Can the COVID-19 Pandemic Disrupt the Current Drug Development Practices?
Abstract
:1. Introduction
2. Wide Acceptance of Telehealth
3. Drug Repositioning Revisited
4. Real-Time Information Sharing: Data Tracking Tools and Hubs
5. Public–Private Collaborations Expanded
6. Changes and Challenges in the Regulatory Agencies
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wouters, O.J.; McKee, M.; Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA 2020, 323, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Bestsennyy, O.; Gilbert, G.; Harris, A.; Rost, J. Telehealth: A Quarter-Trillion-Dollar Post-COVID-19 Reality? McKinsey & Company: New York, NY, USA, 2020. [Google Scholar]
- Thorlund, K.; Dron, L.; Park, J.; Hsu, G.; Forrest, J.I.; Mills, E.J. A real-time dashboard of clinical trials for COVID-19. Lancet Digit. Health 2020, 2, e286–e287. [Google Scholar] [CrossRef]
- Tuckson, R.V.; Edmunds, M.; Hodgkins, M.L. Telehealth. N. Engl. J. Med. 2017, 377, 1585–1592. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, S.; Bradley, S.; Sakhamuri, S.; Moguilner, S.; Chattu, V.K.; Pandya, S.; Schroeder, S.; Ray, D.; Banach, M. Designing futuristic telemedicine using artificial intelligence and robotics in the COVID-19 era. Front. Public Health 2020, 8, 708. [Google Scholar] [CrossRef]
- Boulware, D.R.; Pullen, M.F.; Bangdiwala, A.S.; Pastick, K.A.; Lofgren, S.M.; Okafor, E.C.; Skipper, C.P.; Nascene, A.A.; Nicol, M.R.; Abassi, M. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N. Engl. J. Med. 2020, 383, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Izmailova, E.S.; Ellis, R.; Benko, C. Remote monitoring in clinical trials during the covid-19 pandemic. Clin. Transl. Sci. 2020, 13, 838–841. [Google Scholar] [CrossRef] [PubMed]
- Khozin, S.; Coravos, A. Decentralized trials in the age of real-world evidence and inclusivity in clinical investigations. Clin. Pharm. Ther. 2019, 106, 25–27. [Google Scholar] [CrossRef] [PubMed]
- Hashiguchi, T.C.O. Bringing Health Care to the Patient: An Overview of the Use of Telemedicine in OECD Countries; OECD Health Working Papers, No. 116; OECD Publishing: Paris, France, 2020. [Google Scholar] [CrossRef]
- Dorsey, E.R.; Topol, E.J. State of telehealth. N. Engl. J. Med. 2016, 375, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, R.S.; Lopez, A.M.; Joseph, B.A.; Erps, K.A.; Holcomb, M.; Barker, G.P.; Krupinski, E.A. Telemedicine, telehealth, and mobile health applications that work: Opportunities and barriers. Am. J. Med. 2014, 127, 183–187. [Google Scholar] [CrossRef]
- Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S.; Mehta, J.; Desikan, R.; Ayers, D.; Roberson, P.; Eddlemon, P.; Munshi, N.; Anaissie, E.; Wilson, C.; Dhodapkar, M. Antitumor activity of thalidomide in refractory multiple myeloma. N. Engl. J. Med. 1999, 341, 1565–1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bibbins-Domingo, K. Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: US Preventive Services Task Force recommendation statement. Ann. Intern. Med. 2016, 164, 836–845. [Google Scholar] [CrossRef] [Green Version]
- Cavalla, D.; Singal, C. Retrospective clinical analysis for drug rescue: For new indications or stratified patient groups. Drug Discov. Today 2012, 17, 104–109. [Google Scholar] [CrossRef]
- Lo, M.K.; Jordan, R.; Arvey, A.; Sudhamsu, J.; Shrivastava-Ranjan, P.; Hotard, A.L.; Flint, M.; McMullan, L.K.; Siegel, D.; Clarke, M.O. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Siegel, D.; Hui, H.C.; Doerffler, E.; Clarke, M.O.; Chun, K.; Zhang, L.; Neville, S.; Carra, E.; Lew, W.; Ross, B. Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1-f][Triazin-4-Amino] Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. J.Med. Chem. 2017, 60, 1648–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, A.J.; Won, J.J.; Graham, R.L.; Dinnon, K.H., III; Sims, A.C.; Feng, J.Y.; Cihlar, T.; Denison, M.R.; Baric, R.S.; Sheahan, T.P. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antivir. Res. 2019, 169, 104541. [Google Scholar] [CrossRef]
