The Role of Mitochondria in Carcinogenesis
Abstract
:1. Introduction
2. Mitochondrion as Organelle
3. Mitochondrial DNA
4. Mitochondrial Haplogroups and Polymorphisms
5. Heteroplasmy and Homoplasmy of mtDNA
6. Mitochondrial DNA and Carcinogenesis
6.1. Mitochondrion Metabolism and Cancer
6.2. Changes in Mitochondrial DNA and Carcinogenesis
6.3. mtDNA Polymorphisms and Haplogroups Associated with Cancer
7. Mitochondrial Haplogroups and Chronic Diseases
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anand, P.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008, 25, 2097–2116. [Google Scholar] [CrossRef]
- Caudron-Herger, M.; Diederichs, S. Mitochondrial mutations in human cancer, Curation of translation. RNA Biol. 2018, 15, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer, the next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Badrinath, N.; Yoo, S.Y. Mitochondria in cancer, in the aspects of tumorigenesis and targeted therapy. Carcinogenesis 2018, 39, 1419–1430. [Google Scholar] [CrossRef]
- Jiménez-Morales, S.; Pérez-Amado, C.J.; Langley, E.; Hidalgo-Miranda, A. Overview of mitochondrial germline variants and mutations in human disease, Focus on breast cancer Review. Int. J. Oncol. 2018, 53, 923–936. [Google Scholar]
- Kilarski, W. Structural Basics of Cell Biology; PWN: Warszawa, Poland, 2005; pp. 184–196. [Google Scholar]
- Genova, M.L.; Bianchi, C.; Lenaz, G. Supercomplex organization of the mitochondrial respiratory chain and the role of the Coenzyme Q pool, pathophysiological implications. Biofactors 2005, 25, 5–20. [Google Scholar] [CrossRef]
- Vartak, R.; Porras, C.A.; Bai, Y. Respiratory supercomplexes, structure, function and assembly. Protein Cell 2013, 4, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Wanders, R.J.; Ruiter, J.P.; Ijlst, L.; Waterham, H.R.; Houten, S.M. Theenzymology of mitochondrial fatty acid beta-oxidation and its applicationto follow-up analysis of positive neonatal screening results. J. Inherit. Metab. Dis. 2010, 33, 479–494. [Google Scholar] [CrossRef] [Green Version]
- Modica-Napolitano, J.S.; Kulawiec, M.; Singh, K.K. Mitochondria and human cancer. Curr. Mol. Med. 2007, 7, 121–131. [Google Scholar] [CrossRef]
- Contreras, L.; Drago, I.; Zampese, E.; Pozzan, T. Mitochondria, The calcium connection. Biochim. Biophys. Acta 2010, 1797, 607–618. [Google Scholar] [CrossRef] [Green Version]
- Łabedzka, K.; Grzanka, A.; Izdebska, M. Mitochondria and cell death. Postępy Hig. Med. Dosw. 2006, 60, 439–446. [Google Scholar]
- Pfanner, N.; Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol. 2001, 2, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Legros, F.; Malka, F.; Frachon, P.; Lombès, A.; Rojo, M. Organization and dynamics of human mitochondrial DNA. J. Cell Sci. 2004, 117, 2653–2662. [Google Scholar] [CrossRef] [Green Version]
- Wallace, D.C. Mitochondrial DNA sequence variation in human evolution and disease. Proc. Natl. Acad. Sci. USA 1994, 91, 8739–8746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, R.M.; Kubacka, I.; Chinnery, P.F.; Lightowlers, R.N.; Turnbull, D.M.; Howell, N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 1999, 23, 147. [Google Scholar] [CrossRef]
- Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]
- Kivisild, T.; Shen, P.; Wall, D.P.; Do, B.; Sung, R.; Davis, K.; Passarino, G.; Underhill, P.A.; Scharfe, C.; Torroni, A.; et al. The role of selection in the evolution of human mitochondrial genomes. Genetics 2006, 172, 373–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piechota, J.; Tońska, K.; Nowak, M.; Kabzińska, D.; Lorenc, A.; Bartnik, E. Comparison between the Polish population and European populations on the basis of mitochondrial morphs and haplogroups. Acta Biochim. Pol. 2004, 51, 883–895. [Google Scholar] [PubMed]
- Karki, R.; Pandya, D.; Elston, R.C.; Ferlini, C. Defining “mutation” and “polymorphism” in the era of personal genomics. BMC Med. Genom. 2015, 8, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brookes, A.J. The essence of SNPs. Genetics 1999, 234, 177–186. [Google Scholar] [CrossRef]
