Distinct Concentration-Dependent Molecular Pathways Regulate Bone Cell Responses to Cobalt and Chromium Exposure from Joint Replacement Prostheses
Abstract
:1. Introduction
2. Results
2.1. Effect of Cobalt and Chromium Exposure on Primary Human Osteoblasts
2.2. Effect of Cobalt and Chromium Exposure on Primary Human Osteoclasts
2.3. Effect of Cobalt and Chromium Exposure on Primary Human Osteoblasts on Prosthesis Surfaces
3. Discussion
3.1. Systemic Levels of Metal Exposure Inhibit Osteoclast Differentiation and Function
3.2. Periprosthetic Levels of Metal Exposure Inhibit Differentiation and Function of Osteoblasts and Osteoclasts
3.3. Pathways with a Dose-Dependent Effects to Metal Ions
3.4. Response of Osteoblasts to Prosthetic Surfaces and Metal Exposure
4. Materials and Methods
4.1. Metal Ion Preparation and Treatment
4.2. Primary Human Osteoblast Culture
4.3. Primary Human Osteoclast Culture
4.4. RNA Extraction and Gene Expression
4.5. Data Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Smith, A.J.; Dieppe, P.; Howard, P.W.; Blom, A.W. Failure rates of metal-on-metal hip resurfacings: Analysis of data from the National Joint Registry for England and Wales. Lancet 2012, 380, 1759–1766. [Google Scholar] [CrossRef]
- Smith, A.J.; Dieppe, P.; Vernon, K.; Porter, M.; Blom, A.W. Failure rates of stemmed metal-on-metal hip replacements: Analysis of data from the National Joint Registry of England and Wales. Lancet 2012, 379, 1199–1204. [Google Scholar] [CrossRef]
- Prentice, J.R.; Clark, M.J.; Hoggard, N.; Morton, A.C.; Tooth, C.; Paley, M.N.; Stockley, I.; Hadjivassiliou, M.; Wilkinson, J.M. Metal-on-Metal Hip Prostheses and Systemic Health: A Cross-Sectional Association Study 8 Years after Implantation. PLoS ONE 2013, 8, e66186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, R.E.; Shah, K.M.; Wilkinson, J.M.; Gartland, A. Effects of cobalt and chromium ions at clinically equivalent concentrations after metal-on-metal hip replacement on human osteoblasts and osteoclasts: Implications for skeletal health. Bone 2011, 49, 717–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posada, O.M.; Tate, R.J.; Grant, M.H. Effects of CoCr metal wear debris generated from metal-on-metal hip implants and Co ions on human monocyte-like U937 cells. Toxicol. In Vitro 2015, 29, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.M.; Orton, P.; Mani, N.; Wilkinson, J.M.; Gartland, A. Osteocyte physiology and response to fluid shear stress are impaired following exposure to cobalt and chromium: Implications for bone health following joint replacement. J. Orthop. Res. 2016, 35, 1716–1723. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.M.; Wilkinson, J.M.; Gartland, A. Cobalt and chromium exposure affects osteoblast function and impairs the mineralization of prosthesis surfaces in vitro. J. Orthop. Res. 2015, 33, 1663–1670. [Google Scholar] [CrossRef] [PubMed]
- Tkaczyk, C.; Huk, O.L.; Mwale, F.; Antoniou, J.; Zukor, D.J.; Petit, A.; Tabrizian, M. Effect of chromium and cobalt ions on the expression of antioxidant enzymes in human U937 macrophage-like cells. J. Biomed. Mater. Res. Part A 2010, 94, 419–425. [Google Scholar] [CrossRef]
- Pemmari, A.; Leppänen, T.; Paukkeri, E.-L.; Eskelinen, A.; Moilanen, T.; Moilanen, E. Gene expression in adverse reaction to metal debris around metal-on-metal arthroplasty: An RNA-Seq-based study. J. Trace Elements Med. Biol. 2018, 48, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drynda, A.; Drynda, S.; Kekow, J.; Lohmann, C.H.; Bertrand, J. Differential Effect of Cobalt and Chromium Ions as Well as CoCr Particles on the Expression of Osteogenic Markers and Osteoblast Function. Int. J. Mol. Sci. 2018, 19, 3034. [Google Scholar] [CrossRef] [Green Version]
