Remodeling of Arterial Tone Regulation in Postnatal Development: Focus on Smooth Muscle Cell Potassium Channels
Abstract
:1. Potassium Channels Are Key Regulators of Arterial Tone
2. Postnatal Development Is Associated with Structural and Functional Remodeling of the Systemic Circulation
3. Developmental Alterations of Potassium Channel Functioning in Arteries of the Systemic Circulation
3.1. Voltage-Gated Potassium Channels (Kv Channels)
3.1.1. Kv Channels: Properties and Functions in Arteries
3.1.2. The Vasomotor Role of Kv Channels Decreases with Maturation
3.2. Two-Pore Potassium Channels (K2P)
3.2.1. K2P Channels: Properties and Functions in Arteries
3.2.2. The Impact of TASK-1 Channels on the Regulation of Vascular Tone and Blood Pressure Dramatically Decreases with Maturation
3.3. Inward-Rectifier Potassium Channels (Kir Channels)
3.3.1. Kir Channels: Properties and Functions in Arteries
3.3.2. The Vasomotor Role of Kir2 Channels Decreases with Maturation
3.4. ATP-Sensitive Potassium Channels (KATP Channels)
3.4.1. KATP Channels: Properties and Functions in Arteries
3.4.2. The Vasomotor Role of KATP Channels under Normal Physiological Conditions Does Not Change during Postnatal Development
3.5. Calcium-Activated Potassium Channels of Large Conductance (BKCa Channels)
3.5.1. BKCa Channels: Properties and Functions in Arteries
3.5.2. The Vasomotor Role of BKCa Channels Increases during Postnatal Development
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hirst, G.D.S.; Edwards, F.R. Sympathetic neuroeffector transmission in arteries and arterioles. Physiol. Rev. 1989, 69, 546–604. [Google Scholar] [CrossRef]
- Mulvany, M.J.; Aalkjaer, C. Structure and function of small arteries. Physiol. Rev. 1990, 70, 921–961. [Google Scholar] [CrossRef]
- Amberg, G.C.; Bonev, A.D.; Rossow, C.F.; Nelson, M.T.; Santana, L.F. Modulation of the molecular composition of large conductance, Ca2+ activated K+ channels in vascular smooth muscle during hypertension. J. Clin. Investig. 2003, 112, 717–724. [Google Scholar] [CrossRef] [Green Version]
- Nieves-cintrón, M.; Navedo, M.F.; Syed, A.U.; Nystoriak, M.A. Regulation of voltage-gated potassium channels in vascular smooth muscle during hypertension and metabolic disorders. Microcirculation 2018, 25, e12423. [Google Scholar] [CrossRef] [PubMed]
- Gollasch, M.; Welsh, D.G.; Schubert, R. Perivascular adipose tissue and the dynamic regulation of Kv7 and Kir channels: Implications to resistant hypertension. Microcirculation 2017, 25, e12434. [Google Scholar] [CrossRef]
- Jackson, W.F. Potassium channels in regulation of vascular smooth muscle contraction and growth. Adv. Pharmacol. 2017, 78, 89–144. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.T.; Patlak, J.B.; Worley, J.F.; Standen, N.B. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am. J. Physiol. 1990, 259, C3–C18. [Google Scholar] [CrossRef] [PubMed]
- Tykocki, N.R.; Boerman, E.M.; Jackson, W.F. Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles. Compr. Physiol. 2017, 7, 485–581. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.T.; Quayle, J.M. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. Physiol. 1995, 268, C799–C822. [Google Scholar] [CrossRef]
- Jackson, W.F. Potassium channels in the peripheral microcirculation. Microcirculation 2005, 12, 113–127. [Google Scholar] [CrossRef]
- Gurney, A.; Manoury, B. Two-pore potassium channels in the cardiovascular system. Eur. Biophys. J. 2009, 38, 305–318. [Google Scholar] [CrossRef]