- Tishkoff, S.A.; Gonder, M.K.; Henn, B.M.; Mortensen, H.; Knight, A.; Gignoux, C.; Fernandopulle, N.; Lema, G.; Nyambo, T.B.; Ramakrishnan, U.; et al. History of Click-Speaking Populations of Africa Inferred from mtDNA and Y Chromosome Genetic Variation. Mol. Biol. Evol. 2007, 24, 2180–2195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonder, M.K.; Mortensen, H.M.; Reed, F.A.; de Sousa, A.; Tishkoff, S.A. Whole-mtDNA genome sequence analysis of ancient African lineages. Mol. Biol. Evol. 2007, 24, 757–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torroni, A.; Huoponen, K.; Francalacci, P.; Petrozzi, M.; Morelli, L.; Scozzari, R.; Obinu, D.; Savontaus, M.L.; Wallace, D.C. Classification of European mtDNAs from an analysis of three European populations. Genetics 1996, 144, 1835–1850. [Google Scholar] [CrossRef]
- Czarnecka, A.M.; Kukwa, W.; Krawczyk, T.; Scinska, A.; Kukwa, A. Mitochondrial failure in cell transformation. Post Biol. Komórki. 2011, 38, 85–110. [Google Scholar]
- Beckman, K.B.; Ames, B.N. Detection and quantification of oxidative adducts of mitochondrial DNA. Methods Enzym. 1996, 264, 442–453. [Google Scholar]
- Beckman, K.B.; Ames, B.N. Oxidative decay of DNA. J. Biol. Chem. 1997, 272, 19633–19636. [Google Scholar] [CrossRef] [Green Version]
- Potargowicz, E.; Szerszenowicz, E.; Staniszewska, M.; Nowak, D. Mitochondria jako źródło reaktywnych form tlenu. Postępy Hig. Med. Dosw. 2005, 59, 259–266. [Google Scholar]
- Kauppila, J.H.; Stewart, J.B. Mitochondrial DNA Radically free of free-radical driven mutations. Biochim. Biophys. Acta. 2015, 1847, 1354–1361. [Google Scholar] [CrossRef] [Green Version]
- Kotulska, A.; Kucharz, E.J. Miopatie mitochondrialne. Terapia 2004, 5, 43–48. [Google Scholar]
- Khan, N.A.; Govindaraj, P.; Meena, A.K.; Thangaraj, K. Mitochondrial disorders, challenges in diagnosis & treatment. Indian J. Med. Res. 2015, 141, 13–26. [Google Scholar]
- Grzybowska- Szatkowska, L.; Slaska, B. Mitochondrial DNA and carcinogenesis Review. Mol. Med. Rep. 2012, 6, 923–930. [Google Scholar] [CrossRef]
- Frazier, A.E.; Thorburn, D.R.; Compton, A.G. Mitochondrial energy generation disorders, genes, mechanisms and clues to pathology. J. Biol. Chem. 2017, 294, 5386–5395. [Google Scholar] [CrossRef] [Green Version]
- Man, P.Y.W.; Turnbull, D.M.; Chinnery, P.F. Leber hereditary optic neuropathy. J. Med. Genet. 2002, 39, 162–169. [Google Scholar] [CrossRef]
- Beekman, M.; Dowling, D.K.; Aanen, D.K. The costs of being male, are there sex-specific effects of uniparental mitochondrial inheritance? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 5, 369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, H.; Fujita, M. Whole genome sequencing analysis for cancer genomics and precision medicine. Cancer Sci. 2018, 109, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Zu, X.L.; Guppy, M. Cancer metabolism, facts, fantasy, and fiction. Biochem. Biophys. Res. Commun. 2004, 313, 459–465. [Google Scholar] [CrossRef]
- Bogucka, K.; Wojtczak, L. Efekt Crabtree wyrazem strategii metabolicznej szybko rosnacych nowotworow i innych komorek proliferujacych. Postępy Biochem. 1999, 45, 100–108. [Google Scholar] [PubMed]
- Diaz-Ruiz, R.; Rigoulet, M.; Devin, A. The Warburg and Crabtree effects, on the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim. Biophys. Acta. 2011, 1807, 568–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtczak, L.; Teplova, V.V.; Bogucka, K.; Czyż, A.; Makowska, A.; Wieckowski, M.R.; Duszynski, J.; Evtodienko, V.Y. Effect of glucose and deoxyglucose on the redistribution of calcium in Ehrlich ascites tumor and Zajdela hepatoma cells and its consequences for mitochondrial energetics. Further arguments for the role of Ca2+ in the mechanism of the Crabtree effect. Eur. J. Biochem. 1999, 263, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Teplova, J.; Duszynski, K.; Bogucka, L. Wojtczak. The role of cytoplasmic Ca2+ in glucose-induced inhibition of respiration and oxidative phosphorylation in Ehrlich ascites tumor cells, a novel mechanism of the Crabtree effect. Cell Calcium. 1994, 15, 439–446. [Google Scholar]