- Touret, F.; de Lamballerie, X. Of chloroquine and COVID-19. Antivir. Res. 2020, 177, 104762. [Google Scholar] [CrossRef]
- Savarino, A.; Boelaert, J.R.; Cassone, A.; Majori, G.; Cauda, R. Effects of chloroquine on viral infections: An old drug against today’s diseases. Lancet Infect. Dis. 2003, 3, 722–727. [Google Scholar] [CrossRef]
- Savarino, A.; Di Trani, L.; Donatelli, I.; Cauda, R.; Cassone, A. New insights into the antiviral effects of chloroquine. Lancet Infect. Dis. 2006, 6, 67–69. [Google Scholar] [CrossRef]
- Chan, J.F.-W.; Yao, Y.; Yeung, M.-L.; Deng, W.; Bao, L.; Jia, L.; Li, F.; Xiao, C.; Gao, H.; Yu, P. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J. Infect. Dis. 2015, 212, 1904–1913. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Lai, S.; Chu, C.; Tsui, E.; Tam, C.; Wong, M.; Tse, M.; Que, T.; Peiris, J.; Sung, J. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: A multicentre retrospective matched cohort study. Hong Kong Med. J. 2003, 9, 399–406. [Google Scholar] [PubMed]
- Won, J.-H.; Lee, H. The Current Status of Drug Repositioning and Vaccine Developments for the COVID-19 Pandemic. Int. J. Mol. Sci. 2020, 21, 9775. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Wong, S.T. Toward better drug repositioning: Prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today 2014, 19, 637–644. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.; Rashid, M.H.A.; Mridul, M.; Mohanty, C.; Swayamsiddha, S. Application of Artificial Intelligence in COVID-19 drug repurposing. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 1027–1031. [Google Scholar] [CrossRef]
- Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020, 6, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Wang, J. Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. J. Chem. Inf. Model. 2020, 60, 3277–3286. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.; Griffin, I.; Tucker, C.; Smith, D.; Oechsle, O.; Phelan, A.; Rawling, M.; Savory, E.; Stebbing, J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020, 395, e30. [Google Scholar] [CrossRef] [Green Version]
- Segler, M.H.; Preuss, M.; Waller, M.P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 2018, 555, 604–610. [Google Scholar] [CrossRef] [Green Version]
- Stebbing, J.; Phelan, A.; Griffin, I.; Tucker, C.; Oechsle, O.; Smith, D.; Richardson, P. COVID-19: Combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis. 2020, 20, 400–402. [Google Scholar] [CrossRef]
- Beck, B.R.; Shin, B.; Choi, Y.; Park, S.; Kang, K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput. Struct. Biotechnol. J. 2020, 18, 784–790. [Google Scholar] [CrossRef]
- Sadegh, S.; Matschinske, J.; Blumenthal, D.B.; Galindez, G.; Kacprowski, T.; List, M.; Nasirigerdeh, R.; Oubounyt, M.; Pichlmair, A.; Rose, T.D. Exploring the SARS-CoV-2 virus-host-drug interactome for drug repurposing. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hufsky, F.; Lamkiewicz, K.; Almeida, A.; Aouacheria, A.; Arighi, C.; Bateman, A.; Baumbach, J.; Beerenwinkel, N.; Brandt, C.; Cacciabue, M. Computational strategies to combat COVID-19: Useful tools to accelerate SARS-CoV-2 and coronavirus research. Brief. Bioinform. 2021, 22, 642–663. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.-Y.; Peng, T.-T.; Yeh, T.-K.; Huang, W.-Z.; Chang, S.-E.; Wu, S.-H.; Hung, H.-C.; Hsu, T.-A.; Lee, S.-J.; Song, J.-S. Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomed. J. 2020, 43, 355–362. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Adaptive COVID-19 Treatment Trial 2 (ACTT-2). Available online: https://clinicaltrials.gov/ct2/show/NCT04401579?term=baricitinib&cond=COVID&fund=0&draw=2&rank=2 (accessed on 20 April 2021).