- Thorneloe, K.S.; Nelson, M.T. Ion channels in smooth muscle: Regulators of intracellular calcium and contractility. Can. J. Physiol. Pharmacol. 2005, 83, 215–242. [Google Scholar] [CrossRef]
- Martínez, A.C.; Pagán, R.M.; Prieto, D.; Recio, P.; García-Sacristán, A.; Hernández, M.; Benedito, S. Modulation of noradrenergic neurotransmission in isolated rat radial artery. J. Pharmacol. Sci. 2009, 111, 299–311. [Google Scholar] [CrossRef] [Green Version]
- Pagán, R.M.; Martínez, A.C.; Martínez, M.P.; Hernández, M.; García-Sacristán, A.; Correa, C.; Prieto, D.; Benedito, S. Endothelial and potassium channel dependent modulation of noradrenergic vasoconstriction in the pig radial artery. Eur. J. Pharmacol. 2009, 616, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Puzdrova, V.A.; Kudryashova, T.V.; Gaynullina, D.K.; Mochalov, S.V.; Aalkjaer, C.; Nilsson, H.; Vorotnikov, A.V.; Schubert, R.; Tarasova, O.S. Trophic action of sympathetic nerves reduces arterial smooth muscle Ca2+ sensitivity during early post-natal development in rats. Acta Physiol. 2014, 212, 128–141. [Google Scholar] [CrossRef]
- Reho, J.J.; Zheng, X.; Benjamin, J.E.; Fisher, S.A. Neural programming of mesenteric and renal arteries. Am. J. Physiol. Circ. Physiol. 2014, 307, H563–H573. [Google Scholar] [CrossRef] [Green Version]
- Sandow, S.L.; Goto, K.; Rummery, N.M.; Hill, C.E. Developmental changes in myoendothelial gap junction mediated vasodilator activity in the rat saphenous artery. J. Physiol. 2004, 556, 875–886. [Google Scholar] [CrossRef] [PubMed]
- Mochalov, S.V.; Tarasova, N.V.; Kudryashova, T.V.; Gaynullina, D.K.; Kalenchuk, V.U.; Borovik, A.S.; Vorotnikov, A.V.; Tarasova, O.S.; Schubert, R. Higher Ca2+-sensitivity of arterial contraction in 1-week-old rats is due to a greater Rho-kinase activity. Acta Physiol. 2018, 12, e13044. [Google Scholar] [CrossRef] [PubMed]
- Todd, M.E. Development of adrenergic innervation in rat peripheral vessels: A fluorescence microscopic study. J. Anat. 1980, 131, 121–133. [Google Scholar] [PubMed]
- Akopov, S.E.; Zhang, L.; Pearce, W.J. Developmental changes in the calcium sensitivity of rabbit cranial arteries. Biol. Neonate 1998, 74, 60–71. [Google Scholar] [CrossRef]
- Sandoval, R.J.; Injeti, E.R.; Gerthoffer, W.T.; Pearce, W.J. Postnatal maturation modulates relationships among cytosolic Ca2+, myosin light chain phosphorylation, and contractile tone in ovine cerebral arteries. Am. J. Physiol. Hear. Circ. Physiol. 2007, 293, 2183–2192. [Google Scholar] [CrossRef] [Green Version]
- Gaynullina, D.; Lubomirov, L.T.; Sofronova, S.I.; Kalenchuk, V.U.; Gloe, T.; Pfitzer, G.; Tarasova, O.S.; Schubert, R. Functional remodelling of arterial endothelium during early postnatal development in rats. Cardiovasc. Res. 2013, 99, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Sofronova, S.I.; Borzykh, A.A.; Gaynullina, D.K.; Kuzmin, I.V.; Shvetsova, A.A.; Lukoshkova, E.V.; Tarasova, O.S. Endothelial nitric oxide weakens arterial contractile responses and reduces blood pressure during early postnatal development in rats. Nitric Oxide 2016, 55–56, 1–9. [Google Scholar] [CrossRef]
- Shvetsova, A.A.; Gaynullina, D.K.; Schmidt, N.; Bugert, P.; Lukoshkova, E.V.; Tarasova, O.S.; Schubert, R. TASK-1 channel blockade by AVE1231 increases vasocontractile responses and BP in 1- to 2-week-old but not adult rats. Br. J. Pharmacol. 2020, 177, 5148–5162. [Google Scholar] [CrossRef]