- Pedersen, P.L.; Mathupala, S.; Rempel, A.; Geschwind, J.F.; Ko, Y.H. Mitochondrial bound type II hexokinase, a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim. Biophys. Acta 2002, 1555, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Westphal, D.; Dewson, G.; Czabotar, P.E.; Kluck, R.M. Molecular biology of Bax and Bak activation and action. Biochim. Biophys. Acta 2011, 18134, 521–531. [Google Scholar] [CrossRef] [Green Version]
- Brandon, M.; Baldi, P.; Wallace, D.C. Mitochondrial mutations in cancer. Oncogene 2006, 25, 4647–4662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, D.C. Mitochondria and cancer. Nat. Rev. Cancer 2012, 12, 685–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clayton, D.A.; Vinograd, J. Complex mitochondrial DNA in leukemic and normal human myeloid cells. Proc. Natl. Acad. Sci. USA 1969, 62, 1077–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augenlicht, L.H.; Heerdt, B.G. Mitochondria, integrators in tumorigenesis? Nat. Genet. 2001, 28, 104–105. [Google Scholar] [CrossRef]
- Jones, J.B.; Song, J.J.; Hempen, P.M.; Parmigiani, G.; Hruban, R.H.; Kern, S.E. Detection of Mitochondrial DNA Mutations in Pancreatic Cancer Offers a “Mass”-ive Advantage over Detection of Nuclear DNA Mutations. Cancer Res. 2001, 61, 1299–1304. [Google Scholar]
- Coller, H.A.; Khrapko, K.; Bodyak ND Nekhaeva, E.; Herrero-Jimenez, P.; Thilly, W.G. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nat. Genet. 2001, 28, 147–150. [Google Scholar] [CrossRef]
- Polyak, K.; Li, Y.; Zhu, H.; Lengauer, C.; Willson, J.K.; Markowitz, S.D. Somatic mutations of the mitochondrial genome in human colorectal tumors. Nat. Genet. 1998, 20, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, J.I.; Hashizume, O.; Ishikawa, K.; Shimizu, A. Mutations in mitochondrial DNA regulate mitochondrial diseases and metastasis but do not regulate aging. Curr. Opin. Genet. Dev. 2016, 38, 63–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, S.R.; Salk, J.J.; Schmitt, M.W.; Loeb, L.A. Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet. 2013, 9, e1003794. [Google Scholar] [CrossRef] [Green Version]
- Zsurka, G.; Peeva, V.; Kotlyar, A.; Kunz, W.S. Is There Still Any Role for Oxidative Stress in Mitochondrial DNA-Dependent Aging? Rev. Genes 2018, 219, E175. [Google Scholar] [CrossRef] [Green Version]
- Abu-Amero, K.K.; Alzahrani, A.S.; Zou, M.; Shi, Y. Association of mitochondrial DNA transversion mutations with familial medullary thyroid carcinoma/multiple endocrine neoplasia type 2 syndrome. Oncogenetics 2006, 25, 677–684. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, K.; Hayashi, J. A novel function of mtDNA its involvement inmetastasis. Mitochondrion 2008, 8, 339–344. [Google Scholar] [CrossRef]
- Ishikawa, K.; Imanishi, H.; Takenaga, K.; Hayashi, J. Regulation of metastasis, mitochondrial DNA mutations have appeared on stage. J. Bioenerg. Biomembr. 2012, 446, 639–644. [Google Scholar] [CrossRef]
- Ishikawa, K.; Koshikawa, N.; Takenaga, K.; Nakada, K.; Hayashi, J. Reversible regulation of metastasis by ROS-generating mtDNA mutations. Oncol. Rep. 2019, 412, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, K.; Takenaga, K.; Akimoto, M.; Koshikawa, N.; Yamaguchi, A.; Imanishi, H.; Nakada, K.; Honma, Y.; Hayashi, J. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 2008, 25876, 661–664. [Google Scholar] [CrossRef] [Green Version]
- Petros, J.A.; Baumann, A.K.; Ruiz-Pesini, E.; Amin, M.B.; Sun, C.Q.; Hall, J.; Lim, S.; Issa, M.M.; Flanders, W.D.; Hosseini, S.H.; et al. MtDNA mutations increase tumorigenicity in prostate cancer. Proc. Natl. Acad. Sci. USA 2005, 102, 719–724. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, V.W.; Xue, W.C.; Tsang, P.C.; Cheung, A.N.; Ngan, H.Y. The increase of mitochondrial DNA content in endometrial adenocarcinoma cells, a quantitative study using laser-captured microdissected tissues. Gynecol. Oncol. 