- Kalil, A.C.; Patterson, T.F.; Mehta, A.K.; Tomashek, K.M.; Wolfe, C.R.; Ghazaryan, V.; Marconi, V.C.; Ruiz-Palacios, G.M.; Hsieh, L.; Kline, S. Baricitinib plus remdesivir for hospitalized adults with Covid-19. N. Engl. J. Med. 2021, 384, 795–807. [Google Scholar] [CrossRef] [PubMed]
- US Food & Drug Administration. Emergency Use Authorization. Available online: https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization#covidtherapeutics (accessed on 4 March 2021).
- Romeo, I.; Mesiti, F.; Lupia, A.; Alcaro, S. Current updates on naturally occurring compounds recognizing SARS-CoV-2 druggable targets. Molecules 2021, 26, 632. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.D.; Uhrich, R.L.; Kraemer, G.C.; Love, J.E.; Kraemer, B.C. A drug repurposing screen identifies hepatitis C antivirals as inhibitors of the SARS-CoV2 main protease. PLoS ONE 2021, 16, e0245962. [Google Scholar] [CrossRef]
- Cytel. Global Coronavirus COVID-19 Clinical Trial Tracker. Available online: https://www.covid-trials.org/ (accessed on 7 January 2021).
- Cytel. COVID-19: Conquering Uncertainty. Available online: https://www.cytel.com/covid19-response (accessed on 4 March 2021).
- The New England JOURNAL of Medicine, Coronavirus (COVID-19). Available online: https://www.nejm.org/coronavirus (accessed on 4 March 2021).
- BMJ’s Coronavirus (covid-19) Hub. Available online: https://www.bmj.com/coronavirus (accessed on 4 March 2021).
- COVID-19 Resource Centre-The Lancet. Available online: https://www.thelancet.com/coronavirus (accessed on 4 March 2021).
- GIO. COVID-19 Georgia Geospatial Data Hub. Available online: https://covid-hub.gio.georgia.gov/ (accessed on 19 April 2021).
- Fishburn, C.S. Translational research: The changing landscape of drug discovery. Drug Discov. Today 2013, 18, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Collins, F.S.; Stoffels, P. Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV): An unprecedented partnership for unprecedented times. JAMA 2020, 323, 2455–2457. [Google Scholar] [CrossRef] [PubMed]
- Gavi, T.V.A. Gavi, the Vaccine Alliance, Helps Vaccinate almost Half the World’s Children against Deadly and Debilitating Infectious Diseases. Available online: https://www.gavi.org/our-alliance/about (accessed on 19 April 2021).
- CSL Behring. CoVIg-19 Plasma Alliance Builds Strong Momentum Through Expanded Membership and Clinical Trial Collaboration. Available online: https://www.cslbehring.com/newsroom/2020/covig19-plasma-alliance-expands-membership (accessed on 19 April 2021).
- GlaxoSmithKline. Sanofi and GSK to Join Forces in Unprecedented Vaccine Collaboration to Fight COVID-19. Available online: https://www.sanofi.com/en/media-room/press-releases/2020/2020-04-14-13-00-00 (accessed on 19 April 2021).
- GlaxoSmithKline. Vaccines. Available online: https://www.gsk.com/en-gb/about-us/vaccines/ (accessed on 19 April 2021).
- Pfizer. Pfizer and Biontech Co-Develop Potential Covid-19 Vaccine. Available online: https://investors.pfizer.com/investor-news/press-release-details/2020/Pfizer-and-BioNTech-to-Co-Develop-Potential-COVID-19-Vaccine/default.aspx (accessed on 4 March 2021).
- Moderna. Moderna’s Work on a COVID-19 Vaccine Candidate. Available online: https://www.modernatx.com/modernas-work-potential-vaccine-against-covid-19 (accessed on 4 March 2021).