- Kent, A.L.; Kecskes, Z.; Shadbolt, B.; Falk, M.C. Normative blood pressure data in the early neonatal period. Pediatr. Nephrol. 2007, 22, 1335–1341. [Google Scholar] [CrossRef]
- Yeung, S.Y.M.; Pucovský, V.; Moffatt, J.D.; Saldanha, L.; Schwake, M.; Ohya, S.; Greenwood, I.A. Molecular expression and pharmacological identification of a role for Kv7 channels in murine vascular reactivity. Br. J. Pharmacol. 2007, 151, 758–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, R.H.; Fromme, S. Functional expression profile of voltage-gated K+ channel subunits in rat small mesenteric arteries. Cell Biochem. Biophys. 2016, 74, 263–276. [Google Scholar] [CrossRef]
- Jackson, W.F. Kv channels and the regulation of vascular smooth muscle tone. Microcirculation 2018, 25, e12421. [Google Scholar] [CrossRef]
- Mackie, A.R.; Byron, K.L. Cardiovascular KCNQ (Kv7) potassium channels: Physiological regulators and new targets for therapeutic intervention. Mol. Pharmacol. 2008, 74, 1171–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fancher, I.S.; Butcher, J.T.; Brooks, S.D.; Rottgen, T.S.; Skaff, P.R.; Frisbee, J.C.; Dick, G.M. Diphenyl phosphine oxide-1-sensitive K+ channels contribute to the vascular tone and reactivity of resistance arteries from brain and skeletal muscle. Microcirculation 2015, 22, 315–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amberg, G.C.C.; Santana, L.F.F. Kv2 channels oppose myogenic constriction of rat cerebral arteries. Am. J. Physiol. Cell Physiol. 2006, 291, C348–C356. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.Z.; Abd-Elrahman, K.S.; Liao, C.-H.; El-Yazbi, A.F.; Walsh, E.J.; Walsh, M.P.; Cole, W.C. Stromatoxin-sensitive, heteromultimeric Kv2.1/Kv9.3 channels contribute to myogenic control of cerebral arterial diameter. J. Physiol. 2010, 588, 4519–4537. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.Y.M.; Greenwood, I.A. Electrophysiological and functional effects of the KCNQ channel blocker XE991 on murine portal vein smooth muscle cells. Br. J. Pharmacol. 2005, 146, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Khanamiri, S.; Soltysinska, E.; Jepps, T.A.; Bentzen, B.H.; Chadha, P.S.; Schmitt, N.; Greenwood, I.A.; Olesen, S.P. Contribution of Kv7 channels to basal coronary flow and active response to ischemia. Hypertension 2013, 62, 1090–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, X.Z.; Harhun, M.I.; Olesen, S.P.; Ohya, S.; Moffatt, J.D.; Cole, W.C.; Greenwood, I.A. Participation of KCNQ (Kv7) potassium channels in myogenic control of cerebral arterial diameter. J. Physiol. 2010, 588, 3277–3293. [Google Scholar] [CrossRef] [PubMed]
- Zavaritskaya, O.; Zhuravleva, N.; Schleifenbaum, J.; Gloe, T.; Devermann, L.; Kluge, R.; Mladenov, M.; Frey, M.; Gagov, H.; Fésüs, G.; et al. Role of KCNQ channels in skeletal muscle arteries and periadventitial vascular dysfunction. Hypertension 2013, 61, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutman, G.A.; Chandy, K.G.; Grissmer, S.; Lazdunski, M.; McKinnon, D.; Pardo, L.A.; Robertson, G.A.; Rudy, B.; Sanguinetti, M.C.; Stühmer, W.; et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol. Rev. 2005, 57, 473–508. [Google Scholar] [CrossRef]