2005, 98, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Reznik, E.; Miller, M.L.; Şenbabaoğlu, Y.; Riaz, N.; Sarungbam, J.; Tickoo, S.K.; Al-Ahmadie, H.A.; Lee, W.; Seshan, V.E.; Hakimi, A.A.; et al. Mitochondrial DNA copy number variation across human cancers. Elife 2016, 22, e10769. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.T.; Cain, J.E.; Cuddihy, A.; Johnson, J.; Dickinson, A.; Yeung, K.Y.; Kumar, B.; Johns, T.G.; Watkins, D.N.; Spencer, A.; et al. Mitochondrial DNA plasticity is an essential inducer of tumorigenesis. Cell Death Discov. 2016, 2, 16016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, H.; Huang, P.; Wang, Z.; Zhang, Y.; Zhang, Z.; Xu, W.; Wang, X.; Han, Y.; Guo, X. Association of decreased mitochondrial DNA content with the progression of colorectal cancer. BMC Cancer. 2013, 13, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smiraglia, D.J.; Kulawiec, M.; Bistulfi, G.L.; Gupta, S.G.; Singh, K.K. A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol. 2008, 7, 1182–1190. [Google Scholar] [CrossRef] [Green Version]
- Errichiello, E.; Venesio, T. Mitochondrial DNA variants in colorectal carcinogenesis, Drivers or passengers? J. Cancer Res. Clin. Oncol. 2017, 143, 1905–1914. [Google Scholar] [CrossRef] [PubMed]
- Canter, J.A.; Kallianpur, A.R.; Parl, F.F.; Millikan, R.C. Mitochondrial DNA G10398A polymorphism and invasive breast cancer in African-American women. Cancer Res. 2005, 65, 8028–8033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czarnecka, A.M.; Krawczyk, T.; Zdrozny, M.; Lubiński, J.; Arnold, R.S.; Kukwa, W.; Scińska, A.; Golik, P.; Bartnik, E.; Petros, J.A. Mitochondrial NADH dehydrogenase subunit 3 ND3polymorphism A10398G and sporadic breast cancer in Poland. Breast Cancer Res. Treat. 2010, 121, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.K.; Leal, S.M.; Covarrubias, D.; Liu, A.; Wong, L.J. Mitochondrial genetic background modifies breast cancer risk. Cancer Res. 2007, 67, 4687–4694. [Google Scholar] [CrossRef] [Green Version]
- Grzybowska-Szatkowska, L.; Slaska, B. Mitochondrial NADH dehydrogenase polymorphisms are associated with breast cancer in Poland. J. Appl. Genet. 2014, 55, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Volodko, N.V.; L’Vova, M.A.; Starikovskaya, E.B.; Derbeneva, O.A.; Bychkov, I.Y.; Mikhailovskaya, I.E.; Pogozheva, I.V.; Fedotov, F.F.; Soyan, G.V.; Procaccio, V.; et al. Spectrum of pathogenic mtDNA mutations in Leber’s hereditary optic neuropathy families from Siberia. Russ. J. Genet. 2006, 42, 76–83. [Google Scholar] [CrossRef]
- Xu, H.; He, W.; Jiang, H.G.; Zhao, H.; Peng, X.H.; Wei, Y.H.; Wei, J.N.; Xie, C.H.; Liang, C.; Zhong, Y.H.; et al. Prognostic value of mitochondrial DNA content and G10398A polymorphism in non-small cell lung cancer. Oncol. Rep. 2013, 30, 3006–3012. [Google Scholar] [CrossRef] [Green Version]
- Datta, S.; Majumder, M.; Biswas, N.K.; Sikdar, N.; Roy, B. Increased risk of oral cancer in relation to common Indian mitochondrial polymorphisms and Autosomal GSTP1 locus. Cancer 2007, 19, 1991–1999. [Google Scholar] [CrossRef]
- Francis, A.; Pooja, S.; Rajender, S.; Govindaraj, P.; Tipirisetti, N.R.; Surekha, D.; Rao, D.R.; Rao, L.; Ramachandra, L.; Vishnupriya, S.; et al. A mitochondrial DNA variant 10398G>A in breast cancer among South Indians, an original study with meta-analysis. Mitochondrion 2013, 13, 559–565. [Google Scholar] [CrossRef]
- Salas, A.; García-Magariños, M.; Logan, I.; Bandelt, H.J. The saga of the many studies wrongly associating mitochondrial DNA with breast cancer. BMC Cancer 2014, 14, 659. [Google Scholar] [CrossRef] [Green Version]
- Kalsbeek, A.M.F.; Chan, E.K.F.; Corcoran, N.M.; Hovens, C.M.; Haye, V.M. Mitochondrial genome variation and prostate cancer, a review of the mutational landscape and application to clinical management. Oncotarget 2017, 8, 71342–77135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCrow, J.P.; Petersen, D.C.; Louw, M.; Chan, E.K.F.; Harmeyer, K.; Vecchiarelli, S.; Lyons, R.J.; Bornman, M.S.R.; Hayes, V.M. Spectrum of mitochondrial genomic variation and associated clinical presentation of prostate cancer in South African men. Prostate 2016, 76, 349–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirches, E.; Krause, G.; Warich-Kirches, M.; Weis, S.; Schneider, T.; Meyer-Puttlitz, B.; Mawrin, C.; Dietzmann, K. High frequency of mitochondrial DNA mutations in glioblastoma multiforme identified by direct sequence comparison to blood samples. Int. J. Cancer. 2001, 93, 534–538. [Google Scholar] [CrossRef]