- Palmqvist, P.; Lundberg, P.; Persson, E.; Johansson, A.; Lundgren, I.; Lie, A.; Conaway, H.H.; Lerner, U.H. Inhibition of Hormone and Cytokine-stimulated Osteoclastogenesis and Bone Resorption by Interleukin-4 and Interleukin-13 Is Associated with Increased Osteoprotegerin and Decreased RANKL and RANK in a STAT6-dependent Pathway. J. Biol. Chem. 2006, 281, 2414–2429. [Google Scholar] [CrossRef] [Green Version]
- Takayanagi, H.; Ogasawara, K.; Hida, S.; Chiba, T.; Murata, S.; Sato, K.; Takaoka, A.; Yokochi, T.; Oda, H.; Tanaka, K.; et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 2000, 408, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, A.; Takami, M.; Miyamoto, Y.; Nakamaki, T.; Tomoyasu, S.; Kadono, Y.; Tanaka, S.; Inoue, T.; Kamijo, R. Cell Adhesion Signaling Regulates RANK Expression in Osteoclast Precursors. PLoS ONE 2012, 7, e48795. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Liang, M.; Wu, Y.; Ding, N.; Duan, L.; Yu, T.; Bai, Y.; Kang, F.; Dong, S.; Xu, J.; et al. Mature osteoclast–derived apoptotic bodies promote osteogenic differentiation via RANKL-mediated reverse signaling. J. Biol. Chem. 2019, 294, 11240–11247. [Google Scholar] [CrossRef] [PubMed]
- Sims, N.A.; Martin, T.J. Coupling Signals between the Osteoclast and Osteoblast: How are Messages Transmitted between These Temporary Visitors to the Bone Surface? Front. Endocrinol. 2015, 6, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davda, K.; Lali, F.V.; Sampson, B.; Skinner, J.A.; Hart, A.J. An analysis of metal ion levels in the joint fluid of symptomatic patients with metal-on-metal hip replacements. J. Bone Jt. Surg. 2011, 93, 738–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Hilliard, G.; Ferguson, T.; Millhorn, D.E. Cobalt Inhibits the Interaction between Hypoxia-inducible Factor-α and von Hippel-Lindau Protein by Direct Binding to Hypoxia-inducible Factor-α. J. Biol. Chem. 2003, 278, 15911–15916. [Google Scholar] [CrossRef] [Green Version]
- Gasco, M.R.; Morel, S.; Manzoni, R. Incorporation of doxorubicine in nanoparticles obtained by polymerization from non aqueous micromulsion. Farmaco Prat 1988, 43, 373–380. [Google Scholar]
- Nyga, A.; Hart, A.; Tetley, T.D. Molecular analysis of HIF activation as a potential biomarker for adverse reaction to metal debris (ARMD) in tissue and blood samples. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2018, 107, 1352–1362. [Google Scholar] [CrossRef]
- Savarino, L.; Fotia, C.; Roncuzzi, L.; Greco, M.; Cadossi, M.; Baldini, N.; Giannini, S. Does chronic raise of metal ion levels induce oxidative DNA damage and hypoxia-like response in patients with metal-on-metal hip resurfacing? J. Biomed. Mater. Res. Part B: Appl. Biomater. 2015, 105, 460–466. [Google Scholar] [CrossRef]
- Shah, K.M.; Quinn, P.D.; Gartland, A.; Wilkinson, J.M. Understanding the tissue effects of tribo-corrosion: Uptake, distribution, and speciation of cobalt and chromium in human bone cells. J. Orthop. Res. 2015, 33, 114–121. [Google Scholar] [CrossRef]