- Gomez, J.P.; Ghisdal, P.; Morel, N. Changes of the potassium currents in rat aortic smooth muscle cells during postnatal development. Pflugers Arch. Eur. J. Physiol. 2000, 441, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Belevych, A.; Beck, R.; Tammaro, P.; Poston, L.; Smirnov, S. Developmental changes in the functional characteristics and expression of voltage-gated K+ channel currents in rat aortic myocytes. Cardiovasc. Res. 2002, 54, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Teng, G.Q.; Nauli, S.M.; Brayden, J.E.; Pearce, W.J. Maturation alters the contribution of potassium channels to resting and 5HT-induced tone in small cerebral arteries of the sheep. Dev. Brain Res. 2002, 133, 81–91. [Google Scholar] [CrossRef]
- Khammy, M.M.; Kim, S.; Bentzen, B.H.; Lee, S.; Choi, I.; Aalkjaer, C.; Jepps, T.A. 4-aminopyridine: A pan voltage-gated potassium channel inhibitor that enhances Kv7.4 currents and inhibits noradrenaline-mediated contraction of rat mesenteric small arteries. Br. J. Pharmacol. 2018, 175, 501–516. [Google Scholar] [CrossRef] [Green Version]
- Petkova-Kirova, P.; Gagov, H.; Krien, U.; Duridanova, D.; Noack, T.; Schubert, R. 4-Aminopyridine affects rat arterial smooth muscle BKCa currents by changing intracellular pH. Br. J. Pharmacol. 2000, 131, 1643–1650. [Google Scholar] [CrossRef] [Green Version]
- Escoubas, P.; Diochot, S.; Célérier, M.-L.; Nakajima, T.; Lazdunski, M. Novel tarantula toxins for subtypes of voltage-dependent potassium channels in the Kv2 and Kv4 subfamilies. Mol. Pharmacol. 2002, 62, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Lagrutta, A.; Wang, J.; Fermini, B.; Salata, J.J. Novel, potent inhibitors of human Kv1.5 K+ channels and ultrarapidly activating delayed rectifier potassium current. J. Pharmacol. Exp. Ther. 2006, 317, 1054–1063. [Google Scholar] [CrossRef] [Green Version]
- Shvetsova, A.A.; Gaynullina, D.K.; Tarasova, O.S.; Schubert, R. Negative feedback regulation of vasocontraction by potassium channels in 10- to 15-day-old rats: Dominating role of Kv7 channels. Acta Physiol. 2019, 225, 1–18. [Google Scholar] [CrossRef]
- Ma, D.; Gaynullina, D.; Schmidt, N.; Mladenov, M.; Schubert, R. The functional availability of arterial Kv7 channels is suppressed considerably by large-conductance calcium-activated potassium channels in 2- to 3-month old but not in 10- to 15-day old rats. Front. Physiol. 2020, 11, 1–18. [Google Scholar] [CrossRef]
- Jepps, T.A.; Carr, G.; Lundegaard, P.R.; Olesen, S.-P.; Greenwood, I.A. Fundamental role for the KCNE4 ancillary subunit in Kv7.4 regulation of arterial tone. J. Physiol. 2015, 593, 5325–5340. [Google Scholar] [CrossRef] [PubMed]
- Gurney, A.M.; Osipenko, O.N.; MacMillan, D.; McFarlane, K.M.; Tate, R.J.; Kempsill, F.E.J. Two-pore domain K channel, TASK-1, in pulmonary artery smooth muscle cells. Circ. Res. 2003, 93, 957–964. [Google Scholar] [CrossRef] [Green Version]
- Gardener, M.J.; Johnson, I.T.; Burnham, M.P.; Edwards, G.; Heagerty, A.M.; Weston, A.H. Functional evidence of a role for two-pore domain potassium channels in rat mesenteric and pulmonary arteries. Br. J. Pharmacol. 2004, 142, 192–202. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, S.A.; Bockenhauer, D.; O’Kelly, I.; Zilberberg, N. Potassium leak channels and the KCNK family of two-P-domain subunits. Nat. Rev. Neurosci. 2001, 2, 175–184. [Google Scholar] [CrossRef]