- AstraZeneca. AstraZeneca and Oxford University Announce Landmark Agreement for COVID-19 Vaccine. Available online: https://www.astrazeneca.com/content/astraz/media-centre/press-releases/2020/astrazeneca-and-oxford-university-announce-landmark-agreement-for-covid-19-vaccine.html#__prclt=8mfn5tcv (accessed on 4 March 2021).
- Denise Grady, A.E.K.; Kumar, H.; Li, C.; Tejada, C. Coronavirus Vaccine Tracker. The New York Times. Available online: https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html (accessed on 16 April 2021).
- McGill COVID19 Vaccine Tracker Team, COVID-19 Vaccine Tracker. Available online: https://covid19.trackvaccines.org/vaccines/ (accessed on 16 April 2021).
- Plotkin, S.; Robinson, J.M.; Cunningham, G.; Iqbal, R.; Larsen, S. The complexity and cost of vaccine manufacturing–an overview. Vaccine 2017, 35, 4064–4071. [Google Scholar] [CrossRef]
- Media, V. Market Overview: CDMOs in the Evolving Global Vaccine Industry. Available online: https://www.pharmaceutical-technology.com/sponsored/cdmos-vaccine-industry-overview/ (accessed on 19 April 2021).
- SK Bioscience. SK Bioscience-Ministry of Health and Welfare-AstraZeneca Signed a Trilateral Letter of Intent for Cooperation in the Global Supply of the COVID-19 Vaccine. Available online: https://www.skbioscience.co.kr/en/news/news_01_01?mode=view&id=7&page=2 (accessed on 19 April 2021).
- SK Bioscience. SK Bioscience Signs CDMO (Contract Development and Manufacturing Organization) Agreement with US Novavax. Available online: https://www.skbioscience.co.kr/en/news/news_01_01?mode=view&id=5& (accessed on 18 April 2021).
- SK Bioscience. SK bioscience-Novavax–KDCA Sign Licensing Agreement and Purchase Agreement for Novavax COVID-19 Vaccine Candidate. Available online: https://www.skbioscience.co.kr/en/news/news_01_01?mode=view&id=42& (accessed on 19 April 2021).
- Moderna. Moderna and Lonza Announce Worldwide Strategic Collaboration to Manufacture Moderna’s Vaccine (mRNA-1273) Against Novel Coronavirus. Available online: https://investors.modernatx.com/news-releases/news-release-details/moderna-and-lonza-announce-worldwide-strategic-collaboration/ (accessed on 18 April 2021).
- Wileman, H.; Mishra, A. Drug lag and key regulatory barriers in the emerging markets. Perspect. Clin. Res. 2010, 1, 51. [Google Scholar] [PubMed]
- US Food & Drug Administration. Innovation to Respond to COVID-19. Available online: https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/innovation-respond-covid-19 (accessed on 23 March 2021).
- European Medicines Agency. EMA’s Governance during COVID-19 Pandemic. Available online: https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/emas-governance-during-covid-19-pandemic (accessed on 5 March 2021).
- European Medicines Agency. EMA Establishes Task Force to Take Quick and Coordinated Regulatory Action Related to COVID-19 Medicines. Available online: https://www.ema.europa.eu/en/news/ema-establishes-task-force-take-quick-coordinated-regulatory-action-related-covid-19-medicines (accessed on 25 March 2021).
- Critical Path Institue. Cure Drug Repurposing Collaboratory. Available online: https://c-path.org/programs/cdrc/ (accessed on 23 March 2021).
- PwC. Pharma 2020: Supplying the Future-Which Path Will You Take? Available online: https://www.pwc.com/gx/en/pharma-life-sciences/pharma-2020/assets/pharma-2020-supplying-the-future.pdf (accessed on 19 April 2021).
- Thomson, K.; Nachlis, H. Emergency use authorizations during the COVID-19 pandemic: Lessons from hydroxychloroquine for vaccine authorization and approval. JAMA 2020, 324, 1282–1283. [Google Scholar] [CrossRef] [PubMed]
- US Food & Drug Administration. Letter of Authorization-Chloroquine Phosphate and Hydroxychloroquine Sulfate. Available online: https://www.fda.gov/media/136534/download (accessed on 4 March 2021).