- Ray, A.M.; Zuhlke, K.A.; Levin, A.M.; Douglas, J.A.; Cooney, K.A.; Petros, J.A. Sequence variation in the mitochondrial gene cytochrome c oxidase subunit I and prostate cancer in African American men. Prostate 2009, 69, 956–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, T.A.; Arnold, R.; Petros, J.A. Mitochondrial cytochrome c osidase subunit 1 sequence variation in prostate cancer. Scientifica 2013, 2012. [Google Scholar] [CrossRef] [Green Version]
- Booker, L.M.; Habermacher, G.M.; Jessie, B.C.; Sun, Q.C.; Baumann, A.K.; Min, M.; Lim, S.D.; Fernandez-Golarz, C.; Lyles, R.H.; Brown, M.D.; et al. North American white mitochondrial haplogrups in prostate and renal cancer. J. Urol. 2006, 175, 468–472. [Google Scholar] [CrossRef]
- Cocoş, R.; Schipor, S.; Badiu, C.; Raicu, F. Mitochondrial DNA haplogroup K as a contributor to protection against thyroid cancer in a population from southeast Europe. Mitochondrion 2017, 39, 43–50. [Google Scholar] [CrossRef]
- Fang, H.; Shen, L.; Chen, T.; He, J.; Ding, Z.; Wei, J.; Qu, J.; Chen, G.; Lu, J.; Bai, Y. Cancer type-specific modulation of mitochondrial haplogroups in breast, colorectal and thyroid cancer. BMC Cancer 2010, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Ba, Y.; Li, D.; Du, X.; Lia, X.; Yang, H.; An, J.; Xing, J.; Yang, H.; Dong, G.; et al. Genetic variations of mitochondrial genome modify risk and prognosis of hepatocellular carcinoma patients. Clin. Res. Hepatol. Gastroenterol. 2017, 41, 378–385. [Google Scholar] [CrossRef]
- Liu, V.W.; Shi, H.H.; Cheung, A.N.; Chiu, P.M.; Leung, T.W.; Nagley, P.; Wong, L.C.; Ngan, H.Y. High incidence of somatic mitochondrial DNA mutations in human ovarian carcinomas. Cancer Res. 2001, 61, 5998–6001. [Google Scholar]
- Tan, D.J.; Chang, J.; Liu, L.L.; Bai, R.K.; Wang, Y.F.; Yeh, K.T.; Wong, L.J. Significance of somatic mutations and content alteration of mitochondrial DNA in esophageal cancer. BMC Cancer. 2006, 6, 93. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Guo, Z.; Bai, Y.; Cui, L.; Zhang, S.; Xu, J. Identification of sequence polymorphisms in the displacement loop region of mitochondrial DNA as a risk factor for renal cell carcinoma. Biomed. Rep. 2013, 1, 563–566. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhang, F.; Fan, H.; Peng, L.; Zhang, R.; Liu, S.; Guo, Z. Sequence polymorphisms of mitochondrial D-loop and hepatocellular carcinoma outcome. Biochem. Biophys. Res. Commun. 2011, 406, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhao, S.; Fan, H.; Du, Y.; Zhao, Y.; Wang, G. Identification of sequence polymorphisms in the D-Loop region of mitochondrial DNA as a risk factor for colon cancer. Mitochondrial DNA A DNA Mapp Seq Anal. 2016, 27, 4244–4245. [Google Scholar] [CrossRef] [PubMed]
- Czarnecka, A.M.; Klemba, A.; Semczuk, A.; Plak, K.; Marzec, B.; Krawczyk, T.; Kofler, B.; Golik, P.; Bartnik, E. Common mitochondrial polymorphisms as risk factor for endometrial cancer. Int. Arch. Med. 2009, 2, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, W.Y.; Zhao, L.D.; Qian, Y.P.; Wang, Q.J.; Li, N.; Greinwald, J.H.; Guan, M.X. Extremely low penetrance of hearing loss in four Chinese families with the mitochondrial 12S rRNA A1555G mutation. Biochem. Biophis. Res. Com. 2005, 328, 1244–1251. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Young, W.Y.; Yan, Q.; Li, R.; Cao, J.; Wang, Q.; Li, X.; Peters, J.L.; Han, D.; Guan, M.X. Functional characterization of the mitochondrial 12S rRNA C1494T mutation associated with aminoglycoside-induced and nonsyndromic hearing loss. Nucleic Acid Res. 2005, 33, 1132–1139. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Pesini, E.; Mishmar, D.; Brandon, M.; Procaccio, V. and Wallace, D.C. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 2004, 303, 223–226. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, V.O.; De Rasmo, D.; Signorile, A.; Sardanelli, A.M.; Grattagliano, I.; Minerva, F.; Cardinale, G.; Portincasa, P.; Papa, S.; Palasciano, G. T16189C mitochondrial DNA variant is associated with metabolic syndrome in Caucasian subjects. Nutrition 2011, 27, 773–777. [Google Scholar] [CrossRef]