- Minchenko, A.; Leshchinsky, I.; Opentanova, I.; Sang, N.; Srinivas, V.; Armstead, V.; Caro, J. Hypoxia-inducible Factor-1-mediated Expression of the 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) Genegene: Its possible role in the Warburg effect. J. Biol. Chem. 2002, 277, 6183–6187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leiherer, A.; Geiger, K.; Muendlein, A.; Drexel, H. Hypoxia induces a HIF-1α dependent signaling cascade to make a complex metabolic switch in SGBS-adipocytes. Mol. Cell. Endocrinol. 2014, 383, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Utting, J.; Robins, S.; Brandao-Burch, A.; Orriss, I.; Behar, J.; Arnett, T. Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts. Exp. Cell Res. 2006, 312, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Regan, J.N.; Lim, J.; Shi, Y.; Joeng, K.S.; Arbeit, J.M.; Shohet, R.V.; Long, F. Up-regulation of glycolytic metabolism is required for HIF1-driven bone formation. Proc. Natl. Acad. Sci. USA 2014, 111, 8673–8678. [Google Scholar] [CrossRef] [Green Version]
- Stegen, S.; Laperre, K.; Eelen, G.; Rinaldi, G.; Fraisl, P.; Torrekens, S.; Van Looveren, R.; Loopmans, S.; Bultynck, G.; Vinckier, S.; et al. HIF-1α metabolically controls collagen synthesis and modification in chondrocytes. Nat. Cell Biol. 2019, 565, 511–515. [Google Scholar] [CrossRef]
- Pandit, H.; Glyn-Jones, S.; McLardy-Smith, P.; Gundle, R.; Whitwell, D.; Gibbons, C.L.M.; Ostlere, S.; Athanasou, N.; Gill, H.; Murray, D.W. Pseudotumours associated with metal-on-metal hip resurfacings. J. Bone Jt. Surg. Br. Vol. 2008, 90, 847–851. [Google Scholar] [CrossRef] [Green Version]
- Paukkeri, E.-L.; Korhonen, R.; Hämäläinen, M.; Pesu, M.; Eskelinen, A.; Moilanen, T.; Moilanen, E. The Inflammatory Phenotype in Failed Metal-On-Metal Hip Arthroplasty Correlates with Blood Metal Concentrations. PLoS ONE 2016, 11, e0155121. [Google Scholar] [CrossRef]
- Jost-Albrecht, K.; Hofstetter, W. Gene expression by human monocytes from peripheral blood in response to exposure to metals. J. Biomed. Mater. Res. Part B 2006, 76, 449–455. [Google Scholar] [CrossRef]
- Shin, N.-Y.; Choi, H.; Neff, L.; Wu, Y.; Saito, H.; Ferguson, S.M.; De Camilli, P.; Baron, R. Dynamin and endocytosis are required for the fusion of osteoclasts and myoblasts. J. Cell Biol. 2014, 207, 73–89. [Google Scholar] [CrossRef]
- Stenbeck, G.; Horton, M.A. Endocytic trafficking in actively resorbing osteoclasts. J. Cell Sci. 2004, 117, 827–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, J.B.; Kim, J.H.; Kim, K.; Youn, B.U.; Ko, A.; Lee, S.Y.; Kim, N. Akt induces osteoclast differentiation through regulating the GSK3beta/NFATc1 signaling cascade. J. Immunol. 2012, 188, 163–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H. Membrane Trafficking in Osteoblasts and Osteoclasts: New Avenues for Understanding and Treating Skeletal Diseases. Traffic 2012, 13, 1307–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, W.; DeSelm, C.J.; Broekelmann, T.J.; Mecham, R.P.; Pol, S.V.; Choi, K.; Teitelbaum, S.L. Paxillin contracts the osteoclast cytoskeleton. J. Bone Miner. Res. 2012, 27, 2490–2500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawadi, G.; Vayssière, B.; Dunn, F.; Baron, R.; Roman-Roman, S. BMP-2 Controls Alkaline Phosphatase Expression and Osteoblast Mineralization by a Wnt Autocrine Loop. J. Bone Miner. Res. 2003, 18, 1842–1853. [Google Scholar] [CrossRef]
- Nahar-Gohad, P.; Gohad, N.; Tsai, C.-C.; Bordia, R.; Vyavahare, N. Rat aortic smooth muscle cells cultured on hydroxyapatite differentiate into osteoblast-like cells via BMP-2-SMAD-5 pathway. Calcif. Tissue Int. 2015, 96, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Suto, M.; Nemoto, E.; Kanaya, S.; Suzuki, R.; Tsuchiya, M.; Shimauchi, H. Nanohydroxyapatite increases BMP-2 expression via a p38 MAP kinase dependent pathway in periodontal ligament cells. Arch. Oral Biol. 2013, 58, 1021–1028. [Google Scholar] [CrossRef]
- 16th Annual Report; National Joint Registry for England and Wales: London, UK, 2019.