- Dedman, A.; Sharif-Naeini, R.; Folgering, J.H.A.; Duprat, F.; Patel, A.; Honoré, E. The mechano-gated K2P channel TREK-1. Eur. Biophys. J. 2009, 38, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Renigunta, V.; Schlichthörl, G.; Daut, J. Much more than a leak: Structure and function of K2P-channels. Pflügers Arch. Eur. J. Physiol. 2015, 467, 867–894. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Roman-Campos, D.; Austin, E.D.; Eyries, M.; Sampson, K.S.; Soubrier, F.; Germain, M.; Trégouët, D.-A.; Borczuk, A.; Rosenzweig, E.B.; et al. A novel channelopathy in pulmonary arterial hypertension. N. Engl. J. Med. 2013, 369, 351–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antigny, F.; Hautefort, A.; Meloche, J.; Belacel-Ouari, M.; Manoury, B.; Rucker-Martin, C.; Péchoux, C.; Potus, F.; Nadeau, V.; Tremblay, E.; et al. Potassium channel subfamily K member 3 (KCNK3) contributes to the development of pulmonary arterial hypertension. Circulation 2016, 133, 1371–1385. [Google Scholar] [CrossRef]
- Lambert, M.; Capuano, V.; Boet, A.; Tesson, L.; Bertero, T.; Nakhleh, M.K.; Remy, S.; Anegon, I.; Pechoux, C.; Hautefort, A.; et al. Characterization of Kcnk3-mutated rat, a novel model of pulmonary hypertension. Circ. Res. 2019, 125, 678–695. [Google Scholar] [CrossRef]
- Kiper, A.K.; Rinné, S.; Rolfes, C.; Ramírez, D.; Seebohm, G.; Netter, M.F.; González, W.; Decher, N. Kv1.5 blockers preferentially inhibit TASK-1 channels: TASK-1 as a target against atrial fibrillation and obstructive sleep apnea? Pflugers Arch. Eur. J. Physiol. 2015, 467, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Sakmann, B.; Trube, G. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J. Physiol. 1984, 347, 641–657. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, H.; Saigusa, A.; Irisawa, H. Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature 1987, 325, 156–159. [Google Scholar] [CrossRef]
- Lopatin, A.N.; Makhina, E.N.; Nichols, C.G. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 1994, 372, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Zaritsky, J.J.; Eckman, D.M.; Wellman, G.C.; Nelson, M.T.; Schwarz, T.L. Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K+ current in K+-mediated vasodilation. Circ. Res. 2000, 87, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.D.; Brett, S.E.; Luykenaar, K.D.; Sandow, S.L.; Marrelli, S.P.; Vigmond, E.J.; Welsh, D.G. KIR channels function as electrical amplifiers in rat vascular smooth muscle. J. Physiol. 2008, 586, 1147–1160. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, F.; Karasawa, T.; Ma, K.T.; Guan, B.C.; Shi, X.R.; Li, H.; Steyger, P.S.; Nuttall, A.L.; Jiang, Z.G. Diverse Kir expression contributes to distinct bimodal distribution of resting potentials and vasotone responses of arterioles. PLoS ONE 2015, 10, 1–26. [Google Scholar] [CrossRef]
- Schubert, R.; Krien, U.; Wulfsen, I.; Schiemann, D.; Lehmann, G.; Ulfig, N.; Veh, R.W.; Schwarz, J.R.; Gagov, H. Nitric oxide donor sodium nitroprusside dilates rat small arteries by activation of inward rectifier potassium channels. Hypertension 2004, 43, 891–896. [Google Scholar] [CrossRef] [Green Version]
- Long, W.; Zhang, L.; Longo, L.D. Cerebral artery K(ATP)- and K(Ca)-channel activity and contractility: Changes with development. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R2004–R2014. [Google Scholar] [CrossRef] [Green Version]