- US Food & Drug Administration. Coronavirus (COVID-19) Update: FDA Revokes Emergency Use Authorization for Chloroquine and Hydroxychloroquine. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-revokes-emergency-use-authorization-chloroquine-and (accessed on 4 March 2021).
- Nachlis, H. The FDA’s Evolving COVID-19 Emergency Use Authorizations: How The Convalescent Plasma Authorization Can Inform Future Vaccine And Therapeutic EUAs. Available online: https://www.healthaffairs.org/do/10.1377/hblog20201016.659416/full/ (accessed on 8 April 2021).
Methods or Models | Data or Software Used | Identified Repositionable Drugs for SARS-CoV-2 | References |
---|---|---|---|
MT-DTI Deep Learning Model | NCBI Database, DTC Database, BindingDB Database, DrugBank Database (SMILES) | Atazanavir, Remdesivir, Kaletra, Rapamycin, Tiotropium Bromide | [33] |
Deep Neural Network Model | DrugBank Database (Data of Approved Drugs and 3C-Like Protease Inhibitors) | Bedaquiline, Brequinar, Celecoxib, Clofazimine, Conivaptan, Gemcitabine, Tolcapone, Vismodegib | [36] |
Pharmacology-Based Network Model | NCBI GenBank Database, EMBL-EBI database, DrugBank Database (SMILES), Therapeutic Target Database, PharmGKB Database, ChEMBL, BindingDB, IUPHAR/BPS Guide to PHARMACOLOGY90, UniProt Database | Irbesartan, Toremifene, Camphor, Equilin, Mesalazine, Mercaptopurine, Paroxetine, Sirolimus, Carvedilol, Colchicine, Dactinomycin, Melatonin, Quinacrine, Eplerenone, Emodin, Oxymetholone | [28] |
Hierarchical Virtual Screening (MMFF-Based Free Energy Calculation Methods) | Schrodinger Software, OpenBabel Software, AMBER Software (Molecular Dynamics Simulation), DrugBank Database (DTIs) | Carfilzomib, Eravacycline, Valrubicin, Lopinavir, Elbasvir, Streptomycin | [29] |
BenevolentAI Platform (MCTS algorithm and Deep Neural Network Model) | Reaxys Chemistry Database, ZINC Database | Baracitinib, Fedratinib, Sunitinib, Erlotinib | [30,31,32] |
Physics-Based Glide Algorithm | Schrodinger Software, Broad Repurposing Library, Biotek Gen5 Software, GraphPad Prism 8 | Boceprevir, Ciluprevir, Narlaprevir, Telaprevir | [41] |
Product | Developer | In Partnership with |
---|---|---|
Ad26.COV2.S | Johnson & Johnson | Beth Israel Deaconess Medical Center |
AG0302-COVID19 | AnGes | Osaka University and Takara Bio |
ARCoV | Academy of Military Medical Sciences | Suzhou Abogen Biosciences and Walvax Biotechnology |
Ad5 and Ad35 | Cellid | LG Chem |
Comirnaty | Pfizer | BioNTech |
Convidecia | CanSino Biologics | Academy of Military Medical Sciences |
Covaxin | Bharat Biotech | Indian Council of Medical Research and the National Institute of Virology |
COVID-19 viral protein | Sanofi | GSK |
CoVLP | Medicago | GSK |
ChulaCov19 | Chulalongkorn University | Chula Vaccine Research Center |
DS-5670 | Daiichi Sankyo | University of Tokyo |
GBP510 | University of Washington | SK Bioscience and GSK |
GRAd-COV2 | ReiThera | Lazzaro Spallanzani National Institute for Infectious Diseases |
HGC019 | Gennova Biopharmaceuticals | HDT Bio |
mRNA-1273 | Moderna | NIH |
mRNA Vaccine | Arcturus Therapeutics | Duke-NUS Medical School |
S Protein of COVID-19 | Clover Biopharmaceuticals | Dynavax. |