- Brakspear, K.S.; Mason, D.J. Glutamate signaling in bone. Front. Endocrinol. 2012, 3, 97. [Google Scholar] [CrossRef] [Green Version]
- Keable, R.; Leshchyns’Ka, I.; Sytnyk, V. Trafficking and Activity of Glutamate and GABA Receptors: Regulation by Cell Adhesion Molecules. Neuroscientist 2020, 26, 415–437. [Google Scholar] [CrossRef]
- Steinberg, J.; Southam, L.; Roumeliotis, T.I.; Clark, M.J.; Jayasuriya, R.L.; Swift, D.; Shah, K.M.; Butterfield, N.C.; Brooks, R.A.; McCaskie, A.W.; et al. A molecular quantitative trait locus map for osteoarthritis. Nat. Commun. 2021, 12, 1–11. [Google Scholar] [CrossRef]
- Han, Q.; Liu, F. Low doses of Co nanoparticles induce death and regulate osteogenic differentiation in MG-63 cells. Mol. Med. Rep. 2017, 16, 7591–7596. [Google Scholar] [CrossRef] [PubMed]
- Langton, D.J.; Sprowson, A.P.; Joyce, T.J.; Reed, M.; Carluke, I.; Partington, P.; Nargol, A.V. Blood metal ion concentrations after hip resurfacing arthroplasty: A comparative study of articular surface replacement and Birmingham Hip Resurfacing arthroplasties. J. Bone Jt. Surg. 2009, 91, 1287–1295. [Google Scholar] [CrossRef]
- Williams, D.H.; Greidanus, N.V.; Masri, B.; Duncan, C.P.; Garbuz, D.S. Prevalence of Pseudotumor in Asymptomatic Patients After Metal-on-Metal Hip Arthroplasty. J. Bone Jt. Surg. 2011, 93, 2164–2171. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.M.; Ostlere, S.J.; McLardy-Smith, P.; Athanasou, N.A.; Gill, H.S.; Murray, D.W. "Asymptomatic" pseudotumors after metal-on-metal hip resurfacing arthroplasty: Prevalence and metal ion study. J. Arthroplast. 2011, 26, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Gallagher, J.A.; Gartland, A. Human osteoclast culture and phenotypic characterization. Methods Mol. Biol. 2012, 806, 357–375. [Google Scholar]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Bourgon, R.; Gentleman, R.; Huber, W. Independent filtering increases detection power for high-throughput experiments. Proc. Natl. Acad. Sci. USA 2010, 107, 9546–9551. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Conesa, A.; Nueda, M.J.; Ferrer, A.; Talón, M. maSigPro: A method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 2006, 22, 1096–1102. [Google Scholar] [CrossRef] [Green Version]
Gene | Log2FC | p Value |
---|---|---|
PDK1 | 2.04 | 1.16 × 10−7 |
ANKRD37 | 1.89 | 3.63 × 10−5 |
APLN | 1.88 | 3.18 × 10−5 |
AK4 | 1.85 | 2.78 × 10−4 |
BNIP3 | 1.83 | 1.41 × 10−6 |
PFKFB3 | 1.69 | 6.57 × 10−5 |
VEGFA | 1.59 | 3.85 × 10−4 |
VLDLR | 1.59 | 8.95 × 10−4 |
SLC2A1 | 1.59 | 6.65 × 10−4 |
PFKFB4 | 1.59 | 2.32 × 10−5 |
