEQ_FEATURE | signal peptide | 2.0 × 10−4 |
GOTERM_BP_DIRECT | positive regulation of neutrophil chemotaxis | 2.5 × 10−4 |
KEGG_PATHWAY | cytokine-cytokine receptor interaction | 2.7 × 10−4 |
GOTERM_BP_DIRECT | chemotaxis | 2.8 × 10−4 |
GOTERM_CC_DIRECT | extracellular region | 5.5 × 10−4 |
GOTERM_BP_DIRECT | inflammatory response | 6.1 × 10−4 |
GOTERM_BP_DIRECT | response to lipopolysaccharide | 6.7 × 10−4 |
GOTERM_BP_DIRECT | immune response | 9.0 × 10−4 |
UP_KEYWORDS | signal | 9.9 × 10−4 |
GOTERM_CC_DIRECT | extracellular space | 1.4 × 10−3 |
KEGG_PATHWAY | chemokine signaling pathway | 2.0 × 10−3 |
KEGG_PATHWAY | legionellosis | 2.6 × 10−3 |
KEGG_PATHWAY | NOD-like receptor signaling pathway | 2.8 × 10−3 |
UP_KEYWORDS | chemotaxis | 3.2 × 10−3 |
KEGG_PATHWAY | rheumatoid arthritis | 6.8 × 10−3 |
UP_KEYWORDS | inflammatory response | 7.7 × 10−3 |
KEGG_PATHWAY | TNF signaling pathway | 9.9 × 10−3 |
UP_SEQ_FEATURE | disulfide bond | 9.9 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirklbauer, M.; Sallaberger, S.; Staudinger, P.; Corazza, U.; Leierer, J.; Mayer, G.; Schramek, H. Empagliflozin Inhibits IL-1β-Mediated Inflammatory Response in Human Proximal Tubular Cells. Int. J. Mol. Sci. 2021, 22, 5089. https://doi.org/10.3390/ijms22105089
Pirklbauer M, Sallaberger S, Staudinger P, Corazza U, Leierer J, Mayer G, Schramek H. Empagliflozin Inhibits IL-1β-Mediated Inflammatory Response in Human Proximal Tubular Cells. International Journal of Molecular Sciences. 2021; 22(10):5089. https://doi.org/10.3390/ijms22105089
Chicago/Turabian StylePirklbauer, Markus, Sebastian Sallaberger, Petra Staudinger, Ulrike Corazza, Johannes Leierer, Gert Mayer, and Herbert Schramek. 2021. "Empagliflozin Inhibits IL-1β-Mediated Inflammatory Response in Human Proximal Tubular Cells" International Journal of Molecular Sciences 22, no. 10: 5089. https://doi.org/10.3390/ijms22105089
APA StylePirklbauer, M., Sallaberger, S., Staudinger, P., Corazza, U., Leierer, J., Mayer, G., & Schramek, H. (2021). Empagliflozin Inhibits IL-1β-Mediated Inflammatory Response in Human Proximal Tubular Cells. International Journal of Molecular Sciences, 22(10), 5089. https://doi.org/10.3390/ijms22105089