- Dunne, M.J.; Petersen, O.H. Intracellular ADP activates K+ channels that are inhibited by ATP in an insulin-secreting cell line. FEBS Lett. 1986, 208, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Beech, D.J.; Zhang, H.; Nakao, K.; Bolton, T.B. K channel activation by nucleotide diphosphates and its inhibition by glibenclamide in vascular smooth muscle cells. Br. J. Pharmacol. 1993, 110, 573–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berwick, Z.C.; Payne, G.A.; Lynch, B.; Dick, G.M.; Sturek, M.; Tune, J.D. Contribution of adenosine A2A and A2B receptors to ischemic coronary dilation: Role of Kv and KATP channels. Microcirculation 2010, 17, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Holdsworth, C.T.; Copp, S.W.; Ferguson, S.K.; Sims, G.E.; Poole, D.C.; Musch, T.I. Acute inhibition of ATP-sensitive K + channels impairs skeletal muscle vascular control in rats during treadmill exercise. Am. J. Physiol. Circ. Physiol. 2015, 308, H1434–H1442. [Google Scholar] [CrossRef] [Green Version]
- Wei-Wei, S.; Yang, Y.; Yun, S.; Chun, J. KATP channel action in vascular tone regulation from genetics to diseases. Acta Physiol. Sin. 2012, 29, 997–1003. [Google Scholar]
- Foster, M.N.; Coetzee, W.A. KATP channels in the cardiovascular system. Physiol. Rev. 2016, 96, 177–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce, W.J.; Elliott, S.R. Maturation enhances the sensitivity of ovine cerebral arteries to the ATP-sensitive potassium channel activator lemakalim. Pediatr. Res. 1994, 35, 729–732. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Yang, H.; Lee, U.S. Molecular mechanisms of BK channel activation. Cell. Mol. Life Sci. 2009, 66, 852–875. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.T.; Cheng, H.; Rubart, M.; Santana, L.F.; Bonev, A.D.; Knot, H.J.; Lederer, W.J. Relaxation of arterial smooth muscle by calcium sparks. Science 1995, 270, 633–637. [Google Scholar] [CrossRef]
- Knot, H.J.; Standen, N.B.; Nelson, M.T. Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+-dependent K+ channels. J. Physiol. 1998, 508, 211–221. [Google Scholar] [CrossRef]
- Cheng, X.; Jaggar, J.H. Genetic ablation of caveolin-1 modifies Ca2+ spark coupling in murine arterial smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H2309–H2319. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Yamamura, H.; Ohyac, S.; Imaizumi, Y. Caveolin-1 facilitates the direct coupling between large conductance Ca2+-activated K+(BKCa) and Cav1.2 Ca 2+ channels and their clustering to regulate membrane excitability in vascular myocytes. J. Biol. Chem. 2013, 288, 36750–36761. [Google Scholar] [CrossRef] [Green Version]
- Gollasch, M.; Wellman, G.C.; Knot, H.J.; Jaggar, J.H.; Damon, D.H.; Bonev, A.D.; Nelson, M.T. Ontogeny of local sarcoplasmic reticulum Ca2+ signals in cerebral arteries: Ca2+ sparks as elementary physiological events. Circ. Res. 1998, 83, 1104–1114. [Google Scholar] [CrossRef] [Green Version]
- Thorpe, R.B.; Stockman, S.L.; Williams, J.M.; Lincoln, T.M.; Pearce, W.J. Hypoxic depression of PKG-mediated inhibition of serotonergic contraction in ovine carotid arteries. AJP Regul. Integr. Comp. Physiol. 2013, 304, R734–R743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, A.; Adebiyi, A.; Leffler, C.W.; Jaggar, J.H. KCa channel insensitivity to Ca2+ sparks underlies fractional uncoupling in newborn cerebral artery smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H1118–H1125. [Google Scholar] [CrossRef] [Green Version]