- Klemba, A.; Kukwa, W.; Bartnik, E.; Krawczyk, T.; Scińska, A.; Golik, P.; Czarnecka, A.M. Molecular biology of endometrial carcinoma. Post. Hig. Med. Dosw. Online 2008, 62, 420–432. [Google Scholar]
- Tommasi, S.; Favia, P.; Weigl, S.; Bianco, A.; Pilato, B.; Russo, L.; Paradiso, A.; Petruzzella, V. Mitochondrial DNA variants and risk of familial breast cancer, an exploratory study. Int. J. Oncol. 2014, 44, 1691–1698. [Google Scholar] [CrossRef] [Green Version]
- Verma, M.; Naviaux, R.K.; Tanaka, M.; Kumar, D.; Franceschi, C.; Singh, K.K. 2007. Mitochondrial DNA and cancer epidemiology. Cancer Res. 2007, 672, 437–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Wang, Y.; Wang, H.; Zhang, R.; Guo, Z. Mitochondrial DNA haplogroup N is associated good outcome of gastric cancer. Tumour Biol. 2014, 5, 12555–12559. [Google Scholar] [CrossRef]
- Koshikawa, N.; Akimoto, M.; Hayashi, J.I.; Nagase, H.; Takenaga, K. Association of predicted pathogenic mutations in mitochondrial ND genes with distant metastasis in NSCLC and colon cancer. Sci. Rep. 2017, 141, 15535. [Google Scholar] [CrossRef]
- Ding, C.; Li, R.; Wang, P.; Fan, H.; Guo, Z. Sequence polymorphisms of the mitochondrial displacement loop and outcome of non-small cell lung cancer. Exp. Med. 2012, 3, 861–864. [Google Scholar] [CrossRef] [Green Version]
- Mohideen, A.M.; Dicks, E.; Parfrey, P.; Green, R.; Savas, S. Mitochondrial DNA polymorphisms, its copy number change and outcome in colorectal cancer. BMC Res. Notes. 2015, 8, 272. [Google Scholar] [CrossRef] [Green Version]
- Abu-Amero, K.K.; Bosley, T.M. Mitochondrial abnormalities in patients with LHON-like optic neuropathies. Invest. Ophthalmol. Vis. Sci. 2006, 4, 4211–4220. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Yang, Q.; Hwang, S.J.; Sun, F.; Johnson, A.D.; Shirihai, O.S.; Vasan, R.S.; Levy, D.; Schwartz, F. Association of genetic variation in the mitochondrial genome with blood pressure and metabolic traits. Hypertension 2012, 60, 949–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Walt, J.M.; Nicodemus, K.K.; Martin, E.R.; Scott, W.K.; Nance, M.A.; Watts, R.L.; Hubble, J.P.; Haines, J.L.; Koller, W.C.; Lyons, K.; et al. Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am. J. Hum. Genet. 2003, 72, 804–811. [Google Scholar] [CrossRef] [Green Version]
- Hwang, I.W.; Hong, J.H.; Kwon, B.N.; Kim, H.J.; Lee, N.R.; Lim, M.H.; Kwon, H.J.; Jin, H.J. Association of mitochondrial DNA 10398 A/G polymorphism with attention deficit and hyperactivity disorder in Korean children. Genetics 2017, 630, 8–12. [Google Scholar] [CrossRef]
- Saxena, R.; de Bakker, P.I.; Singer, K.; Mootha, V.; Burtt, N.; Hirschhorn, J.N.; Gaudet, D.; Isomaa, B.; Daly, M.J.; Groop, L.; et al. Comprehensive association testing of common mitochondrial DNA variation in metabolic disease. Am. J. Hum. Genet. 2006, 79, 54–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darvishi, K.; Sharma, S.; Bhat, A.K.; Rai, E.; Bamezai, R.N. Mitochondrial DNA G10398A polymorphism imparts maternal Haplogroup N a risk for breast and esophageal cancer. Cancer Lett. 2007, 249, 249–255. [Google Scholar] [CrossRef]
- Bussard, K.M.; Siracusa, L.D. Understanding Mitochondrial Polymorphisms in Cancer. Cancer Res. 2017, 7, 6051–6059. [Google Scholar] [CrossRef] [Green Version]
- Ebner, S.; Lang, R.; Mueller, E.E.; Eder, W.; Oeller, M.; Moser, A.; Koller, J.; Paulweber, B.; Mayr, J.A.; Sperl, W.; et al. Mitochondrial haplogroups, control region polymorphisms and malignant melanoma: A study in middle European Caucasians. PLoS ONE 2011, 6, e27192. [Google Scholar] [CrossRef]