LOC101929947 | 1.51 | 6.00 × 10−4 |
TCAF2 | 1.47 | 3.20 × 10−4 |
ALDOC | 1.46 | 1.53 × 10−4 |
ENO2 | 1.42 | 2.98 × 10−5 |
INHBB | 1.41 | 1.89 × 10−4 |
FAM162A | 1.33 | 8.58 × 10−6 |
P4HA1 | 1.25 | 1.36 × 10−4 |
DDIT4 | 1.22 | 5.04 × 10−4 |
NXPH4 | 1.21 | 3.79 × 10−4 |
EGLN1 | 1.19 | 4.75 × 10−5 |
GYS1 | 1.17 | 4.17 × 10−5 |
BNIP3L | 1.16 | 9.58 × 10−6 |
PGK1 | 1.12 | 7.77 × 10−5 |
RORA | 1.10 | 8.68 × 10−4 |
PPP1R3C | 1.01 | 1.44 × 10−4 |
KEGG Pathway | KEGG ID | Log2FC | Genes | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PDK1 | PFKFB3 | VEGFA | SLC2A1 | PFKFB4 | ALDOC | ENO2 | EGLN1 | PGK1 | |||
HIF Signalling | 04066 | 4.15 × 10−7 | |||||||||
Fructose and mannose metabolism | 00051 | 8.9 × 10−4 | |||||||||
Renal cell carcinoma | 05211 | 3.34 × 10−2 |
Pathways | KEGG | Cell Type | Correlation | p Value |
---|---|---|---|---|
HIF1- signaling | 04066 | Osteoblasts | Positive | 5.2 × 10−7 |
Glycolysis/Gluconeogenesis | 00010 | Osteoblasts | Positive | 1.02 × 10−6 |
Ca2+ signaling | 04020 | Osteoclast precursors | Negative | 1.3 × 10−3 |
Ras signaling | 04014 | Osteoclast precursors | Negative | 3.6 × 10−3 |
Cytokine-cytokine receptor interaction | 04060 | Osteoclast precursors | Positive | 4.7 × 10−2 |
Focal Adhesion | 04510 | Mature osteoclasts | Negative | 5.0 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, K.M.; Dunning, M.J.; Gartland, A.; Wilkinson, J.M. Distinct Concentration-Dependent Molecular Pathways Regulate Bone Cell Responses to Cobalt and Chromium Exposure from Joint Replacement Prostheses. Int. J. Mol. Sci. 2021, 22, 5225. https://doi.org/10.3390/ijms22105225
Shah KM, Dunning MJ, Gartland A, Wilkinson JM. Distinct Concentration-Dependent Molecular Pathways Regulate Bone Cell Responses to Cobalt and Chromium Exposure from Joint Replacement Prostheses. International Journal of Molecular Sciences. 2021; 22(10):5225. https://doi.org/10.3390/ijms22105225
Chicago/Turabian StyleShah, Karan M., Mark J. Dunning, Alison Gartland, and J. Mark Wilkinson. 2021. "Distinct Concentration-Dependent Molecular Pathways Regulate Bone Cell Responses to Cobalt and Chromium Exposure from Joint Replacement Prostheses" International Journal of Molecular Sciences 22, no. 10: 5225. https://doi.org/10.3390/ijms22105225
APA StyleShah, K. M., Dunning, M. J., Gartland, A., & Wilkinson, J. M. (2021). Distinct Concentration-Dependent Molecular Pathways Regulate Bone Cell Responses to Cobalt and Chromium Exposure from Joint Replacement Prostheses. International Journal of Molecular Sciences, 22(10), 5225. https://doi.org/10.3390/ijms22105225