- Gaynullina, D.; Dweep, H.; Gloe, T.; Tarasova, O.S.; Sticht, C.; Gretz, N.; Schubert, R. Alteration of mRNA and microRNA expression profiles in rat muscular type vasculature in early postnatal development. Sci. Rep. 2015, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.T.; Hessinger, D.A.; Pearce, W.J.; Longo, L.D. Developmental differences in Ca2+-activated K+ channel activity in ovine basilar artery. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H701–H709. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.T.; Longo, L.D.; Pearce, W.J.; Hessinger, D.A. Ca2+-activated K+ channel-associated phosphatase and kinase activities during development. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H414–H425. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.T.; Hessinger, D.A.; Pearce, W.J.; Longo, L.D. Modulation of BK channel calcium affinity by differential phosphorylation in developing ovine basilar artery myocytes. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H732–H740. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.H.; Aldrich, R.W. Role of the β1 subunit in large-conductance Ca2+-activated K+ channel gating energetics. J. Gen. Physiol. 2000, 116, 411–432. [Google Scholar] [CrossRef] [Green Version]
- Bao, L.; Cox, D.H. Gating and ionic currents reveal how the BKCa channel’s Ca2+ sensitivity is enhanced by its β1 subunit. J. Gen. Physiol. 2005, 126, 393–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bregestovski, P.D.; Printseva, O.; Serebryakov, V.; Stinnakre, J.; Turmin, A.; Zamoyski, V. Comparison of Ca2+-dependent K+ channels in the membrane of smooth muscle cells isolated from adult and foetal human aorta. Eur. J. Physiol. 1988, 413, 8–13. [Google Scholar] [CrossRef]
- Bisen, S.; Simakova, M.N.; Dopico, A.M.; Bukiya, A.N. Large conductance voltage- and calcium-gated potassium channels (BK) in cerebral artery myocytes of perinatal fetal primates share several major characteristics with the adult phenotype. PLoS ONE 2018, 13, e0203199. [Google Scholar] [CrossRef]
- Gurung, R.; Choong, A.M.; Woo, C.C.; Foo, R.; Sorokin, V. Genetic and epigenetic mechanisms underlying vascular smooth muscle cell phenotypic modulation in abdominal aortic aneurysm. Int. J. Mol. Sci. 2020, 21, 6334. [Google Scholar] [CrossRef] [PubMed]
- Bratz, I.N.; Dick, G.M.; Partridge, L.D.; Kanagy, N.L. Reduced molecular expression of K+ channel proteins in vascular smooth muscle from rats made hypertensive with Nω-nitro-L- arginine. Am. J. Physiol. Hear. Circ. Physiol. 2005, 289, 1277–1283. [Google Scholar] [CrossRef]
- Kiyoshi, H.; Yamazaki, D.; Ohya, S.; Kitsukawa, M.; Muraki, K.; Saito, S.-Y.; Ohizumi, Y.; Imaizumi, Y. Molecular and electrophysiological characteristics of K+ conductance sensitive to acidic pH in aortic smooth muscle cells of WKY and SHR. AJP Hear. Circ. Physiol. 2006, 291, H2723–H2734. [Google Scholar] [CrossRef] [Green Version]
- Chadha, P.S.; Zunke, F.; Zhu, H.L.; Davis, A.J.; Jepps, T.A.; Olesen, S.P.; Cole, W.C.; Moffatt, J.D.; Greenwood, I.A. Reduced KCNQ4-encoded voltage-dependent potassium channel activity underlies impaired β-adrenoceptor-mediated relaxation of renal arteries in hypertension. Hypertension 2012, 59, 877–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Shi, R.; Li, X.; Liu, Y.; Feng, X.; Chen, X.; Fan, X.; Zhang, Y.; Zhang, W.; Tang, J.; et al. Downregulation of L-type voltage-gated Ca2+, voltage-gated K+, and large-conductance Ca2+-Activated K+ channels in vascular myocytes from salt-loading offspring rats exposed to prenatal hypoxia. J. Am. Heart Assoc. 2018, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Li, P.Y.; Cheng, J.; Mao, L.; Wen, J.; Tan, X.Q.; Liu, Z.F.; Zeng, X.R. Function of BKCa channels is reduced in human vascular smooth muscle cells from han chinese patients with hypertension. Hypertension 2013, 61, 519–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.; Mao, L.; Wen, J.; Li, P.Y.; Wang, N.; Tan, X.Q.; Zhang, X.D.; Zeng, X.R.; Xu, L.; Xia, X.M.; et al. Different effects of hypertension and age on the function of large conductance calcium- and voltage-activated potassium channels in human mesentery artery smooth muscle cells. J. Am. Heart Assoc. 2016, 5, 1–11. [Google Scholar] [CrossRef]