- Rollins, B.; Martin, M.V.; Sequeira, P.A.; Moon, E.A.; Morgan, L.Z.; Watson, S.J.; Schatzberg, A.; Akil, H.; Myers, R.M.; Jones, E.G.; et al. Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder. PLoS ONE 2009, 4, e4913. [Google Scholar] [CrossRef]
- Kumari, T.; Vachher, M.; Bansal, S.; Bamezai, R.N.K.; Kumar, B. Meta-analysis of mitochondrial T16189C polymorphism for cancer and Type 2 diabetes risk. Clin. Chim. Acta. 2018, 482, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Bhat, Z.I.; Bansal, S.; Saini, S.; Naseem, A.; Wahabi, K.; Burman, A.; Kumar, G.T.; Saluja, S.S.; Rizvi, M.M.A. Association of mitochondrial copy number variation and T16189C polymorphism with colorectal cancer in North Indian population. Tumour Biol. 2017, 39, 1010428317740296. [Google Scholar] [CrossRef] [Green Version]
- Mueller, E.E.; Eder, W.; Ebner, S.; Schwaiger, E.; Santic, D.; Kreindl, T.; Stanger, O.; Paulweber, B.; Iglseder, B.; Oberkofler, H.; et al. The mitochondrial T16189C polymorphism is associated with coronary artery disease in Middle European populations. PLoS ONE 2011, 6, e16455. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.W.; Lin, T.K.; Weng, S.W.; Liou, C.W. Mitochondrial DNA Variants in the Pathogenesis of Type 2 Diabetes - Relevance of Asian Population Studies. Rev. Diabet Stud. 2009, 6, 237–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morten, K.J.; Poulton, J.; Sykes, B. Multiple independent occurrence of the 3243 mutations in mitochondrial tRNAleuUUR in patients with the MELAS phenotype. Hum. Mol. Genet. 1995, 4, 1689–1691. [Google Scholar] [CrossRef]
- Ross, O.A.; McCormack, R.; Maxwell, L.D.; Duguid, R.A.; Quinn, D.J.; Barnett, Y.A.; Rea, I.M.; El-Agnaf, O.M.; Gibson, J.M.; Wallace, A.; et al. mt4216C variant in linkage with the mtDNA TJ cluster may confer a susceptibility to mitochondrial dysfunction resulting in an increased risk of Parkinson´s disease in the Irish. Exp. Gerontol. 2003, 38, 397–405. [Google Scholar] [CrossRef]
- Kirchner, S.C.; Hallagan, S.E.; Farin, F.M.; Dilley, J.; Costa-Mallen, P.; Smith-Weller, T.; Franklin, G.M.; Swanson, P.D.; Checkoway, H. Mitochondrial ND1 sequence analysis and association of the T4216C mutation with Parkinson’s disease. Neurotoxicology 2000, 21, 441–446. [Google Scholar]
- Khan, N.A.; Govindaraj, P.; Soumittra, N.; Srilekha, S.; Ambika, S.; Vanniarajan, A.; Meena, A.K.; Uppin, M.S.; Sundaram, C.; Taly, A.B.; et al. Haplogroup heterogeneity of LHON patients carrying the m.14484T>C mutation in India. Invest. Ophthalmol Vis. Sci. 2013, 54, 3999–4005. [Google Scholar] [CrossRef] [Green Version]
- Man, P.Y.W.; Howell, N.; Mackey, D.A.; Nørby, S.; Rosenberg, T.; Turnbull, D.M.; Chinnery, P.F. Mitochondrial DNA haplogroup distribution within Leber hereditary optic neuropathy pedigrees. J. Med. Genet. 2004, 41, e41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, A.; Fonseca, B.V.; Krug, T.; Manso, H.; Gouveia, L.; Albergaria, I.; Gaspar, G.; Correia, M.; Viana-Baptista, M.; Simões, R.M.; et al. Mitochondrial haplogroupH1 is protective for ischemic stroke in Portuguese patients. BMC Med. Genet. 2008, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Chinnery, P.F.; Elliott, H.R.; Syed, A.; Rothwell, P.M. Mitochondrial DNA haplogroups and risk of transient ischaemic attack and ischaemic stroke, a genetic association study. Lancet Neurol. 2010, 9, 498–503. [Google Scholar] [CrossRef] [Green Version]
- Van der Walt, J.M.; Dementieva, Y.A.; Martin, E.R.; Scott, W.K.; Nicodemus, K.K.; Kroner, C.C.; Welsh-Bohmer, K.A.; Saunders, A.M.; Roses, A.D.; Small, G.W.; et al. Analysis of European mitochondrial haplogroups with Alzheimer disease risk. Neurosci. Lett. 2004, 365, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Man, P.Y.W.; Votruba, M.; Moore, A.T.; Chinnery, P.F. Treatment strategies for inherited optic neuropathies, past, present and future. Eye Lond. 2014, 28, 521–537. [Google Scholar]
- Kirkman, M.A.; Yu-Wai-Man, P.; Korsten, A.; Leonhardt, M.; Dimitriadis, K.; De Coo, I.F.; Klopstock, T.; Chinnery, P.F. Gene-environment interactions in Leber hereditary optic neuropathy. Brain 2009, 132, 2317–2326. [Google Scholar] [CrossRef] [PubMed]