Vaxzevria | University of Oxford | AstraZeneca |
ZF2001 | Anhui Zhifei Longcom | The Institute of Medical Biology at the Chinese Academy of Medical Sciences |
Developer | Product | Approved for Full Use in | Approved for Emergency or Early Use in |
---|---|---|---|
Pfizer and BioNTech | Comirnaty | Bahrain, Brazil, New Zealand, Saudi Arabia, Switzerland | US, EU, UK, Argentina, Australia, Botswana, Canada, Costa Rica, Greenland, Hong Kong, Iceland, Iraq, Japan, Kuwait, Lebanon, Mexico, Norway, Panama, Peru, South Africa, South Korea, Thailand, Turkey, UAE, other countries |
Moderna | mRNA-1273 | Switzerland | US, EU, UK, Canada, Greenland, Guatemala, Iceland, Israel, Mongolia, Norway, Qatar, Singapore, Thailand, Vietnam |
Johnson & Johnson | Ad26.COV2.S | Not Approved | US, EU, Brazil, Canada, Colombia, Greenland, Iceland, Liechtenstein, Norway, South Africa, South Korea, Switzerland, Thailand |
Oxford and AstraZeneca | Vaxzevria | Brazil | EU, UK, Algeria, Argentina, Australia, Bahamas, Brazil, Brunei, Canada, Chile, Colombia, Dominican Republic, Egypt, EI Slavador, Greenland, Hungary, Iceland, Mexico, Namibia, Sri Lanka, South Africa, South Korea, Vietnam, other countries |
Gamaleya Research Institute | Sputnik V | Not Approved | Russia, Algeria, Argentina, Bahrain, Bosnian Serb Republic, Cameroon, Congo Republic, Djibouti, Egypt, Hungary, Honduras, Iran, Iraq, Jordan, Laos, Lebanon, Mali, Morocco, North Macedonia, Paraguay, Palestinian Authority, Philippines, Sri Lanka, UAE, other countries |
Sinovac | CoronaVac | China | Azerbaijan, Brazil, Cambodia, Chile, Colombia, Ecuador, Hong Kong, Indonesia, Laos, Malaysia, Mexico, Pakistan, Panama, Philippines, Thailand, Tunisia, Turkey, Ukraine, Uruguay, Zimbabwe |
Sinopharm (Wuhan) | Vero Cells | China | UAE |
Sinopharm (Beijing) | BBIBP-CorV | Bahrain, China, UAE | Argentina, Brunei, Cambodia, Egypt, Gabon, Guyana, Hungary, Iran, Iraq, Jordan, Maldives, Namibia, Nepal, Pakistan, Peru, Venezuela, Zimbabwe |
FBRI | EpiVacCorona | Turkmenistan | Russia |
Chumakov Center | KoviVac | Not Approved | Russia |
CanSino Biologics | Convidecia | China | Chile, Hungary, Mexico, Pakistan |
Bharat Biotech | Covaxin | Not Approved | India |
Anhui Zhifei Longcom | ZF2001 | Not Approved | China, Uzbekistan |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Won, J.-H.; Lee, H. Can the COVID-19 Pandemic Disrupt the Current Drug Development Practices? Int. J. Mol. Sci. 2021, 22, 5457. https://doi.org/10.3390/ijms22115457
Won J-H, Lee H. Can the COVID-19 Pandemic Disrupt the Current Drug Development Practices? International Journal of Molecular Sciences. 2021; 22(11):5457. https://doi.org/10.3390/ijms22115457
Chicago/Turabian StyleWon, Jung-Hyun, and Howard Lee. 2021. "Can the COVID-19 Pandemic Disrupt the Current Drug Development Practices?" International Journal of Molecular Sciences 22, no. 11: 5457. https://doi.org/10.3390/ijms22115457
APA StyleWon, J. -H., & Lee, H. (2021). Can the COVID-19 Pandemic Disrupt the Current Drug Development Practices? International Journal of Molecular Sciences, 22(11), 5457. https://doi.org/10.3390/ijms22115457