- Flynn, J.T. High blood pressure in the young: Why should we care? Acta Paediatr. 2018, 107, 14–19. [Google Scholar] [CrossRef] [PubMed]
Channel Type | Alteration with Maturation | Objects Studied | Pharmacological Agent | References | |
---|---|---|---|---|---|
Kv | Kv | Decrease | Rat aorta, segments and SMCs | 4-AP (5 mM) | [38] |
Decrease | SMCs from rat aorta | 4-AP (20 mM) | [39] | ||
Kv1 | Decrease | Rat saphenous artery | DPO-1 (1 µM) | [45] | |
Kv2 | No change | Rat saphenous artery | ScTx (0.1 µM) | [45] | |
Kv7 | Decrease | Rat saphenous artery | XE991 (3 µM), Linopirdine (10 µM) | [45] | |
Decrease | Rat saphenous artery | XE991 (3 µM) | [46] | ||
Kv | Increase | Sheep middle cerebral artery | 4-AP (1 and 5 mM) | [40] | |
TASK-1 | Decrease | Rat saphenous artery | AVE1231 (1 µM) | [24] | |
Kir | Kir2 | Decrease | Sheep middle cerebral artery | BaCl2 (10 µM) | [64] |
Decrease | Rat saphenous artery | BaCl2 (30 µM) | [45] | ||
No change | Sheep middle cerebral artery | BaCl2 (10 µM) | [40] | ||
Kir6(KATP) | No change | Sheep middle cerebral artery | Glib (0.1 mM–30 µM) | [64] | |
No change | Rat saphenous artery | Glib (30 µM) | [45] | ||
Increase * | Sheep middle cerebral artery | Lemakalim * (0.01 nM–1 mM) | [71] | ||
Increase * | Sheep middle cerebral artery | Pinacidil * (1 nM–10 mM) | [64] | ||
BKCa | Increase | Rat cerebral arteries | IbTx (100 nM) | [77] | |
Increase | Rat aorta, segments and SMCs | TEA (1–10 mM) | [38] | ||
Increase | Rat aortic SMCs | Paxilline (1 µM) | [39] | ||
Increase | Rat saphenous artery | IbTx (100 nM) | [45] | ||
Increase | Rat saphenous artery | IbTx (100 nM) | [46] | ||
Increase | Sheep middle cerebral artery | IbTx (100 nM) | [40] | ||
Increase | Sheep carotid artery | IbTx (100 nM) | [78] | ||
Decrease | SMCs from sheep cerebral arteries | IbTx (100 nM) | [81] | ||
No change | Sheep middle cerebral artery | IbTx (100 nM) | [64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shvetsova, A.A.; Gaynullina, D.K.; Tarasova, O.S.; Schubert, R. Remodeling of Arterial Tone Regulation in Postnatal Development: Focus on Smooth Muscle Cell Potassium Channels. Int. J. Mol. Sci. 2021, 22, 5413. https://doi.org/10.3390/ijms22115413
Shvetsova AA, Gaynullina DK, Tarasova OS, Schubert R. Remodeling of Arterial Tone Regulation in Postnatal Development: Focus on Smooth Muscle Cell Potassium Channels. International Journal of Molecular Sciences. 2021; 22(11):5413. https://doi.org/10.3390/ijms22115413
Chicago/Turabian StyleShvetsova, Anastasia A., Dina K. Gaynullina, Olga S. Tarasova, and Rudolf Schubert. 2021. "Remodeling of Arterial Tone Regulation in Postnatal Development: Focus on Smooth Muscle Cell Potassium Channels" International Journal of Molecular Sciences 22, no. 11: 5413. https://doi.org/10.3390/ijms22115413
APA StyleShvetsova, A. A., Gaynullina, D. K., Tarasova, O. S., & Schubert, R. (2021). Remodeling of Arterial Tone Regulation in Postnatal Development: Focus on Smooth Muscle Cell Potassium Channels. International Journal of Molecular Sciences, 22(11), 5413. https://doi.org/10.3390/ijms22115413