Polymorphism | Mitochondrial Gene | Type of Mutation | Amino Acid Change | Haplogroup | Type of Cancer | Chronic Disease |
---|---|---|---|---|---|---|
T6253C | MT-CO1 | missense | M 117 T | H, L1, M, D, A | prostate cancer [59] | - |
C6340T | MT-CO1 | missenese | T 146 I | J, T, L1, N, E, | prostate cancer [59] | - |
G6261A | MT-CO1 | missenese | A 120 T | N, L3, C, R, H, J, T, B | prostate cancer [59] | LHON [102] |
A6663G | MT-CO1 | missenese | I 254 V | L2 | prostate cancer [59] | - |
C5911T | MT-CO1 | missenese | A 3 V | L0, R, H | prostate cancer [59] | - |
A7158G | MT-CO1 | missenese | I 419 V | L3, N, R | prostate cancer [59] | - |
A6047G | MT-CO1 | synonymic | L 48 L | U | pancreatic cancer [49] | - |
T5999C | MT-CO1 | synonymic | A 32 A | U, M, H | pancreatic cancer [49] | - |
G5913A | MT-CO1 | missenese | D 177 N | F, K | prostate cancer [59] | hypertenssion) [103] |
G9055A | MT-ATP-6 | missenese | A 177 T | M, Z, A, R, H, J, B, U | breast cancer | PD protective factor [104] |
A10398G | MT-ND3 | missenese | T 114 A | N, S, N, W, Y, X, R, J, B, K, U | breast cancer [69] | LHON, PD protective factor, ADHD [105], metabolic syndrome [106] |
G10398A | MT-ND3 | missenese | A 114 T | N | breast cancer, esophageal cancer [107], non-small cell cancer [108] | - |
G14905A | MT-CYB | synonymic | M 53 M | B, T, D, L0, L2, L3, L4, L5 | breast cancer [69] | - |
C14766T | MT-CYB | missenese | I 7 T | - | breast cancer [69] | - |
C16270T | D-loop | synonymic | not applicable | L1, L3, M, D, N, I, A, P, H, T, U, K | melanoma [109] | - |
A16183C | D-loop | synonymic | not applicable | - | melanoma [109] | - |
C16192T | D-loop | synonymic | not applicable | L0, L2, L3, M, C, S, I, W, A, X, P, V, H, J, T, R, U | melanoma [109] | - |
T195C | D-loop | synonymic | not applicable | L0, L2, L3, M, C, E, G, D, N, S3, W, A, X, R, HV, H, J, T, F, B, U, K | melanoma [109] | bipolar disorder [110] |
C16261T | D-loop | synonymic | not applicable | L1, M, Q, C, E, N, A, R, P, V, J, T, B, U, K | rectal cancer [101] | - |
T16304C | D-loop | synonymic | not applicable | L3, M, I, N, A, R, H, T, U | rectal cancer [101] | - |
T6777C | D-loop | synonymic | not applicable | - | epithelial ovarian cancer [108] | - |
T16521C | D-loop | synonymic | not applicable | - | stomach cancer [108] | - |
G207A | D-loop | synonymic | not applicable | L0, L2, L3, L6, M, Q, C, Z, G, D, N, I, W, A, X, R, H, V, J, T, F, U, K | endometrial cancer [90] | - |
C16069T | D-loop | synonymic | not applicable | L0, M, D, N, HV, J | bladder cancer [97] | - |
T16189C | D-loop | synonymic | not applicable | M, C, Z, N, S, X, Y, A, F, R, HV1, H, J, T, G, D, L, U, K | endometrial cancer [111], breast cancer, melanoma [109], rectal cancer [112] | coronary artery disease [113] diabetes t.2 |
T16126C | D-loop | synonymic | not applicable | L0, L1, M, D, N, Y, A, X, JT, R, HV, H, F, B, U | endometrial cancer [90] | - |
T16519C | D-loop | synonymic | not applicable | - | breast cancer [69], endometrail cancer [69] | - |
C16223A | D-loop | synonymic | not applicable | - | endometrail cancer [90] | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozakiewicz, P.; Grzybowska-Szatkowska, L.; Ciesielka, M.; Rzymowska, J. The Role of Mitochondria in Carcinogenesis. Int. J. Mol. Sci. 2021, 22, 5100. https://doi.org/10.3390/ijms22105100
Kozakiewicz P, Grzybowska-Szatkowska L, Ciesielka M, Rzymowska J. The Role of Mitochondria in Carcinogenesis. International Journal of Molecular Sciences. 2021; 22(10):5100. https://doi.org/10.3390/ijms22105100
Chicago/Turabian StyleKozakiewicz, Paulina, Ludmiła Grzybowska-Szatkowska, Marzanna Ciesielka, and Jolanta Rzymowska. 2021. "The Role of Mitochondria in Carcinogenesis" International Journal of Molecular Sciences 22, no. 10: 5100. https://doi.org/10.3390/ijms22105100
APA StyleKozakiewicz, P., Grzybowska-Szatkowska, L., Ciesielka, M., & Rzymowska, J. (2021). The Role of Mitochondria in Carcinogenesis. International Journal of Molecular Sciences, 22(10), 5100. https://doi.org/10.3390/ijms22105100